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Abstract

In this paper, development of secondary flow and unsteady solutions through a
curved duct of rectangular cross section is investigated numerically by using the spectral
method. Numerical calculatiéns are carried out for the Grashof number Gr = 1000 over a
wide range of the Dean number, 0 < Dn < 1000, and the curvature 0 <8 £ 0.5, where the
outer wall is heated and the inner wall is cooled. First, steady solutions are obtained by the
Newton~Raphson iteration method. As a result, we obtain five branches of asymmetric steady
solutions with one-, two-, four-, six-, and eight-vortex solutions at the same Dean number.
Then, time evolution calculations of the unsteady solutions are performed, and it is found that
the steady flow turns into chaotic flow through periodic flows, no matter what the curvature is.
Finally, the complete unsteady solutions, covering the wide range of Dn and & , are shown by

a phase diagram.
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1. Introduction

The study of flows through a curved duct is of fundamental -interest
because of its ample applications in fluids engineering, such as in air
conditioning systems, refrigeration, heat exchangers, ventilators, and the Blade-
to-blade passages in modern gas turbines, not to mention applications in other
areas such as blood flow in veins and arteries. Such a flow is called a Dean
flow and the vortices generated by it are called Dean vortices because Dean 2}
was the first who formulated the problem in mathematical terms under the fully
developed ﬂéw condition. He found the secondary flow consisting of a pair of
counter rotatlng vortices caused by the centnﬁjgal force. Since then, there have
been a lot of theoretical and experimental works concerning thls flow. The
review articles by Berger et al. [1], Nandakumar and Masliyah [7] and Ito. [3]

may be referred to for some outstanding reviews on curved duct flows.

One of the interesting phenomena of the flow through a curved duct is
the bifurcation of the flow because generally there exist many steady lsolutions
due to channel curvature. An early bifurcation structure and linear stability of
the steady solutions for fully developed flows in a curved duct was investigated
by Winters [8]. However, the existence of multiple- solutions of the flow
through a curved duct with the large aspect ratio was first investigated by
Yanase and Nishiyama [9]. They obtained two kinds of solutions: the two—'
vortex solution and the four-vortex solution for the same aspect ratio. Recently,
Yanase er al. [10] performed numerical prediction of isothermal and non-
isothermal flows through a curved rectangular duct, where they obtained many
branches of steady solutions and addressed the time-dependent behavior of the
unsteady solutions. Very recently, Mondal et al. [5, 6] performed nﬁmer'ical
prediction of isothermal and non-isothermal flows through a curved square duct,

and investigated effects of curvature on the flow characteristics. However,
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complete bifurcatio_n structure as well as transient behavior of the unsteady
solutions with the formation of secondary vortices are yet unresolved, which is
the main objective of the present paper.

In the present paper, a numerical study is presented for the non-
i.sothern'nal flow through a curved rectangular duct with differentially heated
vertical sidewalls, whose 6uter wall is heated and the inner wall is cooled. Flow
characteristics are studied over a wide range of the Dean number and the
curvature by finding the steady solutions, investigating the development of
secondary vortices and calculating the unsteady solutions by time evolution

calculations of the resistance coefficient and the Nusselt number.

2. Basic Equations
Consider a viscous incompressible fluid through a curved duct with

rectangular cross section whose width and height are 24 and 24, respectively.
The aspect ratio of the duct is—g —2. It is assumed that the outer wall of the
duct is heated while the inner wall is cooled. The temperature of the outer wall

is T, + AT and that of the inner wall is 7, — AT, where AT >0. The x, y and

» axes are taken to be.in the horizontal, vertical, and axial directions,
respectively. It is assumed that the flow is uniform in the axial direction and
that it is driven by a constant pressure gradient G along the center-line of the

duct, i.e., the main flow in the z-direction as shown in Flg 1.
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Fig. 1: Coordinate system of the curved rectangular duct.

The variables are non-dimensionalized by using of the representative
length d, the representative velocity U, =v/d , where v is the kinematic

viscosity of the fluid. We introduce the non-dimensional variables defined as

=2, y=—— w= 2aw', T——T—, t—ﬂt',
U, ELy tl, AT d
s-d po P Go OF d_
L . oz =

where u, v and w are the non-dimensional velocity components in the x , yand

z directions, respectively; ¢ is the non-dimensional time, P the non-

dimensional pressure, J the non-dimensional curvature deﬁned as & =%, and

temperature is non-dimensionalized by AT . Henceforth all the variables are .
non-dimensionalized if not specified. Since the flow field is uniform in the z-

direction, the sectional stream function y is introduced as follows:
L P® o L B (1)
1+dx oy I+ ox

-
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The basic equations for w, i and T are derived from the Navier-Stokes
equations and the heat-conduction equation with the Boussinesq approximation
as follows:

ow 18(wy) 52 5§ Oy oW .
() -D,+ =(1+& w+6—, 2
) ) P T T hm o a
[A _ii)?ﬂ_ 1 dawmw) )
7 1+deox Ai+a) oxy)  At+&P
NPT 38 oy, Sy By dy ) 353%;/“ 35° oy
Y Taa T ad ) aomy| (+ap| a° 1+d a
26 8 1 oT
- —A Ay ~Gr(1+ & 3
(1+&)ox ¥ 2 5y+ T )Bx k)
L o) _ 1 [A2T+-—-5 ) )
ot 2(1+ax) a(x,y) ~ Pr L+ &
: 2 2
where A, = g .2 g ; o(f.g) _Ef_égl_g.,aﬁ (5)
o 4oy’ Bxy) oy yox
Dn, Gr and Pr, which appear in Eqgs. (2) - (4) are defined as
3 3
Dnr—Gd 1’%, GrzygAZd , Pr=-. (6)
HY L v K '

where 4, ¥, xand g are the viscosity, the coefficient of thermal expansion, the

coefficient of thermal diffusivity and the gravitational acceleration,

respectively. The rigid boundary conditions for w and y are

Wt p) =l 21) =L )=l +1)= 2 51, 5)= @jj( =0, (D

and the conducting boundary conditions for T are assumed as
7,y)=1, T(-1Ly)=-1, T(x, £1)=x. (8)

In the preseﬁt study, we vary Dn and § while Gr and Pr are fixed as Gr = 1000
and Pr = 7.0 (water).
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3. The Numerical Method 7
In order to solve the Egs. (2) - (4) numerically, the spectral method is

used. By this method the variables are expanded in a series of functions
consisting of the Chebyshev polynomials. Details of this method are discussed
by Mondal [4] and Mondal er al. [6]. By this method, the expansion functions

@, (x) and ¥, (x) are expressed as

®,(x)=(-x*)C,(x) ¥, (x)=0-*)C,() ©)
where C,(x)=cos(ncos™ (x)) is the n-th order Chebyshev polynomial.

w(x,y,z), w(x,y,t) and T(x,y,r) are expanded in terms of @, (x) and ¥, (x) as

W 2)= 53w (00, 0) |
v, y,r)=ggwm Or. 2,00 | (10)
T(x,p,0) = iirm O, (x), (y)+_x,

where M and N are the truncation numbers in the x- and y-directions,
respectively. In the present study, M=20 and N=40 have been used for
sufficient acc_uracylof the solutions. The steady solutions are obtained by the
Newton—Raphson iteration method. Then, in order to calculate the unsteady
solutions, the Crank-Nicolson and Adams-Bashforth methods together With the
functioﬁ expansion (10) and the collocation methods are applied. In the present
numerical calculations, flow characteristics are studied over a wide range of the

Dean number 0 < Dn < 1000 and the curvature 0 <& < 0.5 for the aspect ratio 2.

4. Resistance Coefficient and the Nusselt namber

We use the resistance coefficient A as one of the representative,
quantities of the flow state. It is also called the hydraulic resistance coefficient,

and is generally used in fluids engineering, defined as
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* *

P -P A1 w2
L i zp( ) (11)

where quantities with an asterisk denote the dimensional ones, () sta_mds for
the mean over the cross section of the rectangular duct, and

d. = 4(2d = 4d)/(4d=x8d) Since (B’ —P)/Az' =G, A is related to the mean
non-dimensional axial velocity (w) as
_16v26Dn
3w)”
where (w)=+28d/ v(w’ >

(12)

The Nusselt number, N, is defined as

1 or 1 or
T b I )

for the steady solutions. For the unsteady solutions, on the other hand, it is

defined as
_Yajjer _La/loT
=2 Ll_<< a| >>dy, Nug, =~ L1<< &, >>dy (14)

where (( )) denotes an average over a time interval ¢ . When the field is

periodic, 7 is taken as one period, and if it is chaotic .z is chosen as an
appropriate time interval.

5. Results and Discussion
5.1 Steady solutions and secondary vortices
By using the path continuation technique as discussed by Mondal [4],

we obtain five branches of asymmetric steady solutions for the present study. A
bifurcation structure of the steady solutions is shown in Fig. 2 for Gr = 1000,
&5 =0.1 and 100 £ Dn < 1000 using 2, the representative quantity of the’
solutions. The steady solution branches are named the first steady solution
branch (first branch, thick solid line), the second steady solution branch
(second branch, thin solid line), the third steady solution branch (third branch,
dash dotdot line), the fourth steady solution branch (fourth branch, dashed line)
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and the fifth steady solution branch (fith branch, dash dotted line),
respectively. It is found that the steady solution branches are independent and
there exists no bifurcating relationship among them in the parameter range
investigated in this paper. In this regard, it should be remarked that Yanase ef
al. [10] obtained both symmetric and asymmetric steady solutions for the
isothermal flow in a curved rectangular duct. In the present study of ‘non-
isothermal flows, however, we obtain only asymmetric sfeady solutions. The
reason is that heating the outer wall causes deformation of the secondary flow

and vields asymmetry of the flow.
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Fig. 2. Steady solution branches for Gr = 1000 and 100 < Dn < 1000 at §=0.1
(thick solid line: first branch, thin solid line: second branch, dash dotdot
line: third branch, dashed line: fourth branch, ‘dash dotted line: fifth
branch).

We obtain secondary vortices on various branches and it is interesting
that at the same Dean number sometimes we obtain a single-vortex or a two-
vortex solution, while sometimes we obtain two-, four-, six- and eight-vortex
solutions on various branches. It is found that, we obtain a single-voriex
solution for 0 < Dn < 65, two-vortex solutions for 65 < Dn < 245, two- and

four-vortex solutions for 245 < Dn < 540, two-, four- and six-vortex solutions
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for 540 < Dn < 855, and two-, four-, six- and eight-vortex solutions for 855 <
Dn < 10b0. To observe the change and development of the secondary vortices,
also called the Dean vortices, contours of secondary flow and temperature
profile are shown in Fig. 3 for Dn=50, 175, 500, 800 and 950, for example,
where in the figures of the secondary flow, solid lines (i = 0) show that the
secondary flow is in the counter clockwise d1rect10n while the dotted lines
( <0) in the clockwise direction. Similarly, in the figures of the temperature
field, solid lines are those for T > 0 and dotted ones for 7'< 0. As seen in Fig. 3,
the secondary flow is a one-, two-, four-, six- and eight-vortex solutions at the
same Dean number which are asymmetric with respect to the horizontal center
plane y = 0. The formation of secondary vortices at various Dn is also shown.

by a phase diagram in Fig. 4.

2—Vortex 4vvortex 6-vortex
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Fig. 3. Contours of secondary vortices (top) and temperature profile (bottom) at
various Dn. (a) Dn = 50, (b) Dn=175, (c) Dn=500, (d) Dn=800 and (e)'
Dn=950.

T
Fig. 4. Phase diagram of the secondary vortices for Gr = 1000 and 5 =0.1.

5.2 Unsteady solutions
In order to study the nonlinear behavior of the unsteady solutions, time

evolution calculations are performed for 0 <Dn <1000 and 0<4§ < 0.5 at
Gr=1000. We perform time-evolution calculations of A and Nu at various Dn.-

In this paper, unsteady solutions for § =0.1 are discussed in detail, and then
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complete unsteady solutions, covering the wide range of Dn and & investigated

in this paper, are shown by a phase diagram.

Time evolutions of 4 are performed for Dn=50, 100, 300, 500 and 1000
as shown in Fig. 5. It is found that the flow becomes steady state at Dn=50 bﬁt
periodic for Dn=10i). However, the flow ceases to be steady state once again at
Dn=300 but periodic for Dn=500 and finally chaotic at Dn=1000. In order to
be certain whether the flow is periodic or chaoticlat Dn=100, 500 and 1000, we

then perform time-evolutions Nu at the same Dn.

1 One50
Q.EF
a.sf ' Dn= 100
A
D4F
Dri 300
ooy oo bl
D=1 000
efF . i i r i 1 i ] ;
[+] 2 4 [ a 10

: time (¢,
Fig. 5: Time-evolution of A for Gr = 1000 ;i Dn = 50, 100, 300, 500 and 1000:
Figure 6(a) shows time-evolution of Nu for Dn=300 and it is clea;'ly seen that
the flow is i)eriodic. Contours of typical secondary flow and temperature
profile for Dn=300 are shown in Fig. 6(b), for one périod of oscillation, where
it is seen that secondary flow is a two;vortex solution with one large vortex
dominating the other one. We then perform time-evolutions of Nu for Dn=500
and Dn=1000 as shown in Figs. 7(a) and 8(a), respectively. It is found that the
flow is periodic at Dn=500 but chaotic for Dn=1000. To observe the change of
the flow characteristics, r'as_ time proceeds, contours of secondary flow and
temperature profile for Dn=500 and Dn=1000 are shown in Figs. 7(b) and 8(b)’
respectively, where it is seen that the secondary flow is a two-vortex solution

for Dn=500 but four-vortex solution for Dn=1000.
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Fig. 7. Time-evolution of the Nusselt number (Nu) for Dn = 500.
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Fig. 8. Time-evolution of the Nusselt number (Nu) for Dn = 1000.
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Fig. 9. Distribution of the time-dependent solutions in the Dn-& plane for
0<Dn<1000 and 0< & <0.5.

Einally, time evolution computations for other values of & are
performed and presented by a phase diagram in Fig. 9 in the Dean number
versus curvature (Dn-5) plane for 0sDn<100 and 0<§ <0.5. In this figure,
the circles indicate stable steady solutions, the crosses periodic solutions and
the triangles chaotic’solutions. As seen in Fig. 9, the steady flow turns into
chaotic flow through periodic flows. However, for &<0.28, the period solution
occurs in two different intervals of the Dean number and the flow undergoes in
the scenario 'steady — periodic — steady — periodic — chaotic', if Dn is
increased. If & increased further (& =0.28), the flow characteristics remain a
change  and the flow undergoes 'steady — periodic — chaotic', if Dn is
increased. It is found that as& increases the region of stable steady solution
increases and consequently the region of periodic state and hence the chaotic

state is delayed.
6. Conclusions

~ In this paper' a numerical study is presented for the non-isothermal flow
through a curved rectangular duct with differentxally heated vertical sidewalls
whose outer wall is heated and the i inner wall is cooled. Numerical calculations

are carried out over a wide range of the Dean number and the curvature by
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using the spectral method. We obtain five branches of asymmetric steady
solutions with multi-vortex solutions. It is found that there exist one-, two-,

four-, six- and eight-vortex solutions at the same Dean number.

Time-evolution calculations of the unsteady solutions show that the
steady flow turns into periodic first and then chaotic if Dn is increased, 1o
matter what the curvature is. However, for & <0.28, the period solution occurs
in two different intervals of the Dean pumber and the flow undergoes in the
scenario 'steady — periodic — steady— periodic-»chaotic', if Dn is increased.
For larger & (& =0.28), on the other hand, the flow undergoes 'steady —
periodic — chaotic', if Dn is incr_eased. It is found that as S increases the
region of stable steady solution increases and consequently the region of
periodic state and hence the chaotic state is delayed. It is also found that the

chaotic solution occurs at larger Dean numbers if the curvature becomes large.
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