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Abstract

An dsymptotié method has been found to obtain approximate solution of a second order
nonlinear differential system based on the extension bf Krylov-Bogoliubov-Mitropolskii method,
whose coefficients change slowly and periodically with time. Moreover, a non-autonomous case
also investigated in which an external periodic force acts in the system. The solutions for different
initial conditions show a good agreement with those obtained by numerical method. The method
is illustrated by examples.
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1. Introduction

Most of the well-known perturbation methods (e.g., Poincare method [1],
WKB method [2-4], Multi time-scale method [5-6] or Krylov-Bogoliubov-
Mitropolskii (KBM) method [7-9]) were developed ‘to find periodic solution of
nonlinear differential system with constant and slowly varying coefficients.
Among the above methods KBM method is convenient and widely used. Krylov
and Bogoliubov [7] originally developed a perturbation method to obtain

approximate solution of a second order nonlinear differential system described by
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v ogx = -8 (x,3), (1)
where the over dots denotes the differentiation with respect to 1, @, is a positive

constant and ¢ is a small parameter. Then the method was amplified and justified
by Bogoliubov and Mitropolskii [8]. Mitropolskii [9] has extended the method to
nonlinear system with slowly varying coefficients as |

i+ 0l(r)x =—¢(x,%1), T = &t 2)

Following the extended Krylov-Bogoliubov-Mitropolskii (KBM) method [7-

9]), Bojadziev and Edwards [10] studied some damped oscillatory and purely non-
oscillatory systems with slowly varying coefficients modeled by

i+c(r)x+ o’ ()x = —¢f (x,%,7), (3)
were c(t) and o(t) are positive. Murty [1 1] has _prese'nted a unified KBM methad
for both under-damped and over-damped system with constant coefficients.
Shamsul [12] has presented a unified formula to obtain a general solution of an #z-
th order ordinary differential equation with constant: and slowly varying
coefficients. Hung and Wu [13] obtained an exact solution of a differential system
in terms of Bessel’s functions where the coefficients varying with time in an
exponential order. Recently Roy and Shamsul [14] found an asymptotic solution
of a differential system in which the coefficient changes in an exponential order of
slowly varying time. The aim of this article is to extend the work of paper [14] to
similar nonlinear problems in which the coefficients change slowly - and
periodically with time. Such:problems arise in different branches of engineering,

e.g., rotof with slowly and periodically changing mass.

2. Method: Let us consider the nonlinear differential system

#+(k? +kysint)x=—gf(x,7), T =¢&¢ 4)
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where the over-dots denote differentiation with respectto?, € isa small parameter,
k ,k, are constants, k, =O(s), f is a given nonlinear function. Setting
o (7) = (k! +k,sint), o(r) is known as frequency.
For £ =0 and 7 =7,= constant, 4 (z,) =ia(r,), 4,(z,)=—io(z,) are two eigen
values of the unperturbed etluation of (4) and has the solution
x(2,0) = @, ;e " + g, e, (3)
When ¢ # 0 we seek a solution 'in accordance with KBM method, of the fomi
x(t,£)= a,(t,7)+a,(t, 1)+ au,(a,,az,r)+£2..., | (6)
where g, and a, satisfy the equations

a, = A (t)a, + &4 (a,,a,,T)+ €., N
a, = A,(r)a, + gd,(a,,a,,7) + €°...,
Confining attention to the first few term 1, 2...m in the series expansion of

(6) and (7), we evaluate functions u,,...,4,, 4,...,such that a, and a, appearing in

(6) and (7) satisfy (4) with an accuracy ofe"*'. In order to determine these
unknown functions it was early assumed by Murty [11], Shamsul [12] that the

functions u,.,...exclude all fundamental terms, since these are included in the series

expansion (6) at order £°.
Now differentiating (6) twice with respect to ¢, substituting for the derivatives
¥ and x in (1), utilizing relation (7) and comparing the coefficients of ¢, we

obtain

(/11“1 gi:"‘ﬂzaz %_%]Al +Aa, +(’11‘:’1 “a%l_""lzaz %""11]/11 +4a,

®)
+[»ua1 gi—l%az%-aIAa%wz%%}, == a,,,7),
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di, di,

where A/ = A = FO=fx,,r) and x, =4, +a,.

It is assumed that both 7@ can be expanded in Taylor’s series [11-12]

FO = 3 F,, (apay | ©9)

7.ry=0

We have assumed that », does not contain fundamental terms and for the
reason the solution will be free from secular terms, namely ¢cos?, tsint and e
(see [12]). To obtain this solution (4), it has been proposed in [12] u,....excluded
the terms ala?of f© where r,—r, =+1. This restriction guarantees that the

solution always excludes secular-type terms or first-harmonics term and the
solution becomes uniformly valid {7-9]. Moreover, we assume that 4, and 4,

respectively contain terms a, and a,. We have already mentioned that equation
(4) is not a standard form of KBM method. We shall be able to tran'sform (6) to the

exact formal KBM [7-9] solution by substituting a, = %e"' and a, = %e"’*’. Herein
a and ¢ are respectiveljz amplitude and phase variable. (see [19,20]).

3. Example:
3.1.A noﬁlinear problem in absence of external force.

We consider a second order nonlinear system with constant and slowly

varying coefficient
%+ (k2 +k,sin7)x = —&x’, (10)

Here over dots denote differentiation with respect to ¢, k,, k, are constants,

k, =€), x, = a, +a, and the function f® becomes,
@ = (a} +3ala, +3a,a; +a3). ’ (1)

Following the assumption (discussed in section 2) u, excludes the terms

2
3ala,, 3a,a;.
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We substitute in (8) and separate it into two parts as

‘"6_"'12‘125.?"_’11)‘42 +Aa,

d B ,
(Alalgl‘“"lzaz'a?z"}?z | + A +(’11‘7’1 2, :

= (301202 +3a1q22)

,342)

and
0 0 0 4 .
(Alal5%+%a251“;_&}(llal'a;;+ﬂqazaz_az}"l =—(a, +a;) (13)

The particular solution of (13) is

", = - @ 4 (14)
24,34 —4;) 24,(34,-4)

Now we have to solve (12) for two functions 4, and 4,. According with

unified KBM method 4, contains the term 3a’a, and 4, contains the term 3a, a;

(Shamsul [12]) obtain the following equations

0 0 '
(/110] -'5;'"+ lzaz a"— /12 ]Al + A,a, = —3afaz (15)
1 2 5
and
a a I 2
Aa g"”ﬂzaz 'a_a'_'ll 4, + A0, =3a,a; (16)
1 2
The particular solutions of (15)-(16) are
oy Ala, 3ala,
A=A, 22, a7
o = Aya, 3a,a]
T2, -4, 24,
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Substituting the functional values of 4, and 4, (17) into (7) and rearranging,

we obtain
a, =A4a + g(— Ad 362!1202 J
R (18)
&, = La, +g( L ]
—Ay 24

In the case of un-damped, we have unable to find the exact solutions of a,, a,
and ;.

Therefore, the first order solution of (10) is

x(t,e)=a, +a, +£u, ' (19)
where g ,. a, are solution of (18) and w, is given by (14). Under the
transformations, a, =ge"“’ and a, =f12—e"“’ together with A, =io, A, =—io and if
we replace Ao +A,e® = 4, and —i(4,e”® — A4,e") = aB, (where 4, and B, are
usual notation) equations reduce to

d=¢d(@)+e’..and  ¢=w+eB (a)+e... (20)

We shall obtain the variational equations of a and ¢ in the real form (a and
@ are know as amplitude and phase) which transform (18) to

] 2
PR .. IR . iy @1)

- k,cost
where @ = (k] +k,sint, o' :

' : ) 2\/k12 +k,sint -
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The variational equation (21) is a form of KBM solution. The variational
equations for amplitude and phase are usually appeared in a set of first order

differential equation and solved by numerical technique (see [12]).

3.2.Letus consider another form of the nonlinear differential problem (10)
#+kix=—k,sintx—g® =—gksintx—e, | - (22)
where k, =k and ! =”. Here,
O = (&} +3ata, +3aa; +a;) - ksint(o + ;) (23)

In our assumption u, excludes the terms 3ala,,3a,a; and in our assumption
u, excludes ksint(a, +o,). The equations of u,, 4, and 4, become (discussed in

Section 2)
0 o 0 0
(&algc-q—%%-é{—zz——ﬂl&alg&:%aza—&}ﬁ—(@ +05) (24)
and

[A,a} 2. A, 8. &]Al =-3aja, —ka, sint,

| oa, oa, C@5)
Ao, -—a-—+2,2¢:1:2 __6___/11 A, =-3a, a; —ke, sint
oa, oa,
Solution of Egs. (24)-(25) are
3 ' 3
. . S . I (26)

W, ==- —
PN (B0 —hy)  2A,3%, = Ay)
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3ala, kasint
24, A -4,
3a,a} , ka, sin 7

24, | -4

4, =

| 27)
4, =

Substituting the functional values of A, and 4, (27) into (7) and rearranging, we

obtain
> o .
C:‘f1 =-/1101 +£[— 36; % = kZl Sl;:- }
X A i . {28)
&, =i +8[— o, a, N azsmrj
24, A-4

Therefore, the first order solution of (22} is

x(t7) =0, +a, + 8y, (29)

where «, @, are solutions of (28) and u 1is given by(26).Under the
transformations o, =%e“" and «a, =%e““’ , and substitution A=io, A4, =-io,

we shall obtain the variational equation of « and ¢ in the real form (o and ¢
are know as amplitude and phase) which transform (28) to

2 : :
G=0, pmo+i HOT - (30)
8w 20

where ik’ = o’.

4. Non-linear system with external force.

The method is used to similar nonlinear differential syétem with an external

force Esinwvr,

5c’+(k12+k2sinr)x=—af(x,r)+f£sinvt, T=gt - (3D
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where v is the frequency of the external force.

4.1. Let us consider a second order nonlinear differential system with an external

force
%4 (k} +k, sinT)x = —&x’ + gEsinvt, (32
Here over dots denote differentiation with respect to ¢; &, k, are constants,
k, =0(g), x, = a, +a, and the function

f9 =~(a] +3ala, +3a,a] +a§)+—';—E-_—(e’" ~e™). ‘ (33).
i

Under the restriction (discussed in Section 2) u, excludes the
terms3a/a,, 3a,a; . Moreover in our assumption », excludes eE(e"" —-e"“')/(2i) We

substitute in (8) and separate it into two parts as

[&a{%wdr@%—a}wm] +(Aa.a%+4a2%—a]n,+z;az

(34)

=—(a’a, +3a,a;) 4—%(6”’ —-e™™),

; - 1
and
7 5} 0 0

[1.“1 2’ Aha, 2, A‘IJ(A'I(JI w 4,4, o 2’2]”1 =—(a +a,).  (35)

The particular solution of (35) is

3 3
U =— % - % (36)
25 Gh— ) 245 (3~ A)

Now we have to solve (34) for two functions 4, andd4,. According with

unified KBM method H, contains the term 3a’a,, Ee’” /(2i) and 4, contains the
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term 3a,a? , Ee ™ /(2i) (see [12]) obtain the following equation
9 E _
[llal +}tza2———/12]A + Aa, = 3a, a, +—e" 37)
a, oa 2i
and
2 E —iu
[}L,a, +/1,la2——/1,}4 +Aa, =-3a,a; 5 (38)
1

The particular solutions of (37)-(38) are

Ma, 3aja,  Ee™ .
A=A 24 A + @) (39)
ha, 3aa;  Ee™
A=ty 24 2Av+o)

Substituting the functional values of 4, and 4, (39) into (7) and rearranging,

A==

4, =

we obtain (see Sub-section 3.1)

r 2 iv
a = /1101 +3[" ./,’j‘lal - 3;];:2 - 2(Ee+ )}
- vV+a
? lz 3 2 | —ivt A (40)
Gy = Ay + 6 ok - 3k, L2 .
A=A 24 2Av+ @)
Therefore, the first order solution of (32) is
x(t,g)=a, +a, + &y, : 41)

whete a,, a, are solutions of (40) and ; is given by (36). The variational equation

of @ and ¢ in the real form (a and ¢ are know as amplitude and phase),
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which transform (34) to
' 2 s
__ o __gEcosz;/’ ¢=w_v+3m +£Esmy/_ (42)
2o V+@ _ 8 a(v+w)

' HTE k,cost
where @ = k! +k,sin7, &' = 2 :
_ 2k} +k,sint

Equation (42) is similar to that obtained by KBM method (see [19-20]).
5. Result and Discussions. |

An approximate solution of second-order time depeﬁdent nonlinear system
with constant and varying coefficient has been obtained based on the KBM [7-9]
method. Theoretically, the solution can be obtained up to the accuracy of any
order of approximation. However owing to the rapidly growing algebraic
complexity for fhe derivation of thé function, the solution is in general confined to
a low order, usually the first. In order tb test the accuracy of an approximate
solution obtained by a certain perturbation method, one can easily comparé the
approximate solution io the numerical solution (considered to be exact). Due to
such a comparison concerning the presented KBM method of this paper, we refer
to the works of Murty [11], and Shamsul [12, 14-16] have been compared to the
corresponding numerical solution. In this paper we have also compared the
perturbation solutions (19), (29) and (41) of Duffing’s equation (10) and (32) to
those obtained by Range-kutta (Forth-order) procedure. '

First of all, x(,&) has been computed by perturbation solution (19) with initial
condition [x(0)=1, #(0)=0] or a=1.00000,5=-001434 for &=.05. The
corresponding numerical solutions has been also computed by forth order Runge-

Kutta method. All the results are shown in Fig.1. From Fig.1 it is clear that the
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asymptotic solution (19) shows a good agreement with the numerical solution
of equation (10).

We have find the approximate solution of the same problem utilize the
classical KBM method [7-8] (see Sub-section 3.2) and presented in Fig.2. Seeing
the graph it is clear that the perturbation solution (29) does not agree with the
numerical solution afier a short time interval. Thus the extended KBM method is
important.

In Section 4.1, a perturbation solution (41) has been derived when an external
force acts and the solution has been presented in Fig.3 for £=.05 v=11E=.5
with initial condition [x(0) =1, £(0) = 0], or, a =1.00534, b =.103118. This solution
also shows a good coincidence with the numerical solution.

6. Conclusion. An approximate solution of a second order nonlinear deferential
system with slowly varying coefficients has been found. This method is a

generalization of KBM method. The solution for different initial condition shows

good coincidence with corresponding numerical solution.
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Fig 1: perturbatioh solution (dotted line) and numerical solution (solid l'iﬁe). In this
[%(0)=1,%(0)=0] or a=1.0, b=—-.001434 and &=.05.
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1.5-F

Fig.2: Perturbation solution (dotted line)and numerical solutions ( solid line).In
this[x(0) =1, #(0) =0] or a=1., b=0 and . €=.05.
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1.5

0.5 4

-0.5 1

-1.5 -

Fig.3: Perturbation solution (dotted line) and numerical solutions (solid line).In
this[x(0) =1, (0) = 0] or @ =1.005340 5=.103118 and ¢ = D5, v=11 E=.5
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