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Abstract
In this paper, it is proved that the notions of point wise semi-continuity and quasicontinuity

are the same even when the mapping is not globally semi-continuous. The concept of removable
quasidiscontinuity at a point is introduced with some of its applications [Theorem 4.1]. Finally, a
set of sufficient conditions for a topological space to be a Baire space is formulated. In
particular, it was shown that if every mapping from a topological space X to an infinite T space

is quasicontinuous then X is a Baire space.

Keyword and phrases : baire space, topological space, quasicontinuity.

R RE ek

% SR TG 21 T AR (7 % (5T G - T 4% I - wGrey gl 932 e el
HRF HTGE 77 | GG [HE DNETT @Il P - TS AN [y IR SHEv FE 2
[@orwir — 4.1] vfres Gererdln orife 3 ofB 9917 omt [Baire Space | o7 & 4% 57§ T8 087
I (o7 T 2R | ATz b1 DRI S0E0e, (3 Wi ey (53t BreErany tre X cdeE s Ty (e s
e 7 e X 4G (3E ¢ ( Baire Space ) =i

1. Introduction

In this paper we define a point of semi-continuity of a function in a
topological space and demonstrate some of its applications. We show that a
function is globally semi-continuous [11] if and only if each point of the domain
space 1s a point of semi-continuity. In [16], it was shown that a function is globally

semi-continuous if and only if it is quasi-continuous [15] at each point in the
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domain space. Thus the notion of a point of semi-continuity of ours and a point of
quasicontinuity of Neubrunn, coincide when the function is globally semi-
continuous. In spite of this the bottom line of the inclusion of our definition is: A
local property /; and another local property /, of a function may coincide when the
function has a global property P; but /; and /; may differ when P does not hold. As
an example, we cite 7], where it was shown that for a gl,o]gal continuous mapping
all the points of continuity are s-points and conversely; but when the mapping is
not globally continuous,- a point of continuity may not be a s-point. Eventually, we
find that for a map which is not globally semi-continuous,' the notion of semi-
continuity and quasi-continuity at a point are indeed the same. Next, with the help
of the notion of removable quasidiscontinuity, we find when a. function with
closed graph will be quasicontinuous at a point. Finally we use the notion of point
of quasicontinuity to get a set of sufficient conditions for a topological space to be

a Baire space. Throughout the paper X, Y denote topological spaces, (R,1)

denotes the usual topological space of real numbers and ¢ the empty set.

2. Known Definitions and results.

Definition 2.1{11]. A set is said to be semi-open if and only if there exists an open
set O in X such that O c 4 < CI O, where C! O is the closure of O in X

Definition 2.2[1]. A set A < X is said to be semi-closed if and only if there exists a
closed set £ in X such that Int Fc Ac F, where Int A4 is the interior of Fin X,
Definition 2.3[1]. The intersection of afl semi-closed sets containing a set 4 is
called the semi-closure of 4 and is denoted by SC/ 4.

Definition 2.4[2]. For 4c X, the union of all semi-open sets contained in A4 is

called the semi-interior of 4 and is denoted by Sint A.
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Definition 2.5[11]. A mapping £ X —Y is said to be semi-continuous if and only
if inverse of every open set in ¥ is semi-open in X.

Definition 2.6[8]. A mapping f: X —>Y has at worst a removable discontinuity at
xeX if there is a yeY such that for each neighbourhood V' of y, there is a
neighbourhood U of x such that {U-{x})cV.

Definition 2.7[15]. A mapping f X -V is quasicontiiiiious at peX if for every
U,V open such that pe U, Ap) € ¥ there exists a non-empty open set G < U such
that {G)cV. 1t is called quasicontim;ous if it is quasicontinuous at every xeX.
Definition 2.8[6]. A topological space X is called Ry if and only if for each xeX
and open subset U, xeU implies Cl{x}c U. It is known ([13] cf [19, p 47]) that
R, is weaker than 7 and is independent of T, In fact, 717=Ty+Ro. A Hausdorff
space is therefore necessarily Ry.

Definition 2.9[17]. A topological space X is said to have an ascending chain of
open sets if there are countably infinite open sets 0y,0,05,...,0;,... . such that O,
COrGe % ... 0, G ... , Where A ¢ B means 4 is a proper subset of B .
Definition 2.10[9]. A mapping f: X —Y is said to be almost-continuous at xeX if
and only if for each neighbourhood ¥ of f{x), Int CI.f™ (V) is a neighbourhood of

x. f is called almost-continuous on a subset 4 of X if it is almost-continuous at
every xed.

Theorem 2.1{4]. A set AcX is semi-closed if and only if Scl 4=4.

Theorem 2.2{2}. If 4, B are subsets of X, then SCI (AnB) c SCI A n SCI B.
Theorem 2.3{3]. If Ac BX, then (i) SInt 4 < SInt B and (ii) SC/ 4 < SCI B.
Theorem 2.4[1]. A mapping £ X —Y is semi-continuous if and only if for every

closed set F < ¥, f(F) is semi-closed in Y.
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Theorem 2.5[16]. A single valued mapping £ X —Y is quasicontinuous if and
only if it is semi-continuous.

Theorem 2.6[14]. Let G(f} be the graph of the mapping £ X —Y. Then G(f) is
closed if and only if for each xeX and ye ¥, where ¥ # flx), there exist open sets U/
and ¥ containing x and y respectively, such that {U) N V= ¢,

Lemma 2.1[5]. A set D < X is dense in X if and only if SCID=X,

Lemma 2.2[5]. A set D is dense in X if and only if the complement of D has
empty semi-interior.

Lemma 2.3{2]. A set 4 is nowhere dense in X if and only if SInt (SCl 4)= ¢.
Lemma 2.4[17]. An infinite HausdorfY space is an R, space with an ascending
chain of open sets. The converse of Lemma 2.4 is not true as shown in (118],
Example 1, p.199). .

Lemma 2.5[18]. An infinite Hausdorff space has an ascending chain of régular
open sets. Converse of Lemma 2.5 is not true as shown in ([19], Example 1).
Lemma 2.6{18]. Let X be an infinite space with an ascending chain of regular

open sets. Then X contains a countably infinite discrete subspace.
3. Point wise semi-continuity and Point wise quasi-continuity of a function

Definition 3.1. If /. X Y be a mapping from X into Y, then fis said to be semi-
continuous at xe X if and only if [xe SC/ 4] = [Ax)eCl f4)] for each ACX.
Remark 3.1. If fis continuous at xe X, then f'is semi-continuous at xeX. But the
converse is not true in general as shown by the following example.

Example 3.1. Let £ (%,4) —(R,4) be the box function, viz., f (x)=[x]. It is
casy to verify that fis semi-continuous at x=0,41,42,.....; but fhas discontinuities at

these points.
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Theorem 3.1. Let £ X —Y be a mapping from X into ¥ and let xeX. Then the
following statements are equivalent;

(a). fis semi-continuous at x.

(b). [xeSCl A|=fxef ™ (CIAAY)] for each 4 = X,

(©). [fix) elnt B} = [xeSInt £ (B)] for each B<Y,

(d). [xef k (int B)|=>[xe Sint f (B JforeachBc Y. .

(). [xe SCI /' (B)] = [xe £ (CI B) ] for each BcY. |

(). For each open set ¥ containing Ax), there is a semi-open set U containing x
such that f(U) c V.

Proof. The proof is routine and hence onﬁtted.

Theorem3.2. Let £ X >V be a mapping from X into ¥. Then f'is semi-continuous
(in the global sense [11]) if and only if fis semi-cont.inuous at every point of X.
Proof. The proof is routine and hence omitted.

Theorem 3.3. A function £ X7 is quasi-conﬁnuous atp € Xifand only if x
Cl(Int 1™ (V) for cevery open set V containing f(x).

Proof. First we suppose that £ is quasi-continuous at x. Let V be any open set
containing f(x) and 4 be any open set containing x. Since f'is quasicontinuous at x,
there is a non-empty open set G such that G — A and A@D V.80, ¢# Golm f
"M as Gis open. Now if xeG, then xe CI (Int £ (V). Again ifx # G,
then ¢ £ G < (4-{x}) N (Int /™ (V)) and hence xe CI (It £ (7).

Next, let xe Cl (fnt £ (V) for every open set ¥ containing f(x). Let A be

any open set containing x. Then A N (Int £ (1)) = ¢ Wetake G =4 n(Int [}
(V). Then G is open, non-empty such that G — 4 and f G c f¢ ).
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Theorem 3.4. A function I XY is quasi-continuous at g point x € X if ang only
if for each open set V7 containing fx), there is a semi-open set [/ containing x spch
that {U)c V.

Proof. Taking U= (Int £ (1)) U {x}, the proof follows from Theorer 3.3.
Theorem 3.5, A function /': Y5 is quasicontinuous at a point x e X if and only
if it is semi-continuous at ihe point x, '

Proof. The proof follows from Theorem 3.1(fy and Theorem 3 4.

Remark 3.2. From Theorem 3.5 it follows that the notion of semi-continuity at a
point and the notion of quasicontinuity at a point are the same even when the
function is not globally semi-continuous [11] (or equivalently quasicontinuous
[15]). Hence from now on we use the phrase quasicontinuity instead of sem;-

continuity.
4. Removable quasidis continuity

In this section we introduce a property of a fimction at a point which generalizes both
of the notions: removable discontinuity [8] and point wise quasicontinuity [15].

Furthermore, under what additional restriction this property will be quasicontinuity js

Definition 4.1. Let 7: X5V be 3 mapping from X into ¥, Then S has at worst a
removable quasidiscontinuity at x ¢ X jf there is a y € ¥ such that for each open

set ¥ containing y, there is a semi-open set {J containing x such that JS(UxhH e
Remark 4.1. Every removable discontinuity [8] is a removable

quasidiscontinuity. But the converse is not trye in general as shown by the

following example.
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Example 4.1. Let £ (R, 4) —(R, ) be defined by flx) =0 forx <0, fx) =1 for x
>0 and {0)~0. Clearly f'has a removable quasidiscontinuity at the point 0. But 0 is

not a point of removable discontinuity of f.

Remark 4.2. If a function fis quasicontinuous at a point of X, then by Theorem
3.4. fhas at worst a removable quasidiscontinuity at that point. But the converse is
not true in general as shown by the following example.

Example 4.2. We consider the function f'as given in Example 4.1. Clearly f'is not

quasi-continuous at the point 0 though fhas a removable quasidiscontinuity at 0.
However the following theorem is true.

Theorem 4.1. Let £ X—>Y have a closed graph. If /" has a removable
quasidiscontinuity at that point x € X, fis quasicontinuous at x.

Proof. Let y be the point in Y determined by the definition of removable quasi-
discontinuity of /" at x.If fis not quasicontinuous at x, y # f(x). By Theorem 2.6,
there are open sets U and ¥ containing the points x and y respectively such that ¥
Y (U) = ¢. Since f has a removable quasidiscontinuity at x, there is a semi-open
set W containing x such that / (W-{x}) < V. Since W is a non-empty semi-open set,
there exists a non-empty open set G such that G ¢ W< CI G. So xe CI G and G)
cV.Nowsincex e CI G, wehave GN U #P. Thus g £ (G Uy c f(G) N f

(U ¥V f(U) = ¢, a contradiction. So fis quasidiscontinuous at x.

Corollary 4.1. Let X be regular and £ X—7Y a closed function with closed point
inverses. Then if fhas at worst a removable quasidiscontinuity at the pointx € X, f

is quasi- continuous at x.
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3. A set of sufficient conditions for a topological space to be a Baire Space

In this section we have found when a topological space will be a Baire space
with the aid of point wise quasicontinuity. In this regard we have used a lemma of
[17]. Our proof of this lemma follows closely a proposed (but incorrect) proof by

Tong [17] is also appealing that it seems useful to record a corrected version.

Lemma 5.1. [17]. If Xis an infinite R, space with an ascending chain of open sets
01,05,05,...,0,,... .such that 0, ¢ O, ¢ 0, ¢ ... ¢ O, op— , then there is a
countably infinite discrete sets S = { yy, y», ¥3,...., ¥} in X such that for each n,

there is an open set ¥, satisfying ¥, N S=y,.

Proof. Without loss of generality we may assume that O, is non-empty. Let
yle O, be an arbitrary point. Sine X is Ry, C {31} c Oy. Let ¥, =0,. Since O, ¢
0,, and since X is Ry, we can {ind a y, € O,such that ¥,¢0, and CI {»} c O,
Let 7,=0,-Cl{y,}. Now since Cl{y;}cO; andy, ¢0,,y, ¢Cl{y}. It thereforc

follows that y, = y,, y eV, y,eV,, y eV, y,¢V,.

Again since 0, cO,, there is a y, € O,, such that y, ¢ 0,. Sine Xis Ry, C/ {¥3}
c Os. We take ¥, =0, -(Cl{}uCl{y,}). Since CI{y;} <O, and O, is a proper
subset of O, and since Cl{y} <O, we have CI{y,} UCI{y,} cO,Now asy, 0,,
ys € Cl{y,}UCl{y,} which implies y,#y,, y,#,, y,eV,. Again since O, ¢ O
(O, is a proper subset of 0y), 3,20, = y,¢0. So »eV,, V. Also from
definition of V3 it follows that y,,p, ¢¥,. Thus we have, nelh, yeV,yel;

Vs Vs V5 Y3, 0 €15, Vs ¥y €V

466



J.Mech.Cont.& Math. Sci., Vol.-4, No.-2, January (2010) Pages 459-471

n-2
Now if y _, ischosenand V , =0, _ ~( Y Cl{y,})is defined, then since O &
O, and since X is Ry we may choose y, €O, suchthat y, ¢ 0, and CI {y,} c O,.
n—-2 n-1
Clearly y, ¢ _k_{Cl{y,.}. Let 7V, :Oﬂ_(i{a{yf})' Then y,e¥,. Thus we have a

countably infinite set of distinct points § = {y,y,.....¥,,...} and a countable

infinite distinct open sets ¥,,¥,,....,7,,..... such that y_e V; for n=1,2,3,.....

V,nS={y,}.Since ¥, =0, —~(§Cl{yi}), we have,

y, eV, fori=1273,...,n-1. (D
Also by construction, y,,€0,, but y,.¢0,. So y, ¢V,. Again for m>1,
Vo €0, DUt . 20, 1, AS Oy & Opimt, Yy €0, for m>1andso y, ¢V,
for m > 1. Hence it follows that

Vou €V, for m21. 2)
Thus combining (1) and (2) we have, ¥,nS={y,}, which implies that S is a
discrete set of countably infinite distinct points. This proves the lemma.

Theorem S5.1. Let ¥ be an infinite R, space with an ascending chain of open sets.
If X is a topological space such that every mapping £ X—Y is quasicontinuous on a

dense subset of X, then X is a Baire space.

Proof. If possible, let X be not a Baire space. Then there exists a sequence of

dense open sets D, D,,D,,.... such that QD,. is not dense in X and so by Lemma

2.2 there exists a non-empty semi-open set say U of X such that UcX-— n_%D,-:

@0

u{X-D}).

i=1
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Now for each i, Sint SC/ (X -D))= Sint (X-D)= ¢ By Lemma 2.2 and o

by Lemma 2.3, (X - D,)is nowhere dense in X,

Let U =U - D..Then U= uU

i=l
Without loss of generality we may assume that we may assume that these U

are pair wise disjoint (and non-empty), for otherwise we.may instead choose Ul =
U, U= Un—-_CJIU,., n22. Now by Lemma 5.1there exists a countably infinite

discrete subspace § = o Yy} Of ¥. We then consider the mappmg f: XY

defined by

JX)=y,.0,if xeU, for somen
= V> Otherwise

It is readily seen that f is a well defined mapping. Therefore by hypothesis of

the theorem, this mapping £ X—>7 is quasicontinuous on a dense subset D(f) of
X. Now if U is non-empty and semi- -0pen, we must havel/ mD( f)# ¢. Then since
%, €U, for some U, we have f(x,)=y .

Since X is a discrete subspace of ¥, there exists an open neighbourhood V., of
Yua Suchthat 7, . ~ §= { Vissr | »

Then since U, cx -D, and U, is nowhere dense, for any open set V
containing f(x,) such that ¥ Vs SInt SCI 7 (V)= ¢, by Lemma 2.3. Hence
Shnt f7'(V)=¢. But f(x)eV(=int v ) and since Shnt f'(V)=¢ , x, ¢
SInt (V). So by Theorem 3.1 (¢) f is not quasicontinuous at x,€D(f), a

contradiction. Hence X is a Baire Space.
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Corollary 5.1. If Y be an arbitrary infinite Hausdorff space and X is a topological
space such that every mapping f: X—Y is quasicontinuous on a dense subset of X,
then X is a Baire space.

Proof. The proof follows at once from Theorem 5.1 in view of Lemma2.4.
Remark 5.1. In Example 5.1 (below) we have justified that the assumption of
Theorem 5.1 and Corollary 5.1, viz., ‘every mapping 1s quasicontinuous on a
dense subset’ is consistent.

Example 5.1. Let N be the set of all positive integers with the topology ™=
{#.N.{1}.{2}.,{1,2}}. Then (N,z") is a Baire space. Consider any mapping -

(N, r") — (¥,0), where (¥,0) is any topological space. It is easy to verify that f
is continuous (and hence quasicontinuous) on the dense subset {1,2} of N

Remark 5.2. From the Example 5.1 it is trivial that the restriction on the range
space in Theorem 5.1 and Corollary 5.1 is not necessary. Furthermore, the
hypothesis ‘every mapping is quasicontinuous on a dense subsef’ in Theorem 5.1
and in Corollary 5.1 is only a sufficient condition as shown by the following
example.

Example 5.2. Let N be the set of all positive integers with the topology ¢, where
v -open sets are: ¢,N, .2t {123} c e =L - - (R
(N, 7") =(®,4) be defined by £3) = 1, and f{n)= n otherwise. It can be verified
that fis not quasicontinuous on any dense subset of (N, ) because each dense

subset of N must contain 1 or 2 or both; but (N, 7'} is a Baire space.

The same conclusion of Theorem 5.1 under independent conditions without

any assumption on scparation axiom is provided in the following theorem.
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Theorem 5.2. Let ¥ be an infinite space with an ascending chain of regular open
sets. If X is a topological space such that every mapping £ XY is
quasicontinuous on a dense subset of X, then Xis a Baire space.

Proof., Using Lemma 2.6, the proof is all the same as Theorem 5.1.

Remark 5.3. Corollary 5.1 also follows from Theorem 5.2 in view of Lemma 2.5.
Remark 5.4. Similar results of Theorem 5.1 and Corollary 5.1 and Theorem 5.2
can be found in [17], [12], [18] respectively, where instead of taking the function
quasicontinuous they cohsider S as alniost—conthmous. But the notion of almost-
continuous function at a point and quasicontinuous function at a point are
independent (even they are independent on a dense subset) as shown in the
following example and hence our study using quasicontinuity is justified.
Example 5.3. We consider Example 5.2 where it was shown that S is not

quasicontinuous on any dense subset of (N, #*). Furthermore, every mapping
(and hence /) from(N, ") to (%, 1) is almost-continuous on the dense subset {1} of
N because for any open set ¥ containing the functional value of I, ')
contains 1 and so Int Cl w'(V) = [nt N= N

Example 5.3. Let N be the set of all positive integers with the topology r , where
= {4 N{1.{3},{1,3},{3,4.5,...},{1,3,4,5,.... .

Letf: (N, 7 }->(R,4) be defined by
f(r)=1, for n=1,2

=n+l, n>3.
WeD={1,2,3} « N. Clearly Dis dense in N

It is easy to verify that fis quasicontinuous on D but fis not almost-continuous

on D, because it can be verified that JS'1s not almost-continuous at 2.
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