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Abstract

(3

An over-damped solution of a nonlinear system has been investigated by multiple time
scale method when one of the roots of the unperturbed equation is much smaller than the
others. The asympiotic solution shows excellent agreement with the numerical solution. An

example is given to biological system.
Keyword and phrases : multiple time scale, over-damped process biological system.

wErpdgTia

TN - AN (FT AGOT MY WARE GG G5 WS- SIS AN SIFHIA FA QAR T4
e FRAT G0 Fer GG (R TTE T T | A0l AT FHILFAI FANCAT T 7754F
sestfes| GRIFIT g % SR (TET! AT

1. Introduction

The mathematical formulation of extensive numbers of physical problems,
such as spring mass systems resistor capacitor inductor circuits, bending of
beams, chemical reactions, simple and compound pendulums, the biological,
the biochemical laws and relations appear in the form of nonlinear differential
equations. So, much interest is laid in solving nonlinear differential equation.
To solve the nonlinear differential equations, there exist several methods, such
as, straight forward expansion method, Renormalization group method, method

of averaging, Vander pol’s method, Strubles technique, The Krylov-
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Bogoliubov-Mitropolskii (KBM) [1, 7] method, the multiple time scale (MTS)
method etc. Originally, the KBM method was introduced to obtain periodic
solution of a second order nonlinear system with small nonlinearities. Popov
[12] extended the KBM method for strong linear damping effects. Following
Popov’s technique, Murty ef a/ [11] have extended the KBM method for over-
damped nonlinear systems. Owing to physical importance of damped nonlinear
systems Popov’s results were rediscovered by Bojadziev [2]. Sattar [13]
studied a second order critically damped nonlinear system by making use of the
KBM method. But the solution presented. in sattar [13] gives incorrect results
for some set of initial conditions. Shamsul [14] has developed a new
asymptotic technique for obtaining analytical approximate solutions of second
order over-damped and critically damped nonlinear systems.
In MTS method the key time is resolved into several faster and slower times.
And as a matter of fact the ordinary differential system changes to a partial
differential system. Therefore, it appears the problem has been complicated.
This is true, but experiences with this method have shown that the
disadvantages of introducing this complication are far outweighed by
advantages.
In this article, an asymptotic solution of a biological system whose one of the
eigenvalues is very small and the other is large has been found by making use
of the MTS method. The results obtained by the presented MTS method show
good coincidences with those obtained by numerical method.
Three such biological models are described below:
(i) A modified Lotka-Volterra model: Assuming in presence of predator and a
logistic growth for prey the well-known predator-prey [9, 19] model is

N, =N, (k, +k,N, +kN,), N, =N,(k,, +k,,N, +k,,N,) ¢))

where N, and N, are two populations.
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(ii) Oscillating chemical reaction: Lefever and Nicolis [8] have considered a set
of chemical reactions modeled by the chemical kinetic equations
X=A+XY-Bx_x, Y=BX-X?%y )
where X and ¥ are Concentrations, and 4 and B are initial product
concentrations. Lefever and Nicolis [8] have studied the phase portrait in the
phase plane (X,¥) both analytically and numerically, and shown the existence
of a limit cycle.
(iif) The FitzHugh equations: To investigate the physiological state of nerve
membranes, FitzHugh [3] introduce a theoretical model described by

) x
X, =a+x +x, ——3-‘-, x2=p(y—x,-—,8x2) (3)

where it is assume that @,y €(—0,00) and B,pe(0,1). For a=p=y=0,
equation (3) reduces to a Van der Po] equation. This pz;ﬂicular model has been
studied by Troy [18], Hsu and Kazarinoff [5). FitzHugh [3] investigated the
model quantitatively in the phase plane, while Hsu and Kazarinoff [5] dealt
with periodic solutions using the Poincare-Hopf bifurcation theory.

It will be shown that all the modeling equations (1)~(iii) can be presented in the
neighborhood of the equilibrium position by a second order differential
equation of the type [6]

X¥t2ki+ex=efi(x, 1)+ f,(x5)+... )]
where ¢ is a small positive parameter, and the significant damping term is
expressed by the linear term2% % . The damping coefficients £ [of order o(1)],
and also ¢, are constant. The assumption &>+ ensures that the system is
over-damped. Whene =0, equation (4) has two roots, say 4, A,. Therefore,
the unperturbed solution of the equation (4) is x(f)=ae*' +be*, which
describes a non-oscillatory motion. Here a and 5 are two arbitrary constants,

We use the multiple time scale perturbation method to obtain quantitative

information about the non-oscillatory processes when one of the roots is much
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smaller than the other roots. In Section 2, the method is given for equation (4)

and in Section 3 the technique obtained in Section 2 is applied to the model (1)
2. The Multiple Time Scale Method

Equation (4) is slightly more general than the equation initially studied by
Popov [12], which does not include the term £° J2(x,%). Following the multiple
time scale method, the solution of (4) is sought in the form [15]

x(t,€)=a,(t)+a,(t) +e u,(a,,a,,1) +£>... (5)
Here the solution (5) is not the formal form of the MTS method, rather than
a,and g,are unusual variable. Yet the presentation of this variable is
importation for the formulation of the method as well as determination of an
approximate solution from the drive formula. Generally, a,and a,depend on
the several timet, 1, ,t,,-----, wheret = t, + &, + £, ++--. |
Now we can write the equation (4) as

(D=A)D-A)x=cf,+&* f, +... (6)
Substituting equation (5) into equation (6) and equating the coefficients
ofe', &%, we obtain

(Do =M )(D, @) +(D, - A,)(D, a,)

+(Dy =Ay) (D ~A,)u, = fa, +a,, Dya, + D, a,)

(Dy = ,)(Dy @) +(D, — 4D, a,)

and TP (Dy +¢,)+D, D,Ju, + D? (a, +a,) ®
+(Dy ~ 4,) (D, ~A)u, =u, f.(a +a,, Dya + D, a,)
+(Dyu +Dya, + Dyay)x fy(a, +a,, Dya, + D, a,)+--

(7)

2
where c,, ¢, are the coefficients of the algebraic equation I @, ~2,)=0.

S ey

For the second approximate solution of equation (4), we have to use the
formula (7) and (8). To avoid the secular terms in solution Eq. (5), it has been
proposed in [15] that », and u,exclude the terms afa? when i, =i, £1. But
this assumption is not suitable when one root will be multiple of the other roots
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and when one root will be very smaller than the other roots. So, for this
problem we assume that, the correction terms u,, u,,---do not contain the terms
ala? when i, <1if A, > A, (see [16]). Under this assumption the equations ¥))

and (8) can be separated as:

(Dy =) (D, @) +(D, —A,)(D, a,) = Fi(af'a?) where i, <1 C)
(Do =2} (Dy —A,)u, = F,(a'a? where /, > 1 (10)
And
(D, =2)(D, @) +(D, =M ) (D, a,) =G, (af'a?) where i, <1 (11)
(Dy =1} (Dy =Ly, = Gy(alla)’ where i, >1 (12)

Now the equation (9) can be separated for Digjand D,a, subject to the
condition that the coefficients of D,a,and Dia, do not become large and
solving equation (9) we obtain D,q,, D,a, and solving'equation (10) we obtain
the value of »,. Substituting D,a;, Da, and #, into (1 1) and (12) and using the
same assumption, we shall be able to separate the equation (11) and solving
equation (11) we get D,a,, D,a, and solving equation (12) we get u,. This
completes the determination of the second approximate solution of the equation
4).

3. A Modified Lotk - Volterra Model

A special case (over-damped) of the model (1) has been discussed by Goh [4).

Goh used

N, =N,(56-05N,-06N,), N, =N,(~11+N, +¥,). (13)
where N, is the prey density and », is the predator density. There exists a
single steady state solution N, =10, N;=1 of (13), obtained from the
equilibrium equations #, =0, ¥, =0. Here we see that, one of the roots is much
smaller than the other. Goh [4] showed that the equilibrium of the model (13)is
locally stable. If the solution initially starts for N, =11, N, =3 it tends rapidly
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to Ny =0 andN; =, although the steady state solution N7 =10, N =1 is
not very far from Ny =11, N} =3. That is why we are interested to investigate
quantitative solutions in the neighborhood of the steady state solution. The
solution in the neighborhood of the steady state is presented by x and y, where
N,()=N; +ex(p), N, =N, +ey(n) (149)
Using (13) and (14), we obtain
x=—(10+£x)(0.5x+ 0.6 ),
y=x+y+e (xy+y?).

Eliminating y from two equations (15) leads to a second order nonhncar

(15)

differential equation for x
7

f+4x’:+x=s(llslx2—Exfc—l—ls-izj'i-o(gz) (16)

Here the unperturbed equation, 7. e. ¥+4%+x=0 has the roots -2+v3 and -2-
V3. It is clear that the ratio of the roots is 12.34. i ¢. one of the roots is much

smaller than the other,
Therefore, for modeling equation (13), equation (7) becomes
(Dy —2,)(D, ) +(D, -M) (D a,)

2
+(Dy =) (Dy —1,) =%(22—35x, <055 (17)

2
aa,

+-‘§2—6(22—3512 20 )+ @450, -35h, - 40 h,)

Using the condition u, does not contains the terms ata; where i <1 and

4 > A, , we obtain

(D, -A)(D, a) = a;gz (44 =351, ~350, ~44A,) (18)
2
(Dy - A )(D, az)z%(22—-35?&2 ~22,%) (19)
2
(Dy ~ 1) (Dy — ), =%(22—3511 ~B%:% (20)
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Solving equations {18)-(20), we obtain

Dya, =laa, (21
Da, = m1022 (22)
u, =ma’ (23)
where
1 1 2
I =——(44—~35X, =35k, —4AA,), my =————(22-35A, —-24,7),
1 3011( 1 2 A2)s My 30(2%, _7\“)( 2 2")

1

= 0w 35K, — Tk
" oAb o). 120

Substituting the values of », from eciuation (23) into equation (8), utilizing the
equations (21)-(22) and imposing the restriction that », excludes the terms

a'a? where i, <1 and A, >4,, equations for D,a), D,a, and u, can be

separated into three parts as: d
(D, =M Dya,) = (12 —Lam, =70, +m) 6= 2m), +13,)/19)aa; (24)
(D, - A, )X(D,8,) = (~2m} - Tm, /6 —2m, /15)a; (25)
(D-ND-Nu, =220, /15T, 12-4n X, 1150 +(221, 115 26)

=74, +mh, +2mA )/ 6— (22, "”4’117\1?\'2)“6]1"11’1)“12“2
Solving equations (24)-(26), we obtain

D,a, =l,aa} 7

Dya, =m,a; (28)

u, =myala, + ma; : (29)
where

1, = (=12 = Limy = 7( +m)] 6= 2(m); + 1A}/ 15) (A + 1)
m, = (—2m? —Tm, 16— 2mA, [15) /3%, —X,)
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m = @2m [15=7( +m 4, +2m,4,) 16— (2,4, +4n,4,4,)/15
—6Im )24, (4 + 4,))
my = (22m /15 =0 4, 12— 4n, 22 115) (24,34, - 4,)
All these results obtained from equations (21)-(23) and (27)-(29) give the

second approximate solution of equation (16). Now we write the variational

equations as follows:

& =Da =(D,+¢} +SZQ +e= 34 =ha +elaa, -f-e:212a,a22 e

30

a)=Da2=(l%+8Q+EZDz+”h'9a2=}‘2a2+8,nia22+82n£af£€+ ..... ( )
Thus the second approximate solution of the equation (16) is

x=a1 +02+8u1+82u2--- (31)

4. Initial' Conditions for MTS Method "

For the second order system considered in equation (15), we have the
initial conditions

HO)=a, +a,, +en a, +€* (ndya, , +n,a),)

HO=h a0+, a5 +elia, ay, +m dy +2 0 d) (32)

+&(ha a5, +2naloa,, +2mhda ot +3mMal, +md,)

Usually, in a problem, the initial conditions [ %(0), 2(0}] are specified. Then one
has to solve nonlinear algebraic equations in order to determine the two
arbitrary constants a,, and a,, that appear in the solution (32). Here Newton-
Raphson method is used to solve (32) forx(0)=0.4 and %(0)=-2.04, and we
dbtained a,, =0.529798 and a,, = ~0.153345 .

5. Results and Discussion

In order to test the accuracy of an approximate solution obtained by a
ertain perturbation method, we compare the approximate results to the
wmerical results, With regard to such a comparison concerning the presented

ATS method of this article, we refer to the work of Murty and Deekshatulu
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[10] and Shamsul et al. [17]. In this article, we have compared the approximate

results obtained by (32) (when ¥ =2,c¢=1 and &£ =0.5) to those obtained by a
fourth order Runge-Kutta method.

Here we have considered the equation (13) [special case of modeling equation
(1)] in which Ny =10, N, =1 (in lakh, 1 lakh=1,00,000). Let us assume that
20 thousands prey have been added to this population. For that we have chosen
¥(0)=0.0 and £=0.5.

First of all, x(s,¢) has been computed by our asymptotic solution (32) with
initial condition x(0)=0.4 and %(0) ;—2.04. Then N ()= N, +&x(t) has also
been computed. To verify the results, corresponding numerical solutions of
N,{#) has been computed by fourth order Runge-Kutta method. All the results

are shown in Fig. 1(a). From Fig. 1(a) it is clear that the asymptotic solution
(32) shows excellent agreement with the numerical solution.

To compute N,{t) ory(r), we have to compute i(¢f). Differentiating x(¢) from
(32) and then substituting the values of %(¢} and x(r) into the first equation of
(15) and simplifying, we have computed y() and thenN,(r) = N, + & y(r).
Corresponding numerical results of N,(7) have also been computed and both

the results are shown in Fig. 1(b). From Fig.1 (b), we see that the perturbation

results of N, (s} also agree with the numerical results nicely.
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Fig. 1(a): Perturbation solutions (solid line) and numerical solutions (dotted line) of
x, are computed when ¥,(0)=10.2 and N,(0)=1.0[orN, =102and ¥, =1.0]. In
this case, x(0)=0.4, (0)=-2.04 and ¢=05 or aj o =0.529798 and a,, =-.153345.
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Fig. 1(b): Perturbation solutions (solid line) and numerical solutions (dotted Iine) of
N, are computed with the same initial conditions as in Fig. 1(b).
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