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Abstract
Following Deissler's approach the decay for the concentration fluctuation of a dilute

contaminant undergoing a first order chemical reaction in MHD turbulent flow at times
before the final period in a rotating system for the case of multi-point and multi-time
correlation equations is studied. Two-point, two-time and three-point, three-time correlation
equations have been obtained and to make the set of equations determinate, the terms
containing quadruple correlations are neglected in comparison with second and third order
correlation terms. The solution obtained gives the decay law for the concentration

fluctuations before the final period in a rotating system.
Keyword and phrases : MHD turbulent flow, rotating system, concentration fluctuation.
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1. Introduction

Loeffler and Deissler” used the theory, developed by Deissler®* to study

the temperature fluctuations in homogeneous turbulence before the final period.
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In their approach it is considered the two- and three-point correlation equations
and solution were obtained of these equations after neglecting the fourth and
higher order correlation terms. Using Deissler's theory ,Kumar and patel ®
studied the first order reactant in homogeneous turbulence before the final
period for the case of multi-point and multi-time consideration.

In our present study, the same approach of Deissler is applied to the study of
magnetic field fluctuation of concentration of a dilute contaminant undergoing
a first order chemical reaction in MHD turbulent flow before the final period in
a rotating system. '

In this problem, we considered the two-point, two-time and three-point, three-
time correlation equations and solved these equations after neglecting the
fourth-order correlation terms. Finally, we obtained the degay law for magnetic

energy fluctuation of concentration before the final period in a rotating system.

2. Fundamental Equations
The equations of motion for viscous, incompressible MHD turbulent flow

in a rotating system are given by

ou, o oW d’u,

R e ~hh)=- + ~2& O u. 2.1

Y +6xk (v,u, —hh,) 2, Vaxkaxk €S2 U, (2.1)

oh, B 8%h,

—t—(hu, —u,h)=A 2.2

gy +6x,( Ju, —uhy) ax, o, 2.2)
with

%:%=0’ 2.3)

ox, &, . :
where

u, (;c, 1)= component of turbulent velocity,
h, (2, )= component of magnetic field fluctuation ,
W )=£2+ %(h)2 =total MHD pressure,
P
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P( x ,t)= hydrodynamic pressure,

o= fluid density,

v= kinematic viscosity,

A=t = magnetic diffusivity,
B -

Py, =magnetic prandtle number,
x; =space coordinate; the subscripts can take on the values 1,2 or 3 ,
Q, = constant angular velocity component,

£, = alternating tensor.

3. Two-Point, Two-Time Correlation and Spectral Equations

If the turbulence and concentration magnetic field are homogeneous ,
chemical reaction and the local mass transfer have fio effect on the velocity
field , the reaction rate and the magnetic diffusivity are constant, then induction
equation of a magnetic field governing the concentration of a dilute
contaminant undergoing a first order chemical reaction at the points p and p’

separated by the vector » could be written as
8%h,

oh,  oh  ou,
Dovu, Sy M, ~Rh 3.1
a e Yamor, &1

and
O P i TH (.2)

+u =
o tox, “oxl oxlonl g
where R is the constant reaction rate.

s

'
Fig.1. Vector configuration for two point correlation equations.

Multiplying equation (3.1) by h; and equation (3.2) by k. and taking ensemble
average, we get,
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alnn) 5 2’
((;t /) r —az[(u,‘h,.h;)— (u, 1 1 1= 2 . R{h1) (3.3)
and
a(hrh;) 7, Y, - 8’ '
P +5;ff(ukh:h;)-("f”:hk)]="~m"3("fhj) 3.4

Angular {......) which is used to denote an ensemble average.

Using the transformations
0 o 0 0

ox, Or oxl =a

o), (@ 8 & @
S I = — At e e —— .
(a:] (&‘J BAr o' ot (3.3)
into equations (3.3) and (3.4), one obtains
AP "
i gr:[(u;h,hj) — (u)h B )r, A1)
7

N 8*(h1
_%Kukh,h;)—(u,hkhj>](r,At, t)=22.7i5':—)~211<hih;) (3.6)

and
/

a(h.h! " 82(hh
(amj) . 5% (CH AR WY t):zl—af;g:l—}{(h,.hj) (3.7
Using the relations (cf. Chandrasekhar ™)

(unh )y =~uih ), (uihhl)=—~(u,hh.)

Equations (3.6) and (3.7) become

ohh) 8 o (!

<a: i) + 2a[(uih,hj)—(u,hxhj)]=2a,_a.§:aT:2_2R<h'_ _hj') G.3)
and

a h"h’ a 62 h’hf

NV IS

Now, we write equations (3.8) and (3.9) in spectral form by use of the three
dimensional Fourier transforms

512



J.Mech.Cont.& Math, Sci., Vol.-4, No.-2, January (2010) Pages 509-522

(hh))r, A1) = ?((0@;)(1%, At,t)expl i(K .r)}d K (3.10)

-

and

(o, B, Y, At 1) = T(a,.gp,, @) )&, A, 1) expli(K .1 K (3.11)

—a

Interchanging the subscripts i and j and then interchanging the points p and p’
gives

(b, X, Aty 1) = (I B, Y= 7=t £+ A1)

A A A A

= r](cx,.(a,. ;p;.)(—f%,—m,: + Afyexp[i(K .r)d K (3.12)

where Kis known as a wave- number vector and d K = dK ,dK,dK,. The
magnitude of K has the dimension 1/length and can be considered to be the
reciprocal of an eddy size.
Substituting equations (3.10) to (3.12) into equations (3.8) and (3.9), one
obtains
e.0))
ot
- (akgorqﬂj‘)(_ K,—Att + At)]

(3.13)
and

o(p.o))
oAt
~ (@0, Y- K.~ t + AD)] 3.14)

The tensors equations (3.13)and (3.14) becomes a scalar equation by
contraction of the indices i and j

+2{2k* + RY 0,01 ) = 20k, o, 0,0, YK, AL, 1)

+[Ak + RYp,0)) = ik, [{a,0,0) XK, A1, 1)

o, @/ . .
(Q‘;:D, ). + 2[%2 + R](q&',qa!) =2ik, [(al¢k¢:)(K; At D)

(@00 M- K-t + AD)] (3.15)

and
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&p,0/ )
Y,
(@0 M- K.~AL1 + AD] . (3.16)

+ [k + RYp,0]) = ik, .00/ YK, At 1)

4. Three-point, Three-time correlation equations and solution for times
before the final period

In the present investigation, under the same assumption as before, we take the
momentum equation of MHD turbulence at the point p and inductions of

magnetic field fluctuation of concentration at p’and p” separated by the

A "
vector » and 7’ as

oh __ow &

W oy iy K O 22,0 @.1
ot o, ax, ox, = ox,ox,
oh) oh] du] o*h) )
mtuy—r— b= A — Kb 4.2)
ot ox,, Ox; Ox, Ox;
LA Y WA Y, 43
o’ tax! tax, T oxlox] !
-F}
Y.
B - .

Fig.2. Vector configuration for three point correlation equations.

Multiplying equations (4.1) by #A”, (4.2) by u,k] and (4.3) by u,h/ and taking
ensemble average, one obtains . :

u, B! wHK') 8 (uhh
a( A ) + 4 [("k"lh:h}’)_(hthih:h;,)]= 6( ! ) +v ( . )

ot %, ax, B, ax, 4-4)
-2e,,Q,u, (u,,h,fr hf ),
I 2 IEN;
ﬂi;’;'__”f)+£E[(u,u;h;h;f>_(u,u;h;;,;f)]=,za_éx’%?—)-R(u,h;h;) 4.5)
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.0/
Nt
{00! - K.~ + A1) . (3.16)

+ [ + RYp,0] ) = ik, (e, 000! K, A1, 1)

4. Three-point, Three-time correlation equations and solution for times

before the final period

In the present investigation, under the same assumption as before, we take the

momentum equation of MHD turbulence at the point p and inductions of

magnetic field fluctuation of concentration at p’and p” separated by the

A A
vector » and r’ as

.,
iu'—-i-u,‘ 0ty ~h, Ohy =—6W +v o —~2€,,Q,.4, 4.1)
ot o, Ox, ox, Ox, Ox,
oh) oh] ou, o’h '
Py = At — Riy “.2)
ot ox, ox, Ox, Ox,
i ahff aull a2hh’
ah;f uf jl —hy—=2 I j!f —Rhf (4.3)
7 p ox,  Ox,Ox
- ]:4‘
Y.
b - v

Fig.2. Vector configuration for three point correlation equations.

Multiplying equations (4.1) by A4/ , (4.2) by u k] and (4.3) by uh/ and taking
ensemble average, one obtains :

y 2f. il
a(”:;fh;") 1 ai [(u,,u,h!h}') -(h*h,h:hf)]: a(“gfhj ) s 7} g;’;hj ) “ Y
E i ESVE -
-2£,,Q,4 (u,h,’ k] ),
! 2/ gyl
a(ﬂ:;: hy ) ; af, [(u;uih,-’ H) )_(u,u,.’ A >]= A?_Sa%}ﬂ_ R(u,h,.’ h]’) (4.5)
& * %
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{1l . 3 He
L Sttt ") ).
Usmg the h‘ansformatmns

o,02190_98 o _2o
ar’ ox]  or, ox! or/

Hw =(£J~%N'*—~a—--a—,,
ot ot OAt  BAr
o_98 o @
o' aAr’ et oAl

and six dimensional Fourier transforms of the type

(u, b/ h! )(?, rA’,At,AAt’,t) = ﬂ(,ﬁ,@’ﬁj’)(&, KA1 A6

—ti—~an
A A A

exp[i(K .r+ K r )]deK’ 4.7

(u,u, h,’hj.’)(r,r’,m, At by = ﬂ(¢,¢,§ﬁ; Vi )(f%,f’,m,m’,:)

expli(K.r+ K' YA K d K’ (4.8)
and

(Wh’h”)(r,r AL AL £y = J‘ j(yﬁ' )(K K’ At A1 )

expli(R.r+K' +)ldRdK' (4.9)
into equations (4.4) to (4.6), we have

2 (48BN K 00,6 0) + 2L+ py B + K 4 2, + 2 (R+5,40,)]

'(¢lﬁllﬂj”)(£’KAI’NsN!:t)"_‘0 ’ (4_10)
%Wf BYKK M )4 AR %I(Mﬁ,’-’)(&ﬁ’ AN =0 @.11)

and

v (@ﬂﬂ’)(xxfmm' N+AER” + ](¢,ﬁ’ﬁ”)(KK MA =0, (4.12)
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The tensor equations (4.10) to (4.12) can be converted to scalar equations by
contraction of the indices i and j and inner multiplication by k,

-g-k, (@@’,q!’)(&,lf", M A )+ A+ p YK +kY+2p, I +%(R +£,,0 9]
{$,8B! )(fc, KA Aty =0 (4.10a)
d A A . R A oA
o OB B )UK 8 A0+ A + 2K B B YRR 0,80,0)=0 (4.11a)
%&(ﬂﬂﬂ’)(ﬁfﬂ,mt)ulk’z+J—:](¢}ﬂﬁf’)(kf’,mﬁr’,r)=0 (4.12a)
Integrating equations (4.10a) to (4.12a) between ¢, and t, we obtain
k{688')=1, exp{—-,l[(l + P Y& + Ky +2p, kK cost9+%(R+ EniXE=1) },
k(68 B!) = g, expl-A * +5 Jav]
and
B(65.P!)=q, expl-A( K” + 5 Jr).

For these relations to be consistent, we have
k{4 BB )=k (4,88, expl AL+ P Yk + K)t - 1,) + kAt + KA

al ;A‘ i @.13)

where @ is the angle betweenk and k' and (¢,8/ 8/ )o is the value of {4,/ 5/")at

+2p, kk' cosé(t—1,) +%(R + &2, W — 1, +

t=t,,At=At! =0, =—".
P

M

By letting ‘i 0,At' =0 in the equation (4.10) and comparing with equation
(3.11) and (3.12), we get

(0! YK A0y = [ (3,808 YR, K", 600,01 K" @.14)

and

(ak¢j¢:)(-&,-m,t+m)=? (688! YK ~K'~At0,0dE . (4.15)

-
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Substituting equations (4.13) to (4.15) into equation (3.15), one obtains
a A R R [ o
5 (90! JK. 81,0 + 220K += Koo/ )K. a0 = [ 2ik,[(g,8 8/ VK, K, 000,0)

~ (8B B! Y- K=K, 60,0, expl-2{1 + py Y + K™Yt —1,) + K

+2p,, (t—t, k&' cos6’+%(R+ Epd A WE— 1)) + At }]dKA’ . (4.16)

Now, d K’ can be expressed in terms of &’ and @ as
~ 27’ d(cosB)dk’ [cf. Deissler™ ]

Hence, dK' =-27k'd(cosB)dk’. - (4.16a)
Substituting (4.16a) in (4.16), we obtain

5‘3;(@,. 0! YK, AL, 1) + 20K + fi](qy,gaj)(f&, Af)= 2} 27k, {4, 8, B K, K')

A A 2 )
~{$8, B! \-K.~K"), k" jeXp[-;L{(l + Dy WE kP Y —1,) + kA
-1
+2p,, (t —t,Ykk' cos@ + —%(R + 6,80, )t~ 1, + —%t-) Jd(cos@)ldk’ 4.17)

The quantity [{¢,4 5 )(K, K')~ (4,8 B} K.~ K')], depends on the initial
condition of the turbulence. In order to make further calculation it is necessary

to assume a relation which gives
i, [(4, B! ,”)(1%,12’)-(@,3; N-K-K"), as a function of k and K(cf

Loeffler& Deissler ™).

The relation assumed is

QY ikl{g 8 B YK K )~ (48 BY-K-K D =6, ~k%'],  (4.18)
where &, is a constant depending on the initial conditions,
Substituting equation (4.18) in equation (4.17) and multiplying both sides by
k2 ,we get

%i::-uakzig:c;, (4.19)
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where E =27k (@ qr;) is the magnetic energy spectrum function and G is the
magnetic energy transfer term which is given below

G = —250} [k2k" - k%7 jexp[~,1{(1 + Py KR+ KWt =0, ) + kA
2
+2p,, (t —t,)kk' cos@ + n (R+£,,Q Mt—t, + %t-) }d(cos Ndk’ (4.20)
Integrating equation (4.20) with respect to cosd and k' ,we obtain

e 50PM'\/7_" [k22{1+2pMI 1+ 2t DPy NJ

1) s pry) 1+ py "Te2p,

At 1541 3 k*®
~ R+ 8 Nt — 1, + 2 5 4 N —
( + & s n)(f t, + 2)][4]1;(3 ’u) e Ll-l-pu]*-{(]-#puj }pua(t '0)

3
+{( Py J“ Py }Ics- SoPu VT 2 exp[—kzl[l+2p”]

1+ py 1+ p, 42%(I—IO+AI)%(l+pH)/2 1+ py
_ Py _ _i 4 AL I5k° Pu
(t !°+l+py Ar] R+e,,0 Xt—t, + 3 )][4'121’12((""0)2 Ty
2 3 .
cls[pu | _3 £ U] (V2 [ TV Y (4.21)
14 p,, 2| pyA{t—1¢, + A1) 1+ p,, b+ py

The series of equation (4.18) contains only even power of k and the equation
represents the transfer function arising owing to consideration of magnetic field
at three-point and three-times.

If we integrate equation (4.21) for Ar=0 over all wave number, we find that

jc;m%=0, (4.22)

which indicates that the expression for G satisfies the condition of continuity
and homogeneity. Physically it was it was to be expected as G is a measure of
the energy transfer and the total energy transferred to all wave numbers must
be zero.

For obtaining the magnetic energy spectrum function G, equation (4.19) can be
written in integral form as

R+e,Q

E=exp[ -24k2(1 - 1, + %)1 [G.expl 24k + 261, + %)]d:

+ J(k)exp[ —24(k? + “—?’&'—)(: o by 92-’-)] ; (4.23)
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2
where J(k) = Nok is a constant of integration and can be obtained by
T

Corrsin® .
Substituting the values of G as given by equation (4.21) into equation (4.23),
gives the equation

2
E= Nk exp[-2A(k? +£_+_‘¢"@LE~.=_)(;_;D +ﬁ)]+__éi’_?iu_“/£__’_exp[_k2,@(l_f£p_ﬂ.)
z 2 41%(1_!_},”)/: 1+ py,
4
[t—to +l—+pLAt]—2(R+‘~:,,,‘,Q.Q,,,)(t—tG +5A£)]+[ ik % +£°F (@)
1+2pM 2 ZPM(t—to)zl?.z
+—5;°—-‘@PM—].exp[-k2;{ﬂ*‘l"LI: il g AIJ-Z(R+£M,Q,,, e -1, + 24
a:(1+p,) 1+ p,, 1+ p, 2
3! 4 (Tpy —6)k° e 43py —2py +3)

20 Py (E =ty +AD% 3A+ P WE~t, +ADE 31+ py, Yot —t, + A

84 (3pl —2p,, +3)
1+ p,)

kK°F(o)], ' 4.24)

Al —10) or , [AU~1y + AD)
1+ py V 1+ p,

Where f(p)= ¢’ ]’e*’dx,m = kVI

By setting =0, j =i, d K =—27&’d(cosO)d k andE = 2k*(¢,¢}) in equation
(3.10),we get the expression for magnetic energy decay law as

{ ‘ ) ::{ gt (4.25)

Substituting equation (4.24) into equation (4.25) and after integration, we
obtain .
(ma) N

L]
BA%JZIl T+ %T:—]

35pu 3Py —2py +3) N 35w B ~2py +3)

w8y
423+ py X1 +2p, )8

s ol —2(R+s_.,n_)(r+-‘-‘2l)]+

+

80+ 2p, 7% T+ 22 AT\ 814 2p, X7+ ATYE[ T+ B4 AT
1+2p,, 1+2p,

9 9
o+

5 A
6r¥[r+ 1t Pu a7 16¢(T + aT)¥% |1 4+ —£5 A7
1+2p, i+ p,

coxpl —2(R + £, 0, XT + f{-—)}.

L 3Pu (B3py —2p, +3)1+ 210,,)*’/2 3 1.3.5..(2n+9)
3_22%(]+ Pu)[% r(Zn+ D2¥ 1+ p,, )"
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(4.26)

% LT Ay } .
@ +ar) "%+ ATHON

where T'=t-1¢,.

Thus the decay law for magnetic energy fluctuation of concentration of a dilute

contaminant undergoing a first order chemical reaction before the final period

in a rotating system may be written as

{nn!) N, 0
__..=exp[—-2(R+6‘m Qm)Tm] 3 = 3 + ; 5
2 y {Sﬂﬁ V2T 7% axq + Py )1 +210M)/2
g 9
7 %
CATAG AT Y72 AT/ A AT V72
16(7 - AT/) Z(Tm +1+2PMJ 16T, +477) (Tm 2(l+2pM)J
+ SPM (7PM _6) .
%
_AT/V __AT
161+ 2P, XT,, —AT7) Z[T'" +2(1+21t7M))
. 3Py TPy —6) e T — 4, (4.27)
AT/\% T BT P
16(1+2p, )T, + A7 T, 2+ 25

where T, =T +M/ » which is analogous to the equation (43) of kumar and

patel {5&6].
For non- rotating system Q,, =0, we can easily find out that

!
(i) _ exp[-2RT, || — e+ =
2 84 f22T.%  44%Q+ Pu)1+2p,, )%
9 4 2
16(, - AT/z)%(?'" e ) 6Tt AT/Z)%(T" ) EE“ATTPM_)]

5PulTpy =6}

i Y
_AT ANY __ AT
16(1+2p, XT, - AT7) Z[Tﬂ +z(1+2p,,,))

+
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" 2Pu TPy 26) 7+ e Y (4.28)
2
1601+ 2 AT /% -__AT
6(1+2py, XT,, +AL2) (T,, RSN
Which is obtained by Sarker and Islam [10].
Ifwe put AT =0,R=0, equation (5.1) becomes
B % %, {2 im0, ]
2 82%1/27! 236(1+PM)(1+2PM)% 16 16 1+2p,,
= XT 7 4 y7-*
=X({—1,)" + Yt -1,)° _ (4.29)
where
X: NO andY: 72'60 3 {-?.--[-—?_—'p—‘y—(—‘?!l:_ﬁg.}_"""}’
84737 22°(+ py )1 +2p,, )" (16 16 1+2p,

which is obtained by Sarker and kishore 9].

3. Concluding Remarks

This study shows that the turbulent energy in the magnetic field decays
more rapidly due to the effect of rotation than the energy for non-rotating fluid.
From the assumption we conclude that the higher order correlation terms may
be neglected in comparison with lower order correlation terms. By neglecting
the quadruple correlations terms in three- point, three-time correlation equation
the result (4.27) applicable to the first order reactant in MHD turbulence in a
rotating system before the final period of decay were obtained. If higher order
correlation equations are considered in the analysis, i.e. if the quadruple
correlations were not neglected, it appears that Iﬁore terms of higher power of
(t-ty) would be added to the equation (4.27). For large times the last term in the
equation becomes negligible, leaving the -3/2 power decay law for the final

period.
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