J.Mech.Cont.& Math. Sci., Vol.-5, No.-2, January (2011) Pages 655 -- 663

NEAR LATTICE OF FINITELY GENERATED PRINCIPAL N-IDEALS WHICH FORMS A NORMAL NEARLATTICE

By

M. S. Raihan

Department of Mathematics, Rajshahi University, Rajshahi, Bangladesh

Abstract:

In this paper the author generalize several results of normal nearlattices in terms of n-ideals. It has been proved that the nearlattice of finitely generated principal n-ideals $P_n(S)$ is normal if and only if each prime n-ideal contains a unique minimal prime n-ideal. Also it has been shown that $P_n(S)$ is normal if and only if $(\langle x \rangle_n \cap \langle y \rangle_n)^* = \langle x \rangle_n^* \vee \langle y \rangle_n^*$ for all $x, y \in S$.

Keyword and phrases: nearlattics, ideals, normal nearlattics.

সংক্ষিপ্তসার

এই পরে প্রবন্ধকার n - আইডিয়ালের (n-ideal) পদে স্বাভাবিক নিকট - ল্যাটিসের (near lattice) বছবিধ ফলাফলকে সামান্টীকরণ করেছেন। ইহা প্রমাণ করা হয়ছে যে নিকট - ল্যাটিসের সসীমভাবে সৃষ্ট মূখ্য n - আইডিয়াল $P_n(S)$ স্বাভাবিক হয় যদি এবং কেবলমাত্র যদি n - আইডিয়ালের একটি অন্বিভীয় লখিষ্ঠ মৌলিক n - আইডিয়াল ধারণ করে। এটাও দেখনো হয়ছে যে $P_n(S)$ স্বাভাবিক হয় যদি এবং কেবলমাত্র যদি $(< x >_n \cap < y >_n)^* = < x >_n^* \vee < y >_n^*)$ সকল $x, y \in S$.

1. Introduction

Normal lattices have been studied by several author including Cornish [2] and Monterio [5]. A distributive nearlattice S with 0 is *normal* if every prime ideal of S contains a unique minimal prime ideal. Equivalently, S is called *normal* if each prime filter of S is contained in a unique utrafilter (maximal and proper) of S. In this paper, we have generalized several important results of normal nearlattices in terms of n-ideals by using some results on minimal prime n-ideals. We have proved that $P_n(S)$ is normal if and only if each prime n-ideal contains a unique minimal prime n-ideal.

J.Mech.Cont.& Math. Sci., Vol.-5, No.-2, January (2011) Pages 655 -- 663

1.Prelimenaries: For a fixed element n∈S, a convex subnearlattice containing n is called an n-ideal. The concept of n-ideals is a kind of generalization of ideals and filters of a nearlattice. For detailed literature on n-ideals we refer the reader to consult [3] and [4].

For a medial element n, an n-ideal P of a nearlattice S is called a *prime* n-ideal if $P \neq S$ and $m(x, n, y) \in P(x, y \in S)$ implies either $x \in P$ or $y \in P$ where $m(r, n, s) = (r \land n) \lor (n \land s) \lor (r \land s)$.

The set of all n-ideals of a nearlattice S is denoted by $I_n(S)$ which is an algebraic nearlattice. For two n-ideals I and J of a nearlattice S, $I \vee J = \{x: i \land j \le x = \vee_{r=1}^{p} (x \land a_r) \text{ for some positive integer p where } i, j \in I \cup J \}$ while the set theoretic intersection is their infimum. Moreover, $I \cap J = \{m(i, n, j): i \in I, j \in J \}$.

An n-ideal generated by a finite number of elements a_1 , a_2 ,..., a_n is called a *finitely generated* n-ideal, denoted by $\langle a_1, a_2,...,a_n \rangle_n$. By [3], $\langle a_1, a_2,...,a_m \rangle_n = \{y \in S: a_1 \wedge ... \wedge a_m \wedge n \leq y = (y \wedge a_1) \vee ... \vee (y \wedge a_m) \vee (y \wedge n)\}$, provided S is distributive

$$=$$
 $<$ $a_1 \land a_2 \land ... \land a_m \land n, $a_1 \lor a_2 \lor ... \lor a_m \lor n >_n$.$

The set of finitely generated n-ideals is denoted by $F_n(S)$ which is a nearlattice.

An n-ideal generated by a single element a is called a *principal* n-ideal, denoted by $< a >_n$. The set of principal n-ideals is denoted by $P_n(S)$.

Moreover, by [3] we have following result.

Proposition 1.1 For a central element $n \in S$, $P_n(S) \cong (n)^d \times [n]$.

A prime n-ideal P is said to be a *minimal prime* n-ideal belonging to n-ideal I if (i) $I \subseteq P$ and (ii) There exists no prime n-ideal Q such that $Q \neq P$ and $I \subseteq Q \subseteq P$

J.Mech.Cont.& Math. Sci., Vol.-5, No.-2, January (2011) Pages 655 -- 663 A prime n-ideal P of a nearlattice S is called a *minimal prime* n-ideal if there exists no prime n-ideal Q such that $Q \neq P$ and $Q \subseteq P$. Thus a minimal prime n-ideal is a minimal prime n-ideal belonging to $\{n\}$.

 $J^* = \{x \in S: m(x, n, j) = n \text{ for all } j \in J\}$ where n is a medial element. Obviously, J^* is an n-ideal and $J \cap J^* = \{n\}$. In fact, this the largest n-ideal which annihilates J and so it is the pseudocomplement of J in $I_n(S)$. Moreover, for a distributive nearlattice S, $I_n(S)$ is a distributive algebraic

For any n-ideals J of a distributive nearlattice S, we define

nearlattice and so it is pseudocomplemented.

Recently [1] have established the following results on prime n-ideal of a nearlattice. These results will be needed in establishing the other results of the paper.

Lemma 1.2 If n is a medial element and P is a prime n-ideal of a nearlattice S. Then P contains either (n) or [n), but not both.

Lemma 1.3 Let n be a medial element of a nearlattice S. Then every prime n-ideal P of S is either an ideal or a filter. If it is an ideal, then it is also a prime ideal. If it is a filter, then it is a prime filter. \Box

Lemma 1.4 Let I be an ideal and D be a convex sub-nearlattice of a distributive nearlattice S with $I \cap D = \phi$. Then there exists a prime ideal $P \supseteq I$ such that $P \cap D = \phi$.

Lemma 1.5 Let n be a medial element of a distributive nearlattice S. Then every

n-ideal I of S is the intersection of all prime n-ideals containing it. $_{\mbox{\scriptsize \square}}$

Theorem 1.6 Let S be a distributive nearlattice with an upper element n and let I, J be two n-ideals of S. Then for any $x \in I \lor J$, $x \lor n = i \lor j$ and $x \land n = i' \land j'$ for some i, $i' \in I$, $j,j' \in J$ with $i,j \ge n$ and $i',j' \le n$.

Proof. It is very easy. So we omit this proof.

J.Mech.Cont.& Math. Sci., Vol.-5, No.-2, January (2011) Pages 655 - 663

2. Nearlattices whose P_n(S) are normal nearlattices.

We start with the following results due to [2, Lemma 1.4].

Lemma 2.1 If S_1 is a subnearlattice of a distributive nearlattice S and P_1 is a prime ideal (filter) in S_1 , then there exists a prime ideal (filter) P in S such that $P_1 = P \cap S_1$.

Lemma 2.2 Let S be a distributive nearlattice and $n \in S$ be a medial element. Then for any $I, J \in I_n(S), (I \cap J)^* \cap I = J^* \cap I$.

Proof. Since $I \cap J \subseteq J$. so R.H.S. $\subseteq L$.H.S.

To prove the reverse inclusion, let $x \in L.H.S$. Then $x \in I$ and m(x, n, t) = n for all $t \in I \cap J$. Since $x \in I$, so $m(x, n, j) \in I \cap J$. Thus, m(x, n, m(x, n, j)) = n. But it can be easily seen that m(x, n, m(x, n, j)) = m(x, n, j). This implies m(x, n, j) = n for all $j \in J$. Hence $x \in R.H.S$, and so $L.H.S. \subseteq R.H.S$. Thus $(I \cap J)^* \cap I = J^* \cap I$.

Lemma 2.3 Suppose n is a medial element of a nearlattice S. If $I \subseteq J$, I, $J \in I_n(S)$, then (i) $I^+ = I^* \cap J$ and (ii) $I^{++} = I^{*+} \cap J$.

Proof. (i) is trivial. For (ii), using (i), we have,

$$I^{++} = (I^{+})^{*} \cap J = (I^{*} \cap J)^{*} \cap J$$
. Thus by Lemma 2.1, $I^{++} = I^{**} \cap J$. \Box

Theorem 2.4 Suppose S be a distributive nearlattice and $n \in S$. Let x, $y \in S$ with

 $\langle x \rangle_n \cap \langle y \rangle_n = \{n\}$. Then the following conditions are equivalent.

(i)
$$\langle x \rangle_n^* \vee \langle y \rangle_n^* = S$$
.

(ii) For any
$$t \in S$$
, $< m(x, n, t) >_n^+ \lor < m(y, n, t) >_n^+ = < t >_n$ where $< m(x, n, t) >_n^+$ denote the relative pseudo-complement of $< m(x, n, t) >_n$

in
$$[\{n\}, _n]$$
.

J.Mech.Cont.& Math. Sci., Vol.-5, No.-2, January (2011) Pages 655 -- 663 **Proof.** It is obvious by using Lemmas 2.2 and 2.3.

Following result is due to [2]

Theorem 2.5 Let S be a distributive nearlattice with 0. Then the following conditions are equivalent.

- (i) S is normal.
- (ii) Every prime ideal contains a unique minimal prime ideal.
- (iii) For all $x, y \in S$, $x \wedge y = 0$ implies $(x)^* \vee (y)^* = S$.
- (iv) $(x \wedge y]^* = (x]^* \vee (y]^*$.
- (v) For any two minimal prime ideals P and Q of S, $P \lor Q = S_{-D}$

Theorem 2.6 Let S be a distributive nearlattice and n be a central element of S. The following conditions are equivalent.

- (i) P_n(S) is normal.
- (ii) Every prime n-ideal of S contains a unique minimal prime n-ideal.
 - (iii) For any two minimal prime n-ideals P and Q of S, $P \vee Q = S$.

Proof. (i) \Rightarrow (ii). Let $P_n(S)$ be normal, since $P_n(S) \cong (n]^d \times [n)$, so both $(n]^d$ and [n) are normal. Suppose P is any prime n-ideal of S. Then by Lemma 1.2, either $P \supseteq (n]$ or $P \supseteq [n]$. Without loss of generality, suppose $P \supseteq (n]$. Then by Lemma 1.3, P is prime ideal of S. Hence by Lemma 2.1, $P_1 = P \cap [n]$ is a prime ideal of [n]. Since [n] is normal, so by [n], [n] contains a unique minimal prime ideal [n] of [n]. Therefore, [n] contains a unique minimal prime ideal [n] of [n]. Since [n] is [n]. Since [n] is a minimal prime ideal [n] of [n]. Since [n] is [n] in [n]. Since [n] is a minimal prime ideal [n] of [n]. Since [n] is [n] in [n] in

(ii) \Rightarrow (i). Suppose (ii) holds. Let P_1 be a prime ideal in [n). Then by Lemma 2.1, $P_1 = P \cap [n)$ for some prime ideal P of S. Since $n \in P_1 \subseteq P$, so P is prime n-ideal. Therefore, P contains a unique minimal prime n-ideal R of S. Thus by Lemma 2.1 P_1 contains the unique minimal prime ideal $R_1 = R$

J.Mech.Cont.& Math. Sci., Vol.-5, No.-2, January (2011) Pages 655 -- 663 \cap [n) of [n). Hence by definition [n) is normal. Similarly, we can prove that (n]^d is also normal. Since $P_n(S) \cong (n]^d \times [n)$, so $P_n(S)$ is normal. (ii) \Leftrightarrow (iii) is trivial. \square

For a prime ideal P of a distributive nearlattice S with 0, Cornish in [2] has defined $O(P) = \{x \in S: x \land y = 0 \text{ for some } y \in S - P\}$. Clearly, O(P) is an ideal and $O(P) \subseteq P$. Cornish in [2] has shown that O(P) is the intersection of all the minimal prime ideals of S which are contained in P.

For a prime n-ideal P of a distributive nearlattice S, we write $n(P) = \{y \in S: m(y, n, x) = n \text{ for some } x \in S - P\}$. Clearly, n(P) is an n-ideal and $n(P) \subseteq P$.

Lemma 2.7 Let n be a medial element of a distributive nearlattice S and P be a prime n-ideal in S. Then each minimal prime n-ideal belonging to n(P) is contained in P.

Proof. Let Q be a minimal prime n-ideal belonging to n(P). If $Q \not\subset P$, then choose $y \in Q - P$. Since Q is a prime n-ideal, so by Lemma 1.3, we know that Q is either an ideal or a filter. Without loss of generality, suppose Q is an ideal. Now let

 $T = \{t \in S: m(y, n, t) \in n(P)\}$. We shall show that $T \not\subset Q$.

If not, let $D = (S - Q) \vee [y)$. Then $n(P) \cap D = \phi$.

For otherwise, $y \land r \in n(P)$ for some $r \in S - Q$. Then by convexity,

 $y \wedge r \le m(y, n, r) \le (y \wedge r) \vee n$ implies $m(y,n,r) \in n(P)$.

Hence $r \in T \subseteq Q$, which is a contradiction. Thus by Stone's separation theorem for

n-ideals, there exists a prime n-ideal R containing n(P) disjoint to D.Then $R \subseteq Q$.

Moreover, $R \neq Q$ as $y \notin R$, this shows that Q is not a minimal prime n-ideal belonging to n(P), which is a contradiction. Therefore, $T \not\subset Q$. Hence there exists

J.Mech.Cont.& Math. Sci., Vol.-5, No.-2, January (2011) Pages 655 -- 663 $z \notin Q$ such that $m(y, n, z) \in n(P)$. Thus m(m(y, n, z), n, x) = n for some $x \in S - P$. It is easy to see that m(m(y, n, z), n, x) = m(m(y, n, x), n, z).

Hence m(m(y, n, x), n, z) = n. Since P is prime and $y, x \notin P$ so $m(y, n, x) \notin P$. Therefore, $z \in n(P) \subseteq Q$, which is a contradiction. Hence $Q \subseteq P$. \square

Proposition 2.8 If n is a medial element of a distributive nearlattice S and P is a prime n-ideal in S, then n(P) is the intersection of all minimal prime n-ideals contained in P.

Proof. Clearly, n(P) is contained in any prime n-ideal which is contained in P. Hence n(P) is contained in the intersection of all minimal prime n-ideals contained in P. Since S is distributive, so by Lemma 1.5, n(P) is the intersection of all minimal prime n-ideals belonging to it. Since each prime n-ideal contains a minimal prime n-ideal, above remarks and Lemma 2.7 establish the proposition.

Theorem 2.9 Let S be a distributive nearlattice and let n be central element in S. Then the following conditions are equivalent.

- (i) P_n(S) is normal.
- (ii) Every prime n-ideal contains a unique minimal prime n-ideal.
- (iii) For each prime n-ideal P, n(P) is prime n-ideal.
- (iv) For all $x, y \in S$, $\langle x \rangle_n \cap \langle y \rangle_n = \{n\}$ implies $\langle x \rangle_n^* \vee \langle y \rangle_n^* = S$.
- (v) For all x, y \in S, $(< x >_n \cap < y >_n)^* = < x >_n^* \lor < y >_n^*$.

Proof. (i)⇒(ii) holds by Theorem 2.6

- (ii)⇒(iii) is a direct consequence of Lemma 2.7.
- (iii)⇒(iv). Suppose (iii) holds.

Consider x, $y \in S$ with $\langle x \rangle_n \cap \langle y \rangle_n = \{n\}$.

If $\langle x \rangle_n^* \vee \langle y \rangle_n^* \neq S$, then by Lemma 1.4, there exists a prime n-ideal P such that $\langle x \rangle_n^* \vee \langle y \rangle_n^* \subseteq P$, then $\langle x \rangle_n^* \subseteq P$ and $\langle y \rangle_n^* \subseteq P$ imply

J.Mech.Cont.& Math. Sci., Vol.-5, No.-2, January (2011) Pages 655 -- 663 $x \notin n(P)$ and $y \notin n(P)$. But n(P) is prime and so $m(x, n, y) = n \in n(P)$ is contradictory. Therefore, $\langle x \rangle_n^* \vee \langle y \rangle_n^* = S$.

(iv)
$$\Rightarrow$$
(v). Obviously, $\langle x \rangle_n^* \lor \langle y \rangle_n^* \subseteq (\langle x \rangle_n \cap \langle y \rangle_n)^*$.

Conversely, let $w \in (\langle x \rangle_n \cap \langle y \rangle_n)^*$. Then, $\langle w \rangle_n \cap \langle x \rangle_n \cap \langle y \rangle_n = \{n\}$

or,

$$< m(w, n, x) >_n \cap < y >_n = \{n\}$$

So by (iv),
$$< m(w, n, x) >_n^* \lor < y >_n^* = S$$
.

So,
$$w \in \langle m(w, n, x) \rangle_n^* \vee \langle y \rangle_n^*$$
.

Therefore, $w \wedge n$, $w \vee n \in < m(w, n, x) >_n^* \vee < y >_n^*$. Here $w \vee n$ exists as n is an upper element. Then by Theorem 1.6, $w \vee n = r \vee s$ for some $r \in < m(w, n, x) >_n^*$ and $s \in < y >_n^*$ with $r, s \ge n$.

Now $r \in \langle m(w, n, x) \rangle_n^*$ implies

 $r \wedge [(w \wedge n) \vee (w \wedge x) \vee (x \wedge n)] \vee (r \wedge n) \vee [(w \wedge n) \vee (x \wedge n) \vee (w \wedge x)] \wedge n = n$. Observe that above left hand expression exists as S is medial. That is, $(r \wedge w \wedge n) \vee (r \wedge w \wedge x) \vee (r \wedge x \wedge n) \vee (r \wedge n) \vee (w \wedge n) \vee (x \wedge n) = n$, and so $(r \wedge w \wedge x) \vee n = n$. This implies $(r \vee n) \wedge (w \vee n) \wedge (x \vee n) = n$, so $(r \vee n) \wedge (x \vee n) = n$ as

 $r \lor n \le w \lor n$. Thus, $(r \land x) \lor n = n$. Hence $(r \land x) \lor (x \land n) \lor (r \land n) = n$, which implies $r \in \langle x \rangle_n^*$.

Therefore, $w \lor n \in \langle x \rangle_n^* \lor \langle y \rangle_n^*$.

A dual proof of above shows that $w \wedge n \in \langle x \rangle_n^* \vee \langle y \rangle_n^*$. So by convexity,

 $w \in \langle x \rangle_n^* \lor \langle y \rangle_n^*$. Therefore, $(\langle x \rangle_n \cap \langle y \rangle_n)^* \subseteq \langle x \rangle_n^* \lor \langle y \rangle_n^*$, and so

$$(\langle x \rangle_n \cap \langle y \rangle_n)^* = \langle x \rangle_n^* \vee \langle y \rangle_n^*$$
, which is (v).

(v)
$$\Rightarrow$$
(iv). Let $\langle x \rangle_n \cap \langle y \rangle_n = \{n\}$, for some $x, y \in S$.