ISSN 0973-8975
J.Mech.Cont.& Math. Sci., Vol.-4, No.-2, January (2010) Pages 530-544

MHD FREE CONVECTION FLOW OF FLUID FROM A
VERTICAL FLAT PLATE

By
1. F. Ahmmed, >M. S. Alam Sarkar

!Mathematics Discipline, University of Khulna, Khulna-9208, Bangladesh
Department of Applied Mathematics, University of Rajshahi, Rajshahi-6205,
Bangladesh

Abstract

A two-dimensional natural convection flow of a viscous incompressible and electrically
conducting fluid past a vertical impermeable flat plate is considered in presence of a uniform
transverse magnetic field. The governing equations are reduced to non-similar boundary layer
equations by introducing coordinate transformations approp;'iate to the cases (i) near the
leading edge (ii) in the region far away from the leading edge and (iii) Jor the entire regime
from leading edge to down stream. The governing equations for the flow in the up stream
regime are investigated by perturbation method for smaller values of & the stream wise
distributed magnetic field parameter. The equations governing the flow Jor large & and for all
& have been investigated by employing the implicit finite difference method with Keller box
scheme. The effect of Prandtl number Pr and the magnetic field parameter & on the skin
friction as well as on the rate of heat transfer for the fluid of low Prandil number will be
shown in tabular form. The effect of Pr and different level of velocity, in the boundary layer
region, will also be shown graphically.
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several authors, such as Sparrow and Cess (19671), Reley (1964) and
Kuiken(1970). Simultaneous occurrence of buoyancy and magnetic field forces
in the flow of an electrically conducting fluid up a hot vertical flat plate in the
presence of a strong cross magnetic field was studied by Sing and Cowling
(1963) who had shown that regardless of strength of applied magnetic field
there will always be a region in the neighborhood of the leading edge of the
plate where electromagnetic forces are unimportant. Creamer and Paj (1974)
presented a similarity solution for the above problem with uniform heat flux by
formulating it in terms of both a regular and inverse series expansions of
characterizing coordinate that provided a link between the similarity states
closed to and far from the leading edge. Hossain and Ahmed (1984) studied the
combined effect of the free and forced convection with uniform heat flux in the
presence of strong magnetic field. Hossain et al (1996) also investigated the
MHD free convection flow along a vertical porous flat plate with a power law
surface temperature in the presence of a variable transverse magnetic field
employing two different methods namely (i) perturbation methods for small and
large values of the scaled stream-wise transpiration velocity variable & (=Vy
V(2x/vU,,, where V, is the transpiration velocity) and (ii) the finite difference
together with the Keller box method (1978). Wilks (1976) recognized a
parameter & defined by & = (oH,/p’x/gB(Ty-T.) to investigate the MHD free
convection flow about a semi-infinite vertical plate in a strong cross magnetic
field. The work of that follows reformulates the problem in terms of coordinates
expansions with respect to a non-dimensional characteristic length which is
fundamental to the problem in its reflection to the relative magnetudes of

buoyancy and magnetic forces at varying locations along the plate. A step by
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step numerical solution has been obtained to supplement the series solutions for
small and large &

In the above analysis, the solutions for the problem, Wilks (1976) used
only seties solutions method. But we use three different methods namely (i)
perturbation method for small &, (ii) asymptotic solution for large & and (iif)
finite difference method for all £ We have found the results from the three
methods and compared our results that with the Wilks and heve shown that

there is an excellent agreement with them..

2. The governing equations:

The basic equations steady two dimensional laminar free convection
boundary layer flow of a viscous incompressible and electrically conducting
fluid with viscosity depending on temperature and also thermal conductivity
depending on temperature past a semi-infinite vertical impermeable flat plate in

the presence

>y

Figure 1: The flow configuration and coordinates system
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of a uniformly distributed transverse magnetic field of strength H; are as
given below

ou ov

—+—=—=0, 1
i (1)

ou oH 'u

u—+v—=0—+gpT~T,)~——, 2
oy Y Pa @
LWL : 3)
&x Y p.o, Y

with the boundary conditions

u=v=0, T=7, aty=0
u—>0, T>T, asy—>owo’

(4)

Here u, v is the velocity components associated with the direction of increase of
coordinates x and y measured along and normal to the vertical plate. T is the
temperature of the fluid in the boundary layer, g is the acceleration due to
gravity, B is the coefficient of thermal expansion, « is the thermal conductivity,
Pwis the density of the fluid, c, is the specific heat at constant pressure and 7.,is

the temperature of the ambient fluid and v the kinematics viscosity of the fluid.

3. Solution for entire regime for all &
Now we introduce the following transformations to the equation (2) and (3)

=ti4
l// = cwcm (1 +§)_mf(§=q): q=ﬂ;:1-?—

gi1, -1.)

114 (5)
T"Tn =(Y:: —Tw)9(§,7]), czl:'""vz—] ’é

_(oHp)x
BT, -T.)
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and we get the following equations

”m 3+2§ Il__ 1 12 - 1/2 1/2 i
f +4(1+§)ﬂ 2(1+f)f +A+EP-E L+ £ f o
- A ’
“f(f o ! ag']
” 3+2§ | - Jgg_ rg
0 +Prm 19 —Prrf( fag 3a§} (D

with the boundary conditions

f=f=0 =1 atnp=0
=0, 850 as poew, (8)
f=0=0; at &=0,7)0

Here the coefficient of skin-friction, 7, and the coefficient of the rate of heat
transfer, O are defined as follows.

H o /2 all
_ o ov ou =£"(1 -314 o 0 9
e, —Tm)(pm] [ayL, = R ®
- 1 P " _61 - peild 174 gy
g= T —Tw)[aHjJ (@LD =g (1+ £y 0'¢,0) (10)

4. Solution near the leading edge for small &

For small ¢ from the equation (6) and (7) we can approximate the following
equations (11) and (12) respectively

” 3 l_l 12 _ Eli2 r= f@”_ n@.

S +Zﬂ’ 2f +0-5"f é{f—ag f"_ag) _ (11)
. 3 - 00 . of

6"+ Pr f0 —Prg’(f = B_agJ (12)
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where the boundary conditions (8) remains the same
To get the solutions of the above equations (11) and (12) we use the 2™ and
3" order series solution and the finite difference method.

Series solution methods

For series solution we consider the following series
JEm=fo+ 0+ 8+ (13)
&) =6, +E20,+£0, ++----- (14)
where f 6 are the well known free ‘convection similarity solutions for flow
around a constant temperature semi-infinite vertical plate and where £;, 6, are
effectively the first order correction and f; &, are effectively second order
correction to the flow due to the presence of magnetic field.
Using (13) and (14) in (11) and (12) we get the following equations
For the coefficient of &*

m3 u 1 2

f -A;Jﬁ,f0 —5 1 +6,=0 (15)
v, 3 :

6+ P16, =0 (16)

with the boundary conditions
H=£=0; 6,=1 atp=0

fo=20, 6,50 asp—o (17
fi=6,=0; at £=0,7)0
For the coefficients of &7 |
" 3 ' 5 L} 3 (i ) ' 4
So e g I~ S 46,~ £ =0 (18)
6"+ Pr 3f9'+§f9'-lf'9}=0 (19)
1 4 0-1 4 10 2 [l |
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with the boundary conditions
Si=f=0 ;6 =1 atp=0
=0 ;650 asp—>w (20)
fi=6,=0 ;at £=0,1)0

For the coefficients of &

I h L S L S0, pi- g <2200 ey

" 3 ! S 1 ¥, 7 r 1 ¥
92 +Pr(Zf;ﬂz +Zf191 "j;gz +Zfzgo _—2".](;91) =0 (22)

with the boundary conditions
HL=f=0 6,=1 atp=0
=0 6,50 aspoo (23)
S,=6,=0, at £=0,7)0

Here we also calculate the skin friction and the rate of heat transfer.

5. For large &solution

For large £ from the equations (6) and (7) we get

" 1 " "o r_af_,_ uﬁf_
f +5ﬁ' +é"(9—f)—é{f oF fag) (24)
[ 1 ' _ r%_ lz
6"+ Pr 0 -Prcf(f o’ a;] (25)
With the boundary conditions
f=r=0, =1 atp=0 , .
=20 650 asp—ow (26)

f=0=0; at £=0,7)0

Here skin friction and the rate of heat transfer are also calculated for large

values of &
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6. Result and Discussion

In this section we discuss the results obtained from the solution of the
equations governing the MHD free convection flow of a viscous incompressible
and electrically conducting fluid with uniform viscosity and uniform thermal
conductivity, in the presence of uniform transverse magnetic field along an
impermeable vertical flat plate. The solutions of the governing non-similar
equations are obtained by series solution method of order two and order three
for small & and the implicit finite difference method or simply Keller box
method which is well-documented by Cebeci and Bradshaw (1984) for wide
range of & Here we consider the low Prandl number (Pr) liquid metals. We

have pursued solutions for Pr equals 0.05 for lithium, 0.02 foe mercury.

Wilks (1976) solved the same problem for the case of small and large £ for
Pr=0.72 and the result for the skin friction and the rate of heat transfer that are
obtained by Wilks are entered in the fifth column of tables 1 and 2 respectively.
The result that we obtained for skin friction and the rare of heat transfer for Pr=
0.72 in the method of series solution for two and three terms and the implicit
finite difference are entered in the first, second and in the third column of the
tables 1 and 2 respectively. The values of skin friction and he rate of heat
transfer by the method of series solution for two and three terms and by the
finite difference method that are entered in the sixth, seventh and eighth column
for Pr= 0.05. Comparing these results with the result of Wilks for Pr=0.72, we
observed an excellent agreement between these two results. Also we have the
results among the three methods for Pr = 0.72 and 0.05. From the result of
series solution of two and three terms it can be noted that the result for three
terms is more accurate than with two terms. The result with the symbol ‘@’ in

the column three and seven represent the solution for large & From the tables
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we see that increasing values of the magnetic field parameter ¢ the skin friction
increase and the rate of heat transfer decrease while the increasing values of Pr
both the skin friction and the rate of heat transfer decrease.

The velocity profiles for f;,f/andf] are shown in the Figure 2 and the
temperature profiles for 6,,6,andg, are shown in the Figure 3 for Pr = 0.05 and
0.72. The dotted lines represent the curves for f’and@, dash-dotted lines
represent for f{"and 6 and solid lines represent the curves for f/andd,in the

Figure 2 and Figure 3 respectively. In the Figure 2 we see that the curves of

fo, /3, f{ ete. are in the upper half side of x-axis and f7, f; etc. are in the lower
side of x-axis whose effects are significant near the surface of the plate. Also
for increasing values of Pr £, f,.f, etc. decrease while’ £, f7 increase. In the
Figure 3 it can be observed that the values of 6,,6,,6,etc. are in descending
order for different values of Pr. The increasing values of Pr 4,6, etc decrease
and 6,,6,etc. increase. The velocity profile and temperature profiles that we

obtained is similar to that of Wilks. The effects of different Pr are significant

near the surface of the plate.
7. Conclusion

In this paper, the problem of magnetohydrodynamic free convection flow
along a vertical flat plate is investigated. The local non-similarity equations
governing the flow for the case of uniform viscosity and thermal conductivity
are developed. To establish the accuracy of the solutions of the present problem
three methods, namely (i) the extended series solution method (ii) the finite
difference method together with Keller box elimination technique (iii) the

asymptotic solution methods are employed. The numerical computations were
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carried out only for the case of assisting flow for the fluids having low Prandtl
number appropriate for liquid metals (Pr = 0.05, 0.02 and 0.01 for lithium,
mercury and sodium respectively).

The results thus we obtained for skin friction and the rate of heat transfer
coefficient are presented in tabular form in the case of different properties of
the liquid metals. The velocity profiles and the thermal conductivity profiles are
given graphically in the in the case of constant viscosity. Finally, followings

may be concluded from the throu ghout present investigations:

1. For increasing values of Prandtl number, the local skin friction decreases

monotonically and the rate of heat transfer decreases.

9 The skin friction increase and the rate of heat transfer decrease at the

increasing values of the magnetic field parameter, £.

3. Profiles for the velocity as well as the thermal conductivity decrease due to

the increasing values of the Prandtl number, Pr.

4. Both the velocity profiles and temperature profiles decreases due to

increasing values of pseudo similarity variable, 1.

540



J.Mech.Cont.& Math. Sci., Vol.-4, No.-2, January (2010) Pages 530-544

Table 1: Numerical values of skin friction coefficient t obtained by different methods for different Pr.

Pr=0.72 Pr=0.05
Series solution Series solution
£ 2terms | 3terms | Finitediffer. | Wilks 2terms | 3 terms Finite differ.
0.05 0.4923 0.4952 0.4958 0.4953 2.4552 24718 2.4885
0.10 0.5655 0.5725 0.5784 0.5722 2.7913 2.8308 2.8510
0.20 0.6390 0.6558 0.6571 0.6544 3.1034 31974 3.2044
0.30 0.6738 0.7066 0.7054 3.2510 34071 3.4066
040 - | 0.7036 0.7435 0.7400 33272 3.5509 3.5434
0.50 0.7200 0.7726 0.7666 0.7654 3.3633 3.6579 3.6439
0.60 0.7309 0.7970 0.7882 3.3736 3.7449 3.7217
0.70 0.7379 0.8180 0.8062 3.3662 3.8164 3.7840
0.80 0.7421 0.8368 0.8216 3.3457 3.8777 3.8351
0.90 0.7441 0.8538 0.8350 3.3153 3.9317 3.8779
1.00 0.7443 0.8695 0.8469 0.8459 3.2772 3.9803 39143
2.00 0.9197a 0.9225 0.9184 4.1018a 4.1078
3.00 0.9575a 0.9598 0.9559 4.1831a 4.1867
4.00 0.9812a 0.9820 0.9800 4.2283a 4.2206
5.20 1.0019a 1.0025 1.0000 4.2624a 4.2637
6.00 1.0125a 1.0130 1.0101 4.2786a 4.2795
8.00 1.0323a 1.0326 1.0288 4.3070a 4.3073
10.0 1.0462a 1.0464 1.0418 4.3257a 4.3238
12.0 1.0567a 1.0574 1.0515 4.3393a 4.3392
140 1.0651a 1.0652 1.0591 4.3496a 4.3495
16.0 1.0720a 1.0722 1.0651 + 4,3600a 4.3598

# where ‘a’ stands for the solutions of large & equations.

Table 2: Numerical values of rate of heat transfer Q obtained by different methods for different Pr.

Pr=0.72 Pr=0.05
Series solution Series solution
£ 2terms | 3terms | Finitediffer. | Wilks 2terms | 3terms | Finite differ.
0.05 0.8405 0.8422 0.3430 0.8412 1.0666 1.0674 1.0679
0.10 0.6898 0.6926 0.6956 0.6919 0.8730 0.8745 0.8757
0.20 0.5598 0.5646 0.5660 0.5641 0.7058 0.7083 0.7103
0.30 0.4919 0.4983 04992 06181 0.6214 0.6232
0.40 04467 0.4547 0.4535 0.5598 0.5639 0.5765
0.50 04133 0.4228 0.4235 0.4227 0.5166 0.5215 0.5238
0.60 0.387¢ 0.3979 0.3986 0.4824 0.4881 0.4909
0.70 0.3654 0.3776 0.3783 0.4544 0.4607 0.4640
0.80 0.3471 0.3606 0.3613 04306 0.4376 0.4415
0.90 0.3313 0.3460 0.3468 0.4101 04177 04221
1.00 0.3174 0.3341 0.3341 0.3335 . 0.3920 0.4003 0.4052
2.00 0.2527a 0.2585 0.2581 0.3027a 0.3043
3.0 0.2197a 0.2202 0.2201 0.2527a 0.2536
400 0.1955a 0.1959 0.1956 0.2210a 0.2216
520 0.1752a 0.1754 0.1752 0.1950a 0.1954
6.00 0.1648a 0.1650 0.1647 0.1719a 0.1822
8.00 0.1454a 0.1455 0.1452 0.1579a 0.1581
10.0 0.1316a 0.1317 0.1314 0.1421a 0.1415
12.0 0.1212a 0.1213 0.1209 0.1291a 0.1292
140 0.1129a 0.1126 0.1127 0.1i95a 0.1196
16.0 0.1060a 0.1057 0.1059 0.1095a 0.1098

# where “a’ stands for the solutions of large £equations.
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Figure 2: Velocity profile for different values of Pr against n
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Figure 3: Temperature Profile for different values of Pr against .
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