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Abstract

The object of the present paper is to investigate the propagation of waves in an elastic
layer immersed in an infinite liquid and under the influence of gravity. The corresponding
velocity equation has been derived. In the limiting case thg wave velocity egquation so
obtained is in good agreement with the corresponding classical problem when gravitational

effects are vanishing small .
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1. Introduction

The influence of gravity on elastic waves is receiving greater attention by
many investigators [5,6] owing to its theoretical and practical interests. The
effect of gravity are presented to a limited extent by Ewing, Jardtsky, and
Press in their monograph. Firstly Bromwich [3] considered effects of gravity
on elastic waves and in particular on an elastic globe. The influence of gravity
on superficial waves was investigated by Love [4] and it was shown that the
Rayligh wave velocity is effected by the gravity field. In this analysis Love
has shown that the effect of gravity increases the Rayligh wave velocity to

some significant amount when the wave length is large. Also Biot [2]
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investigated the influence of gravity on Rayligh waves assuming the force of
gravity to create a type of initial stress of hydrostatic nature and the medium
to be incompressible. Sengupta, P.R. and De, S.N. I5] investigated influence

of gravity on wave propagation in an elastic layer.

As Biot [2] presented in his illustrious work the dynamical equation of
motion for a homogeneous isotropic elastic solid medium under initial stress,
the author of the present paper has derived the wave equations satisfied by the
displacement potentials ¢, related to this problem. The effect of gravity on
the propagation of waves in an elastic layer immersed in an infinite liquid has

been investigated.
2. Statement of the Problem and the Boundary Condition

Let us introduce a Cartesian frame of reference OX1XzX3, taking the origine
in the middle plane of the elastic layer; the middle plane coincides with the
plane ox;x; . Let x3-axis directed downwards and X3 = % h, be the boundary
planes of the layer, which is a monochromatic wave propagates with constant
velocity ¢ along the x, — axis. A plane longitudinal wave in the infinite space
would be propagated with velocity ¢; and a transverse one with velocity c, .
The non — zero displacement components are u; and u3 depending only on
the co-ordinates x; and x; and time t.

If g is the acceleration due to gravity then the components of the body
force are X = 0 and Z = g. We shall assume that the initial stress due to
gravity is hydrostatic. The state of initial stress are

Oy =0y3=58,0,=0 (1)

Where S is the function of depth. The equilibrium condition of the inijtial
stress field are
Os Os
—=0 and —+po=0 2
o, e T 1B )
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Where pis the density of the elastic layer

The dynamical equations of the two dimensional problem under initial stress

field are
8o,  Bo, Ou, o’u,
P e T e N 3
o o, P Pop ©)
oo, L 9os, Ou, &,

i< - S i =2
o o, o P
where

Gu=2ue, + Aed ,;

1(0u, oy,
€ = — —L+ 2k
2| ox, Ox,

and A and 4 are Lamj’s constants.

Assuming that the displacement Uy and uz are derivable from the

displacement potentials o(x,, x;,1) and ¥(x,,x;,1) by the relations

9 oy o4 By @

="t-"F ang , -9 0w

ox, ox, o,

we obtain the wave equation

10% goy
Vv? S ——+=2L - b |
¢ ¢ oF ¢ ox )
1% g ap
Vz TS —=—t= 52
d G ' oo (52)
where
c2=}l+2ﬂ . VI o + & 6)
e T Ve
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The following boundary conditions should be satisfied on the edge (at solid-
liquid interface) of the layer x3= + h,

- r T = r
6y, =03, 0,;,=0 and u,=u, €))

The unprimed and primed quantities are related to the solid and liquid

respectively.

Due to the participation of the liquid, let us introduce the potentials @,, ¢,

respectively for the liquid above and below the layer
Then
= Pos U = s ®
and
u=¢y ; Uy = s
are respectively the displacements of liquids above and below the layer.
The appropriate solutions of the equations of motion for the liquid are
¢, = 4,e™® +i(wt—ax,) 9
¢, = A, +i(wt —-ax)

where,

1 2
v=(@*-K2)?, K2=2 and o?=2o (10)
&, Po ‘
4. po- @, are the constants characterizing the properties of the liquid.
Now, the normal stress o3, for the liquid is

02:3 = "poa)zﬁjo or _pow2¢2 (1 1)

according as the liquid is above or below the layer.
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The force stresses o; may be expressed for a layer in terms of the

displacement potentials, we have
O3 = 243y HW 13 ) + AV’ } (12)

Oy = M2, W 35 o)

Now, we shall find out the solution of the equations (5.1) and (5.2) subject to
the boundary conditions (7).

3. Solution and Phase Velocity Equation.

Let us assume,
¢ = ¢a(x3 )ei(mr—ax,) }
W = W‘(x:;)ei(mr—axl) , (13)

Introducing equations (13) into equations (5. 1) and (5.2) we get,

& ,),e iag .
= - =0 14.1

(6):32 L€ J¢ clz 4 ( )

& . ixg .

where
2 2

z 2 _ @ d P=g2_-2

v, @ Y and v, =a &

Eleminating ¢" or " from the equation (14.1) and (14.2) we obtain the

wave velocity equation

62 2 32 _ a2 LA
G R R N
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where
A+a=viev? )
2192 2 2 2
A4 = WiV, — ¥, ? (16)
3 _ azgz
L 2 2
e ~

obviously the solution of the equations (15) are
¢’ = AsinhAx, + BCoshA,x, + Csinh A%, + Dcosh A, x, (17
w' = A'sinhAx, + B'CoshA,x, + C'sinh A, %5 +D'cosh 4, x,

where A4', B', C', D' are related respectively to A, B, C, D by means of
equations (14.1) and (14.2). Equating the coefficients of

sinhAx,, CoshAx,, sinhA,x,, Coshi,x,
to zero, we obtain from the equations (14.1) and (14.2).

A'=~imA,B' = ~im B,C’' = ~im,CandD' = —im,D (18)
where,

m, =c} (A} -vi)/ag,i=1,2
Using the relations (18) into equations (17)we get

¢ = (Asinh 4x, + BCoshAx, +Csinh Ax, + Dcosh A, )™=

(19)
W = -i(mAsinh Ax, +m BCoshipx, + mCsinh 4%, -+m,Doosh A,x, )¢~
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Now, introducing the value of # and y from equation (19) into
equation (7), (8), (11) and using the boundary conditions we arrive at the

following equations ;

(&A-na)4+(4a-10) BHE R -ng)CHEg ~15,) D+ fe¥ 4, =0 (20.1)

6 +7a) 4H{5q+18) BAE R 1) CH{Egy +rm) D[94, =0 (20.2)
(ny~ha)) A+(ngi ~Lp) B+(mp, ~1g,) C+(ng, ~L,p,) D=0 (20.3)
~(np, +1g)A+(ng, +4p,) B—(n,p, +ig)C+(ng, +Lp, ) D=0 (20.4)
(sn~Aa) 456 ~4n) B(s,,~A2) C+{sg~4p) Dve®4, =0 (20.5)
(s+4g) 4-(s-+4n) BH{(5.2,+A42) C{ s +Ap) De¥ 4 0 (20.6)

Eliminating A,B,C,D, Ap and A, from equations (20.1) to (20.6) we

obtain the wave velocity equation.

A=V am  mp &p, mp, 0
np, Lp, np, Lp, 0 0
5P, Ap. s, Ap, 0 Yo =0 (21
e a4 g, &, 0 -y
Lq, nq, Lg, n,q, 0 0
A sa Ag, sq, Vo 0

when,
£ =e (/112—-a2)+2c22a2 )
1, =2c,ai,m,
n =m, (4] +a’)

| =2ad, k 1)

!

§; =amj

2
[r)]
lz%_' _)
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4. Discussion

The transcendental equation is in the determinantal form. It represents the
wave velocity equation of wave propagated in the elastic solid layer immersed

in an infinite liquid under the influence of gravity only.
If the length of the wave is very small with respect to its thickness 2h of
the layer, the quantities 4;h, j= 1,2 are large and the approximations.

L —anhah=1, j=1,2 (23)

2

Now, we introduce equation (23) into equation (21) and use the properties of
determinants for simplification. We have obtained Rayligh wave velocity

equation in layered elastic solid medium immersed in an mﬁmte liquid under

the influence of gravity only.
Thus we get,
A=ALA, =0 29
when,
A= | G+, o2+, -fi+0
n+1 n, +1, 0+0 (25)
s, +4 5, + 4, 0+v,
and
A= G-m G2 =1 -0
n~1 n,—1, 0-0 (26)
5 —4 5, —A, 0-v,
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From equation (24) we have
Either A =0 or A, =0 27

From equation (27) it is clear that A, =0, represents the wave velocity
equation corresponding to Rayligh waves propagating in a semi infinite
medium under the influence of gravity having the plane horizontal boundary
in the upper most part of the elastic solid while the equation A, =0 is the
wave velocity equation for a semi-infinite medium under the influence of
gravity having its horizontal plane-boundary in the lower most part of the
solid, though the thickness of the layer is assumed to be finite and large, in
case of Rayligh wave we shall consider that it is a semi-infinite medium with
a plane boundary existing at the upper most part or at the lower most of the
semi-infinite medium and that is why Rayligh wave .velocity equation occurs
twice according as the free plane boundary is at the upper most side or lower

most side of the medium.

If the plane boundary be at the upper most side, the medium is extended

to infinity at the lower and the wave velocity equation A, =0 represents the

type of wave propagating in the vicinity of the free plane upper boundary. In a

similar manner the wave velocity equation A, =0 represents the type of

Rayligh wave propagating in the vicinity of the lower plane boundary treating
the medium to be extended towards infinity at the upper side.

It is obvious from the mathematical form of the equations A, =0 and
A, =0, that they are interchangeable simply by changing Aby-4, (=1,2)
i.e. by changing the direction of the X3~ axis. It explains the existence of 2-

wave velocity equations.
Let us first study the equation A, =0 and the equation A, =0, may be

treated similarly.
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Irrespective of the thickness of the layer and in absence of liquid when we
consider that the effect of gravity on the propagation of wave in an infinite

solid medium we take f; = 0 in the equation A, =0 of equation (25), we get

the wave velocity equation of Rayligh waves under the influence of gravity
only. .

& +m)m+1)= (& +Xm +1) (28)

This is in good agreement with the paper of De, S.N.and Sengupta P.R.[5].

Let us consider the length of the wave is large compared with the
thickness of the layer, the quantities 24,4k and ak can be regarded as small
and hyperbolic tangents are replaced by their arguments putting the values of

¢;»M;:1;,1, when j=1,2 and neglecting the effect of gravity in equation (29)
we obtain '

o’ =dc’ (o - o) (29)
which is classical equation and also determines the wave velocity in the
elastic layer.
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