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Abstract

The aim of the present paper is to investigate interface waves (surface waves) of
Earthquakes in second order thermo-viscoelastic solid media under the influence of gravity.
The displacement components are expressed in terms of displacerﬁ_ent potentials. The problem
of surface waves, particularly, Rayleigh waves, Love waves and Stoneley waves have been
dealt with and the wave velocity equations corresponding to these waves have been
determined. All final results and eguations are in fair agreement with the corresponding

classical results when the effect of temperature, viscosity and gravity are ignored.
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1. INTRODUCTION

The importance of interface waves and their investigations in isotropic
clastic solid medium are well recognized in the study of earthquake waves and
other phenomeﬁa in seismology and geophysics. The theory of surface waves
has been developed by several investigators [Love 1911, Stoneley 1924, Ewing
et al 1957, Bullen 1965, Jeftfreys 1970].

The effect of viscosity, curvature, gravity, thermal field, magnetic field and
other interacting fields are not considered in the classical problems of waves
and vibrations to the desired extent. These effects have already been dealt with
to a limited extent by [Ewing er al/ 1957].The influence of gravity on elastic
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waves and particularly on an elastic globe was first considered by [Bromwich
1898]. The influence of gravity on superficial waveé has been investigated by
[Love 1911] who has shown that the Rayleigh wave velocity is affected by the
gravity field. Love has pointed out also that the effect of gravity is to increase
the Rayleigh wave velocity to some significant amount when the wave length is
large. Following the same theory and using the dynamical equation of motion
for a homogenous isotropic elastic solid [De and Sengupta 1975, 1976, Das and
Sengupta 1992, Das et al 1995, Ghosh ez al 2000] have investigated the effect’
of gravity on elastic waves and vibrati‘ons and also on the propagation of waves
in an elastic layer. Biot 1965 has studied the influence of gravity on Rayleigh
waves assuming the force of gravity to create a type of initial stress of
hydrostatic nature and the medium to be incompressible.

In this paper, an endeavor has been made to investigate the interface waves
in thermo-viscoelastic solidlunder the influence of gravity where the concept of
the second order viscoelastic model [Voigt 1887, Acharya and Mondal 2002]

has been assumed.

2. BASIC EQUATIONS AND FORMULATION OF THE PROBLEM

Let M, and M, be two homogeneous semi-infinite viscoelastic media in
welded contact at their common plane surface of separation under the influence
of grav.ity and temperature. We suppose that the two media (M; being above.
M,) are separated by a horizontal plane boundary of infinite dimensions. As
reference system consider a set of orthogonal Cartesian axes Oxx;x; with the
origin O located at any point on the interface x, =0 and Ox; pointing normally
into M (x, =0).

We consider the possibility of a wave moving in the positive x-direction
and assume that the disturbance is confined to the neighborhood of the
boundary thus making it a surface wave. Prior to the appearance of any

disturbance both the media are everywhere at absolute temperature 7.
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We further assume that at any instant all the particles in a line parallel to x;
axis have equal displacement i.e. all partial derivatives with respect to x»
vanish. Let u;, u, u3 be the components of displacement at any point(x, X2, X3)
at time 7.

The dynamical equations of motion for three dimensional problems under
the influence of gravity are [Sengupta and Acharya 1976, Das and Sengupta
1992]

do, N oo, N 00, du, 8%u,

i + = 1
ax,  ox, o, e PP 2
00, | 0oy 00y b ou, _Ou, o)
o, ox, oxr, “fa ‘ad
o, Oo,, OJo, Ou, Ou, o’u,

+ + - pg(—+22) = 3
o am o, P ) TP )

where Ip is the mass density of the material medium, g is the acceleratioﬁ due
to gravity and o, are the stress components.

According to Voigt’s definition [Voigt 1887, Acharya and Mondal 2002]
the stress strain relations for thermo-viscoelastic medium with second order
viscosity may be presented as

o, =2D,e, +{D,A~D,T}8, (4)

where

&L 2 5 2
D,=> u 7 D, =34 yiDB“—“Zﬁ Py

r=0 r=0 r=0
in which A°, 4° are the elastic parameters and A", 4" (r = 1,2)are the parameters
representing the effect of viscosity, 8" (r =0,1,2)are the thermal parameters, T
is the absolute temperature over the initial temperature 7, .

To suit the actual situation of the present problem the dynamical equations of
motion with the accommodation of thermal field and gravity are [Sengupta and
Acharya 1976]
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oA or ou u
(DA+Dﬂ)—-——+DpV2ug—Dﬁ—+pg—3=p L, (5)
ox, &x, x, or
D, = p T, ©)
dA aT Ou J*u
(DA +D#)Ex“+DMV2 -~ D g—pg§l=p 61‘23’ (7)
: 3 1 -

Two displacement potentials @(x,,x,,f) and w(x,x,,1) associated with the

displacement components », and », may be defined in such a manner that

o0 dv -, % by g
Wy 6x1 .6x3 y Wy = ax3 6x _ ( )
s0 that

ox,  Ox = ox, ox,
Introduction of the functions ¢ and y into the above equations leads one to

obtain two set of equations in compact form, valid for the media M, (j=1) and

M; (j=2)

4 o’

DV, +g——~~DyT, = arzl ’ (9)

1
dp, Sy,
DSVZW,—ng:?, (10)

1
(u,),

DVi(uy), = 6122 o (11)

where suffixes j=1 and j=2 have been used to designate quantities for the

media M, and M, respectively

2 r r r
D=Za’.2—‘3— Dy zsﬂa D, Zsza

o i r? ]
ot — o Pt
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in which

2 AT+2u 2 B 2 "
o = ;-—i, U= P , 8= #; , B =GA +2u))a, r=0,1,2;
7 ] J F) !

r=0 p 7 r=0 J r=0 ]

a, is the coefficient of linear expansion of solid.
The generalized law of heat conduction in absence of heat source is [Rakshit
and Sengupta 1998] -

0
7,0, (V’p)) (12)

KV'T, =pC,, Ejﬁ
where K ,(j=12) are the coefficients of heat conduction and ¢,,(j=12) are
the specific heats of the media at constant volume p,; (j=12) are the densities
of M, and M, resbectively |
The solutions of (9)-(12) for the medium M, may be taken in the forms

[0 s ()00 Ty = [H0E )92, 1, (35), T Yexp o, — )} a3

Using (13) into (9)-(12) one obtains for the medium M,

2
Z (—iwc) (UT)*

~

d? 3 o U
{dxz +A32]¢+ 2 !ga)w = T1 (14)
: > (miwe) (o)’ Y (—iwe) (&)
r=0 r=0 )
. .
gxﬁBf}’; gy (15)
L > (—iwcY (S
r=0
- d? 2- . iwepT, & d’ 5
_ Tz______(] i r ry2 Y-
= 3} = Z;,( iwe) (Uy) [dx]z @ }(p, (16)
g .
‘;;;2 + B4, =0, (17)
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2 2 . g
A=’ £ -5 B =o' {— i ~1 ;C‘szza)z{l———wpg"}.
13 r r ’ . r r @
2 (Y (@ y? 2 (Y (Y )
r=0 r=0
‘Obviously the equatibns (14)-(17) have exponential solutions and in order that

o,y T, and (u,), shall describe surface waves they must become vanishingly
small as x, — oo,
Imposing this condition for the medium M|, one may get

={4dexp(iwayx,) + Bexp(iwa,x,)+C exp(ima;xy)} explie(x, —cf)},

T {4, expliwa,x,) + B, exp(:a)afzx3) +C, exp(iwa, x, )} exp {io(x, —ct)}, ( 8)
= {4, exp(iwa,x,) + B exp(za)azx3 )+ C, exp(iwayx, )} explio(x, —cf)},

(uz). Dexpfio(Hzx, +x —ct)},

2

where H? ={ 2% ____1{5f which the imaginary part is positive.

2
2 (~iwe)

r=0
Using (18) in (14)-(17) it is seen that af (j=1,2,3) are the roots of the equation
@°a’+Nao'a' + Nyo'a® + N, =0, (19)

where N, =v{ - B}, N, =v} —v2B} —vZ,N, = B3} +v;C}, in which

i r [']1’ 2
v = {"Z“:( s } vilehly o Ugo)
S (e (@) 5 {Z(—wc)’(al }{Z(—wc) (S’)z}

2 2 2
v =Cl— 4 —vA? and V2 = A2C? +vivia’,
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- The constants 4,,B,,C,, 4,,B, and C, are related with the constants 4, B and C
by means of the following expres.sions

A, =mA,B,=mB,C,=1C, 4 =nAd,B =mB,C, =IC, (20)
where

igw _ igw

nl = I i 2 s?nl . 2 E)
(B —wlaf){z (—iwc) (S:)z} (B: - a»za%){Z(—z'wc)"(S:)Z} '

1 5 imcpT, {g}_(—iwc)’ yy }(mza. +a’)

- 2 ’n; = 2 2y
(B —wzaé){Z(—iax)'(&')Z} B(ataf +C7)

7

2

incpT, {Z(—m»c)_' @y }(afaz +?)

r=0 r=0

B,(o*a2 +C7) B (o' +C})

Corresponding equations and expressions valid for the medium A, may be

2

iwcpT, {Z(—iarj’(U{ )2}(w2a_, +at)

m = ,1;=

determined similarly using different notations for physical parameters and field
functions.
3. BOUNDARY CONDITIONS

Let us now formulate two boundary conditions which must be satisfied for the
present problem.

1. The components of displacement, temperature and normal flux at the

| boundary surface between the two media M, and M, must be continuous

and the continuity is independent of time and position on the bouridary

surface x, =0.

I1. The stress components ¢,,0;, and o,; where

| o’p, 0w, dy,
(GSI)j ZD}‘ [zaxa; + axzj - axzj s
10%5 1 3
B(u,),
(0'32){‘ = D,_. -‘""'é;}_‘fs
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(03), = D,V’0, +2D, [aa;? ::g;] D,T,,
where as before j=1,2for the media M,and M,and across the boundary
surface between M,and M, must be continuous at all times and places. |
Using 4, B, C', D', n, my, L, &, &, al, m, my, L,  Hy as-‘the
corresponding quantities for the medium and imposing the boundary conditions

one obtains the following

A=)+ B(l-may)+ C(l-ha) = A1+ me) + B(L+mat) +C (1) @1
D=D (22)
Aley +n|)+B(az +m)+Cla +1)= A O — )+ B (my ~ ) +C (, — ) (23)
nA+mB+IC = mA +mB + LC (24)
B,(am, A+, B +al,C) = —By(@ym, A +aym, B +aLC) (25)
K Ana} ~2a =)+ Bloma} ~22, ~m)+Cia3 =205 L) 35
= LA (&2 — 20, ~m)+ B (mye? — 20, —m) + C (b’ =205 =1,)]
HyD=~H,;D @n
AL (4 02)+ 208 ey +m) + B 1+ BUA (L4 a) + 25 (e +m) +m K]
+ LA (L+ad) + 2 a(a + )+ 8= AL (+ED) +2pe(e —m)—mh] - (28

+ BIA(+ &)+ 245050 - m)-m 1+ C [ (1+ &)+ 2u50(as ~1) = lzﬂz']
where the asterisk indicates the complex quantities

H; =2 (i) 1, 4 =3 (iwey X, B = (—iwcy B].j=1,2.
r=0 r=0

r=0

1t follows from the equations (22) and (27) that D=’ =0. Hence there is no
displacement in the x; direction i.e. there is no transverse component of

displacement. Thus no SH waves occur in this case.
Eliminating the constants 4, B,C, A, B and C from the equatlons (21), (23)26)

and (28) one finally obtains the following wave velocity equation in

determinantal form as
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(ne)  (ma) (e  (+ma) ~ema)  —(1+4%)

(@+n) (g+m) (g+h) (@G-n) (g-m)  (&-h)
n m ] -, —m, S PPN

; = g : C : = 29

Ken  Kem Kal o Kan Kam, Kal, 29)

F(a,n) Flam) Fa.h) FE@.n) Fam) Fah)

GG mn) Gi(mam) Gilasdoh) Gy(@m,n) Gy(eg,m,m) Gylaa.h.h)

where F,(x,y) = 4, (x*y — 2x— ), F,(x, ) = s, (o — yx* = 2),

G (53, 2) = =4 (1 +37) ~ 24 x(x+ )~ 2/ and G, (x,,2) = 4 1+ x") = 2p5x(y = %) —2F; -
The above equation (29) represent‘s the frequency equation for the general
surface waves propagated near the interface of two different thermo-
viscoelastic solid semi-infinite media of Voigt typé with second order viscosity
under the influence of gravity.

4. EXAMPLES OF SURFACE WAVES

Rayleigh waves: For the case of viscoelastic Rayleigh waves of second order
under the thermal field and gravity, medium M, is replaced by vacuum, so that
the plane interface now becomes a free surface. Moreover, in this case, there
comes a thermal boundary condition [Chadwick 1960, Mukherjee and
Sengupta 1991}

%‘+h1}=0 on =0 (30)
where % is Planck’s constant.
Since the temperature difference across the free surface is always small this
linearized form of radiative condition is valid on the boundary x, =0.
As found earlier, we note here again that there can be no SH waves. From the.
equations (26) and (28) putting 4’ =B'=C’'=0 the relevant equations take the

modified forms
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| Aol =2 a —n)+B(mIa22'—2a --m,)+C(la;-2a3—l=-)=0 : ity - KLY
AR (+6) 2 e +m)y s 1+ BA G )+ e +m)+mf] oy
. +qz.<1+oé)+2m:.<a3+z>+t,xz‘] o . o
From (30) we also have ' . _
(zcoa:,+h)nA+(1a)a2+h)mB+(ra>a3+h)lC 0 T 33
Ehmmatmg, the constants A, B and C from the equatlons (31) (33) we get
(et - 25— A 2+ 2y +m) e+
A Qa2 o + )+ K Ryl =0 —20 —m)
(A0 +e8)+2deqla +n) b Ko + B ~ {2 (+ &) + 24 +h)+ -'(34)
B e Ry ]+ 0 = 2 =1 A (1+a&’)+~2ﬂ.a1(q +re)+ﬂﬁ'}(% +Rym—
& (+@)+25a(c +m)+mfZ} (o +Hm]=0

This is the required wave velocity eqhation of Ray:lmgh.?waue&' in ‘a-thermo-
. viscoelastic -solid, semi- inﬁnite medium with. second order viscosit%/ u.nder the
. influence of gravity. When the, effects of v1sc031ty tempera:ture and gravxty are
- neglected, - the equation (34) 1s 1n well agreement w1th the correspondmg
classmai results - e o o

Love waves: For Love type of mterface waves to ex1t we assurne a layered
semi infinite medium in which M, is bounded by two horlzontal plane surfaces
Lat a finite distance H apart, while M, is a seml—lnfimte medlum as before In
the case of Love waves it is known that only the displacément component u,

For the medium M we proceed :‘eﬁaéﬂ)} as inl the general case arid thus- (w,), is
given by the last’ equatlon of (1 8) w1th the 1‘magmary part “of ' H, positive.

“t However for the medlum M;, we must preserve the full SOIutlon since ‘the

displacement no longer diminishes with the increasing distance fr_om “the

interface of the two media. Hence
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(1), = 4, explica(Hx, +x, —ct)} -+ B, explioN~H,x, +x ~ct)} (35)
Since the displacement component and the stress component must be
continuous across the plahe of contact, we have

() =(14),, (o) =(0y), at x; =0 (36)
From the last equation of (18) and (35) with these conditions we get

D=A4,+B, and -y HD = u, H,(4, - B,) 37
Eliminating D we get _

A H, — i H) = B, H, + p Hy) (38)
We now introduce the boundary condition that there is no stress across the free
surface x, = —H

(65,), =0 at x,=-H (39)
Using (39) one obtains the following

A, exp(—iwH,H) = B, exp(ioH,H) (40)
Eliminating the constants 4, and B, from equations (38) and (40) one gets after
a little simplification the following consistency equation

WH, tan(H,wH) +iu H, =0. (41)
Equatioﬁ (41) represents the required frequency equétion for Love waves
propagated near the interface of thermo-viscoelastic layered semi-infinite
media with second order viscosity under the influence of gravity. It is observed
from this equation tﬁat Love waves are not affccfcd by the presence of a
temperature field and gravitational field. Pufting the parameters due to
viscosity of the medium as zero in (41) one obtains the classical frequency
equation for Love waves.

Stoneley waves: The generaliied form of Rayleigh waves is the Stoneley
waves in which we assume that the waves are propagated along the common
boundary of the semi-infinite media M, and M,. Thus the equation (29) will

represent the wave velocity equation for Stoneley waves propagated near the
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interface of two different thermo-viscoelastic semi-infinite media with second
order viscosity under the influence of gravity. This equation (29) reduces to the
classical Stoneley wave velocity equation when the additional effects are not.
considered.

5. Conclusi.ons

On conclusion it is noted that the general interface waves (Stoneléy waves)
and Rayleigh waves are greatly influenced by the viscous nature of the material
media, the presence of gravity and thermal field. Such general interface waves
and Rayleigh waves are dispersive in nature which is a contrast of the classical
situation. It is remarkable to note that Love waves are not affected by the
presence of temperature and gravitational fields. Further dispersion of Love

waves occurs due to the presence of viscosity.
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