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Abstract

In this paper thermal stresses in an aeolotropic thin rotating annular disc
under transient shearing stress applied on the outer edge are derived when the
modulus of elasticity and the coefficient of thermal expansion vary exponentially
as the n" power of the radial distance from the centre of the circular disk.
Corresponding results for homogeneous case are deduced as a special case and

found in agreement with the previous results. Numerical resulls are presented in

a tabular form and graphically.
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1. Introduction:

Ghosh [3] has obtaiced the expression for stresses and
displacements due to surface loading of an isotropic half space in the
absence of temperature field, where the Poisson’s ratio is an arbitrary
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function of depth. Timoshenko and Goodier [9] in the theory of elasticity,
had considered thermal stress on homogeneous circular discs, cylinders and
spheres. Mollah [5] obtained the thermal stress in non-homogeneous
circular disc of varying thickness rotating about a central axis. Wankhede
[10] has investigated the quasi-static thermal stress in a thin circular plate.
Gogulwar and Deshmukh [2] have obtained thermal stress in a thin circular
plate with heat sources. De and Choudhury [1] has obtained the thermal
stress in a homogeneous thin rotating annular disc having transient
shearing stress applied on the outer edge when coefficient of thermal
expansion vary as the n" power of the radial distance.

The object of this paper is to obtain thermal stresses in an
aeolotropic thin rotating annular disc having transient shearing stress
applied on the outer edge, when both the modulus of elasticity and
coefficient of thermal expression vary exponentially as the n™ power of the
radial distance from the centre. The thermo elastic stresses in a
homogenous disc under similar boundary conditions are deduced as a
special case, which are found in agreement with the previous results.
Finally numerical results are represented in a tabular form and shown
graphically.

2, Fundameptal equations:

We assume that displacement, stress and temperature do not vary
across the thickness of the disk and that its lateral surfaces are free from
any stress. Here we consider plain polar co-ordinates (r,8) with reference
to the center of the annular disk as origin. From symmetry we see that the
radial displacement ‘u’ and the tangential displacement ‘v’ are
independent of 6. The strain displacement relations are given by,

Ou u . Ou u
S i 2.1)
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where ¢,, ¢, are the radial and tangential strains and e, is the

shearing strain. The stress displacement equation in case of plane stress

reduces to
E [ou u] EaTl |
g = S SR R
5 (l—vz)[ar rl (-v)
E ou u EaT
i b RS S L 22
e (1-v2)["ar rjl fliy) (e
E [6v v
T —_—
20+v)Lor r
Where

o, =radial stress,

o, = tangential stress,

7,, = shearing stress,

E = modulus of elasticity,

a = coefficient of thermal expasion,

v = Poisson's ratio,

T = temperature at any point and at any time t.

For non homogeneity we assume E = Ee™ o = a,e™ where E, and a, are
non zero positive constants, » = any integer and the temperature

T =Tl +r)e™,
where 7, = temperature at the centre of the disk at time # = 0 and r = 0,p

= constant.

Then from (2.2) we get,

o = E-f";z—)[e"’ [@i +v 1:—) — Ty (1+v)(1+ e ’]

(1—=v?

‘r —..._'EQ_e"r QV-__X]
" 20+v) |or r

The equations of motion are given by,

Op = £ [e”’ (V%u—+%J—%IE da +V)(l+r2)ez"’"””] : (2.3)
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O w220 ¢ o7 = pf,
or r

07,4

24

2
+';'Tr8+pF9 =p-f6

where p = density of the material of the disk that varies exponentially with
the distance from the centre.
p=peand p,= density atr = 0.
Let us assume that the angular velocity vary exponentially with time, so
that
Q=Qe™* . ' 2.5)
where Q,= nc;n— zero positive constant.
. We assume for a rotating disc that the radial velocity of a particle in
the disc is negligible in comparison with the angular velocity. So, the
Coriolis component of body force f is neglected.
Since the problem is one of the relative equilibrium, the body forces
and the acceleration components at a point whose distance from the axis of

rotation is r, are respectively

idnek i B L =
We assume
u=U(r)e™?, v=V(r)e ™ 2.7
From (2.4) using (2.3), (2.5), (2.6) and (2.7) we get,
U [(1 g 4(1—:12)pnp2r2:|U
@ K,
(2.8)

=20, T, (1+V){r? (1+m)r’} e L Vz),q,!f,r}

ﬂ L2+vppr |, 20+
d-2+( +l)r [(l+rr). 3 ]V— E pasyr 2.9)
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3. Solution of the problem:

Solution of the equation (2.8) is given by,

€, mx(z”g —k —3) mn nr
U=AF, F, = r+ r 3.1
S o= s
where,
Firy = Cr+ G + O 4 C* o , (.1.1)
ﬁ(r):F;(r)logr+-l-+d0+d,r+dzr2+d3r3+d4r‘+ .............. g 3.1.2)
r
and
C, = ——-—-————"_V(; . 4 (3.1.1a)
g
c, _n v(v 1)_nkl(v+l)’ (3.1.16)
6 6
i 4 2 2z
C3:n k(v+D)(v+2) n'(v Dv(y+2) vn kl(v+1)+£l_’ G.1.1c)
48 48 16 16
- 3 2
£ (@ -Dviv+2)(v+3) n k(v+1)v+2)(v+3) nk(v+1) . G.Lid)
720 720 90
d, =(v-n, (3.1.20)
= 2
P QR-Sv+vn _ﬁ’ (3.125)
4 4
= 3 AN o
Py, G D _1v(i—v)r  (Ov+dnk,  (v—Dnk, 5
6 36 36 3
g 3G -+ 2)n'  (/ +v—Dv(v+2n' A’k (2v+3) ;
g 576 24 . 48 (3.1.2d)
A3+ + D'k, (v=D(v+ D'k, 2v— D'k,
576 24 16
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S(v—INv+2mk, 5k

L

24 64 \
o  +47 43 20’ +187'(u2 ~Dv(v+2)(v+3I)hn®
> 144 43200
GV’ +12v+1Dr'k, 187+ (v +2)v +3)7’k, (3.1.2¢)
720 43200
| (v=D(v+2)(v +3)nk’ . 7I(v+Dnk’ "
; 360 2700
(v=Dnki n° nk
45 120 90°
4 2 1_ 2z
k _4ar’(1-v’) (3.1.3)
E,
m =2, T, (1+v) (.14
Solution of the equation (2.9) is given by,
V=,gf;(r)+ﬂzﬁ;(r)+%r ' (G2
where
kK nk,
Er)=—22r+=2p —25% .. , =4
=T 2o el
1 i 2w
E()=F()logr+~ k:r ";2 : (6E+ 4‘;1)
Tk, _rig k)|
+(7200 T - (322)
*(1
& _2o0° (1) (3.20)
E,
- Substituting the values of # and v in (2.3) we get,
t E ar=2pt . ni
o, = (lﬁ:’}-z-)-e‘ ¥N(A + B, log r)G,(r)+ B,G,(r)+ e (1+v)
+e"{E (1+v+nr)+E, (2r+vr+ nrz)} (3.3)

—a,T, (1+ v)(1+ r’)e""],
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el (IEOVZ)
+e”{El(1+v+m')+E2(2r+w+m-2)}
—a T, (1+v)(1+7%)e™], G4
o =72 P[4, + B, logr) G()+ B G, L G5
(1) '
Where

i m, (2n2 —kl-—B) 3:38)
e (4+v)(2n* -k) : 3

RII L AT 3b
< (27 -k) i
And ;

G(P) =(+V)C, +C+VCr +B+VCH +{@+V)CrF + ; 33D
G =+ 124G, +vid (G2, +vi )+ (G430, v
+(C, +4d,+VA) cneerreerrenn. . (32
G,(P)= (1+v)q +@v+DCr+Bv+DC2 +@v+DCr + , 34.D)
G,(r )- ) d" +(vC' +d, +vd)+(vC, +2vd, +d,))r+(vC, +3vd, +d,)r
+(VC, +vd, +d )P ..cosereererren. - (342)
Ei..._"’ﬁri
G,()= i ; @50

r126 16 32 24

(nk  ni2 TIE ik,
120 24 2400 120

G()-—__E_E "k’ (E+&__.’f_&“]f

P s e 3B.52)
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Boundary conditions are given by,

To=—k?” and o,=0, on r=a} G6)

7,5=0, =0, on r=b
where a and b are the inner and outer radii of the disc respectively.
Using the boundary conditions (3.6) in (3.3), (3.4) and (3.5) we can
calculate 4,, B;, A;and B..
Thus 4,B,, 4, and B, are completely known. Hence o, o, and 7,
are all known. For n=0, the equation (2.8), (2.9) and the corresponding
solutions are in agreement with the result of Mollah [5].

4. Numerical result and discussion:

For numerical calculation we take the parameter as follows (Love [4]
for copper on the inner boundary):

E, =1.234x10" dynes/cm?,

&, =16x10* cm/°C,

v=0.378, 2, =8.843 gm/cc,

L,=500°C, p=05,

Q, =1 radian/sec, a=1cm, b=2cm
The adjoining table exhibits the value of

1—v? 1-v?
e, X=

0 0

R =10

2
e %

The values of R and X for different radii are shown if table 1. The variation
of R and X with radius r are represented graphically in figure 1 and figure
2 respectively.
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Table 1

T R X
1.000 0 -4.8242
1.025 | 0.9521 | -4.5317
1.050 | 1.8226 -4.25
1.075 | 2.6069 | -4.0026
1.100 | 3.3002 | -3.7739
1.125 | 3.8975 | -3.5744
1.150 | 4.3947 | -3.4080
1.175 | 4.7450 | -3.2787
1.200 | 5.0675 | -3.1903
1.225 | 5.2342 | -3.1465
1250 | 5.2822 | -3.1509
1.275 | 5.2076 | =3.2072
1.300 | 5.0071 | -3.3184
1.325 | 4.6784 | -3.4877
1.350 | 4.2197 | -3.7177
1.375 | 3.6300 | -4.0108
1.400 | 2.9104 | -4.3687
1.425 | 2.0622 | -4.7928
1.450 | 1.0891 | -5.2836
1.475 | -0.0037 | -5.8410
1.500 | -1.2085 | -6.4640
1.525 | -2.5158 | -7.1505
1.550 | -3.9125 | -7.8972
1.575 | -5.3831 | -8.6995
1.600 | -6.9078 | -9.5512
1.625 | -8.4636 | -10.4444
1.650 | -10.0222 | -11.3691
1.675 | -11.5510 | -12.3132
1.700 | -13.0105 | -13.2619
1.725 | -14.3569 | -14.1979
1.750 | -15.5375 | -15.1001
1.775 | -16.4929 | -15.9446
1.800 | -17.1544 | -16.7028
1.825 | -17.4447 | -17.3423
1.850 | -17.2749 | -17.8255
1.875 | -16.5445 | -18.1091
1.900 | -15.1404 | -18.1445
1.925 | -12.9362 | -17.8758
1.950 | -9.7879 | -17.2397
1.975 | -5.5360 | -16.1652
2.000 0 -14.5721

624



J.Mech.Cont.& Math. Sci., Vol.-5, No.-2, January (2011) Pages 616 - 626

= = e el el
e R - S i

radius of the disc

——y X

T e TP 1 L 0 e O 1

.........................................
A= o ~= ] > &
S S R R )
————— = radius of the disc

Figure2: The curve shows the variation of tangential stress with radial distances.

5. Conclusion:

For the aeolotropic thin annular disk having transient shearing

stress applied on the outer edge and the inner edge is assumed to be stress
free, the radial stress gradually increases from the inner edge (r = 1) and
attains a maximum value and then gradually decreases and attains a
minimum value and again gradually increases and become zero on the
outer edge (r = 2). The tangential stress for the same disk gradually

increases from the inner edge (r = 1) and attain a maximum, value and then

gradually decreases and attain a minimum value and again gradually

increases. In case of tangential stress, tangential stress on the inner wall

also assumed to the same pattern of the curve as in the case of radial stress.
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