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Abstract

In this article, an app?oximare technique has been presented for obtaining the
analytical approximate solutions of second order sirongly nonlinear differential
systems with small damping and slowly varying coejj‘icfents based on the He's
homotopy perturbation and the extended form of the Krylov-Bogoliubov-
Mitropolskii methods. An example is given fo illustrate the efficiency and
implementation of the presented method. The first order analytical approximate
solutions obtained by the presented method show a good agreement with the

corresponding numerical solutions for the several damping effects.
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1. Introduction

Most of the physical phenomena and engineering problems occur in

nature in the forms of nonlinear differential systems with damping effects and
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slowly varying coefficients. The common methods for constructing the

analytical approximate solutions to the nonlinear oscillator equations are the
perturbation methods. Some well known perturbation‘methods are the Krylov-
Bogoliubov- Mitropolskii (KBM) [1-3] method, the Lindstedt-Poincare (LP)
method [4-5] and the method of multiple time scales [4]. Almost all
perturbation methods are based on an assumption that small parameter must
exist .in the eiiuations. Lim et al. [7] have presented a new analytical approach
to the Duffing- harmonic oscillator. In recent yea.rs,‘ He [8] has investigated
the homotopy perturbation technique. In another paper, He [9] has developed
a coupling method of a homdtopy perturbation technique and a perturbation
technique for - strongly nonlinear problems. Recently, He [10] has also
presented a new interpretation of homotopy perturbation method for strongly
. nonlinear differential systems. Belendez ef al [11] have presented the
application of He’s homotopy peﬁurbaﬁon method to the Duffing harmonic
oscillators. Hu [12] has obtained the solution of a quadratic nonlinear
oscillator by the method of harmonic balance. Roy et al. [13] have presented
the effects of higher approximation of _7Krylov—Bogoliubov-Mitropolskii
solution and matched asymptotic differential systems with slowly varying
coefficients and damping near to_é turning point for weakly nonlinear systems.
Arya and Bojadziév [14] have presented the analytical technique for time
depended oscillating systems with damping, slowly varying parameters and
delay Alam et al. [16] have developed the general Struble technique for
weakly nonlinear systems with large damping. Recently. Uddin et al. [17] have
preseﬂted an approximate: ;echnique for solving strongly nonlinear differential
systems with damping effects. The authors [8-12] have studied the nonlinear

systems without considering any damping effects. But most of the physical
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and oscillating systems encounter in presence of small damping in nature and

it plays an important role to the systems. In this article, we have extended [17]
an approximate technique to obtain the analytical approximate solutions of
second order strongly nonlinear differential systems with small damping and
slowly varying coefficients [13] based on He’s homotopy perturbation [8-11]
and the extended form of the KBM [1-3] methods. Figures are provided to
compare between the solutions obtained by the presented method with the

corresponding numerical (considered to be exact) solutions.

2. The method

Consider a nonlinear oscillator [13] modeled by the following equation

itex+ef(x)=0, x(0)=q,, *(0)=0, : (H
where over dots denote differentiation with respect to time ¢, = is a slowly
varying time, £ is a positive parameter which is not necessarily small, q, is a
given positive constant and f(x) is a given nonlinear function which satisfies
the following condition

J(=x)=-f(x). )

According to the homotopy perturbation [8-11,17] technique, Eq. (1) can

be re-writien as

it +A)x=Ax-gf(x) 3)
Eq. (3) yields, | '

irarx=Ax—ef(x), (4)
where

0 =e" + A (5)
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Herein @ is a constant for undamped nonlinear oscillator and known as

the frequency in literature and A is an unknown function which can be
determined by eliminating the secﬂm terms. But for a damped nonlinear
differential systems  is a time dependent function and it varies slowly with
time ¢. To handle this situation, we are interested to use the extended KBM
[1-2] method by Mitropolskii [3]. According to the He’s {8-11,17] homotopy
perturbation method, we have constructed the following homotopy

i+t =pAx-ex’), ' O
where p is the homotopy parameter and f (x)-—?x3. When p=0, Eq. (6)
becomes the linearized equation

i+atx=0, | : N0
and for the case p =1, Eq. (6) becomes the original problem. The homotopy
parameter p is used to expand the solution x(s) in powers of p‘ in the
following form

50 =50+ PO+ P RO+ ®

Substituting Eq. (8) into Eq. (6) and then equating the coefficients of the
like powers of p, we obtain the following linear differential equations

%, +@’x, =0, x(0)=a,, %,(0)=0 &)

B +o'x = Ax—ex, %(0)=0 £(0)=0, 10
where a, is a positive constant. The solution of Eq. (9) is then obtained as

x,(t) = a, coswt. ' an

Substituting Eq. (11) into Eq. (10), we obtain
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¥ +o'x =(Aay - %saﬁ)coswr - %sag cos3af. (12)
The requirement of no secular terms in particular solution of Eq. (12)
implies that the coefficient of the cosar term is zero. Setting this term to zero,

we obtain

z.ao—%sagw (13)

For the nontrivial solution i.e, a, # 0, Eq. (13) leads to
A= 3sa . , (14)

By inserting the value of 4 from Eq. (14) into Eq. (5), we obtain the

following solution for @ as

2
o(a,) = Je"' +3§‘&. (15)

From Eq. (15), it is seen that the frequency depends on the initial
amplitude a, and slowly varying time . Now using Eq. (13), Eq. (12) can be

rewritten in the following form
B rotx = --}Isa,’, cos3ot, (16)

with the initial conditions
£(0)=0, %(0)=0. (17)
The solution of Eq. (16) is then obtained as

1 .
%= -msag (cosat —cos3f). (18)

Thus we obtain the first order analytical approximate solution of Eq. (1)
by setting p =1 in the following form
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i +o'x =(Aa, - -i—sag)coswt - %sag cos3ar. (12)

The requirement of no secular terms in particular solution of Eq. (12)

implies that the coefficient of the coswt term is zero. Setting this term to zero,

we obtain
Aay - %saj =0 (13)
For the nontrivial solution i.e., a, # 0, Eq. (13) leads to
Caeim - )

By inserting the value of 4 from Eq. (14) into Eq. (5), we obtain the

following solution for o as
- 384,

aay) =qe +—. (15)

From Eq. (15), it is seen that the frequency depends on the initial
amplitude a, and slowly varying time 7. Now using Eq. (13), Eq. (12) can be
rewritten in the following form |

B +otx = -%sa(’, cos 3o, (16)
with the initial conditions

£(0)=0, %(0)=0. (17
The solution of Eq. (16) is then obtained as

l .
%= -_-Wa‘a;] (cosat —cos3ar). (18)

.

Thus we obtain the first order analytical approximate solution of Eq. (1)
by seiting p =1 in the following form
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2o’ -ega .

P ]aoccnsa)z‘+;;“2 cos3at, (19)
2w @

x=x, +X =(

where the frequency o is given by Eq. (15).

But most of the physical and oscillating systems occur in presence of
damping in nature with slowly varying cocfficients. From our study, it is seen
that the most of the authors {7-11] have presented the analytical technique for
solving nonlinear oscillators without considering damping effects. So in this
article, we are interested to consider a strongly nonlinear oscillator [13] with
small damping and slowly varying coefficients in the following form

F42k(0)%+e x =g f(x), k<<l, (20)
where 2k is the linear damping coefficient which varies stowly with time
t,r=ki is the siowly varying time. }

Eq. (20) leads to Eq. (1) when k=0. Let us assume the following
transformation |

x=pt)e ™. (21)

Differentiating Eq. (21) twice with respect to time ¢ and substituting %, x
together with x into Eq. (20) and then simplifying them, we obtain

j(e" —k)y=—ge f(ye™). (22)

According to the homotopy perturbation method [8-11,17], Eq. (22) can

be written as
jraty=Ay-sé fye™), | (23)
where
o =e" -k + 1. (24)

Herein A is an unknown constant which can be determined by eliminating

the secular terms (as it is eliminated for the undamped problem). However, for
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a damped nonlinear differential system @ is a time dependent function and it

varies slowly with time . To handle this situation, we can use the extended
KBM [1-2] method by Mitropolskii [3]. According to this technique, we are
going to choose the analytical approximate solution of Eq. (23) in the
following form

¥ =acos@, (25)
where a and ¢ vary slowly with time ¢, a and ¢ satisfy the following first
order differential equations

a=k4(a,0)+k4(a,7)+

(26)
¢ =a(z) +kB(a,7)+ k' By(a,7) +-,
where k is a small positive parameter and 4,, B, .are unknown functions. It is

clear that, this solution is similar to the undamped solution if k¥ —0 and
a-»a,, p->ot. Now differentiating Eq. (25) twice with respect to time ¢,
utilizing the relations Eq. (26) and substituting j and y into Eq. (23) and
then equating the coefficients of sing and cosg, we bbtain

A =-0'al20), B, =0, @7
where a prime denotes differentiation with respect to 7. Now putting Eq. (25)
into Eq. (21) and Eq. (27) into Eq. (26) we obtain the following equations

x=ae* cosp, (28)
and '
a=-ka' alQw),
29
¢ = a(r). )

Eq. (28) represents the first order analytical approximate solution of Eq
(20) by the presented method. Usually, the integration of Eq. (29) is

performed by well-known techniques of calculus [4-5], but sometimes they
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are solved by a numerical procedure [12-17]. Thus the determination of the

first order analytical approximate solution of Eq. (20) is completed.
3. Example

As an example of the above procedure, we are going to consider the
Duffing equation in the following form [13]

i+ 2k(r)k+e " x =~ex’, | (30)
where f(x)=x*. Now using the transformation Eq. (21) into. Eq. (30) and then
simplifying them, we obtain '

P+ —k)y=—ge'y’, ' (31)

According to the homotopy perturbation [8-11,17] method, Eq. (31) can

be rewritten as

J+oty=Ay—ge™y? (32)
where
o' =e" —k*+ A (33)

According to the extended form of the KBM [1-3] method, the solution of
Eq. (32) is given Eq. (25). The requirement of no secular terms in particular

solution of Eq. (32) implies that the coefficient of the cosw: term is zero.
Setting this term to zero, we obtain

3 2kt :
032y, (34)
4 .

For the nontrivial solution i.e., a =0, Eq. (34) leads to
“2rt .

— . 35
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Inserting the value of 4 from Eq. (35) into Eq. (33), it yields

P
_ , -dea‘e
o =e -k +

(36)

This is a time dependent frequency equation of the given nonlinear

system. As ¢ > 0, Eq. (36) yields

(%=mmm$—f+%f. 37

Integrating the first equation of Eq. (29), we get

a=%f5; ' (38)
Fil]

where a, is a constant of integration which represents the initial amplitude of

the nonlinear systems. Now putting Eq. (38) into’ Eq. (36), we obtain the

following equation
@’ trqo+r=0, (39)
where
2 =2kt
J=e kD), ,=_E@oe__ 40)

Eq. (39) is a cubic equation in @. It has an analytical solution for every
real value of ¢7. When e™ > £, then the solution of Eq. (39) becomes (see
also [6] for details)

| ,-2 3 143 > " 173
o= —f-+ — -i--q— + —-'-.-— L +i (41) .
2 V4 27 2 ¥4 27 )

Now substituting r =-2R, ¢ =30 into Eq. (41), then it becomes

o=k {F-0") +k-JB-C)", k>0 42)
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of,

w=@+wQ-Rﬂm+@~MQ—Rﬂm,R<Q. 43)

Herein the relations among O, R, v, k, &, and g, are obtained as

= 2 2 =2kt
Q=(e —k)’ R=3£w0aoe . (44)
3 8
According to [6], the real form of Eq. (43) is obtained as
= | -1
0=20 cos(f_’“_t?_‘}g__p’_/_@) =20 cos(_taﬂ_{lﬂ} (45)
where |

14 zJ_Q3 - R : (46)

The solution of the second equation of Eq. (29) becomes
P=0+ jw(f)df, @&7) -
4]

where @, is the initial phase and @ is given by Egs. (42) or (45). Therefore,
the first order analytical approximate solution of Eq (30) is obtained by Eq.
(28) and the amplitude «a and the phase ¢ are calculated from Eq. (38) and
Eq. (47) respectively. Thus the determination of the first order analytical
approximate solution of Eq. (30} is completed by the presented analytical

technique by coupling He’s homotopy technique and the KBM method.
4. Initial conditions

The initial conditions of % +2k(z)% +e "x = —ex® are obtained as

x(0) = a,cos ¢y,

: ka(4+3ca;) .
0)=| =2 L~k o ;
x(0) (8(3@3 ApEa ao)cosq;0 0, SN @,

C)
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In general, the initial conditions [x(0), ¥(0)] are specified. Then one has to

solve nonlinear algebraic equation in order to determine the initial amplitude

a, and the initial phase ¢, that appear in the solutions, from the initial

conditions equation (48).

Fig. 1 (a) First approximate solution of Eq. (30) is denoted by —e— (dashed
lines) by the presented analytical technique with the initial conditions
a,=1.0, 9, =0 or [x(0)=10, ©(0)=-0.118879] with k=0.15, £=1.0 and

f =x", Corresponding numerical solution is denoted by - (solid line).
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1

Fig. 1 (b) First approximate solution of Eq. (30) is denoted by — e~ (dashed lines)
by the presented analytical technique with the initial conditions a, =1.0, ¢, =0 or

[x(0)=1.0, %(0)=-0.11302] with £=0.15 £=0.1 and f=x’. Corresponding
numerical solution is denoted by - (solid line).

Fig. 2 (a) First approximate solution of Eq. (30) is denoted by —e— (dashed lines)
by the presented analytical technique with the initial conditions a, =1.0, ¢, =0 or

[x(0)=1.0, %(0)=-0.03969] with k=005, £=1.0 and f =x’. Corresponding
numerical solution is denoted by - (solid line).
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o5 4

®

‘Fig. 2 (b). First approximate solution of Eq. (30) is denoted by —e - (dashed
lines) by the presented analytical technique with the initial conditions
a,=10, , =0 or [x(0)=1.0, #(0)=-0.03789] with k=0.05, £=0.1 and

f =x*. Corresponding numerical solution is denoted by - (solid line).

5. Results and discussion

In this article, He’s homotopy perturbation technique has been extended
based on the extended form of the KBM [1-3] method to strongly nonlinear
systems with damping and siowly varying coefficients. From our results, it is
- seen that the first order axialytipal approximate solutions show a good
agreement with the corresponding numerical solutions for the several damping
effects. The analytical approximate solutions of Eq. (30) is computed by Eq.
(28) with small damping and slowlf varying coefficients and the
corresponding numerical solutions are obtained by using fourth order Runge-
Kutta method. This method can also be used to solve the secbnd order

strongly nonlinear differential systems without damping (as k—>0). The
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presented method is very simple in its principle, and is very easy to be applied

to the nonlinear systems. The variational equations of the amplitude and phase
variables appear in a set of first order nonlinear ordinary differential
equations. The integrations of these variational equations are obtained by
well-known techniques of calculus [4-5]. In lack of analytical solutions, they
are solved by numerical procedure [4,12-17]. The amplitude and phase
variables change slowly with time ¢. The behavior of amplitude and phase
variables characterizes the oscillating processes. Moreover, the variational
equations of amplitude and phase variables are used to investigate the stability
of the nonlinear differential equations. He’s homotopy perturbation is valid
only for conservative nonlinear systems But the presented method is valid for
both conservative and non-conservative nonlinear systems. The presented
method can also overcome sorn.e limitations of the classical perturbation
techniques; it does not require a small parameter (ie, £=1) in the equations.
The advantage of the presented method is that the first order analytical
approximate solutions show a good agreement with the corresponding
numerical solutions. The method has been successfully implemented to solve
for both strongly and weakly cubic nonlinear oscillators with small damping
and slowly varying coefficients. Comparison is made between the solutions
obtained by the presented coupling analytical technique and those obtained by
the numerical solutions in figures graphically.

6. Conclusion

The great achievement of this article is that the presented analytical
technique is capable to handle both strongly and weakly nonlinear differential

systems with damping and slowly varying coefficients.
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