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Abstract:
In this paper the author generalize several results of normal neariattices in terms of

n-ideals. It has been proved that the nearlattice of finitely generated principal n-ideals
PA(S} is normal if and only if each prime n-ideal contains a unigue minimal prime n-
ideal. Also it has been shown that P.S) is normal if and only if

(<x>,Nn<y>,)" —<x> v<y>, forallx,yES
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1. Introduction

Normal lattices have been studied by several author including Cornish [2] and
Monterio [S]. A distributive nearlattice S with 0 is normal if every prime ideal of
S contains a unique minimal prime ideal. Equivalently, S is called normal if each.
prime filter of S is contained in a unique utrafilter (maximal and propcr) of 8.

In this paper, we have generalized several important results of normal
nearlattices in terms of n-ideals by using some results on minimal prime n-
ideals. We have proved that P,(S) is normal if and only if each prime n-
ideal contains a unique minimal prime n-ideal. :
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LPrelimenaries: For a fixed element neS, a convex subnearlattice

containing n is called an n-ideal. The concept of n-ideals is a kind of
generalization of ideals and filters of a nearlattice. For detailed literature on
n-ideals we refer the reader to consult [3] and [4].
For a medial element n, an n-ideal P of a nearlattice S is called a prime n-
ideal if P # S and m(x, n, y)eP (x, yeS) implies either xeP or yeP where
m(r, n,s)=(xAn)v(nAas)v(ras).
The set of all n-ideals of a nearlattice S is denoted by I(S) which is an
algebraic nearlattice. For two n-ideais I and J of a nearlattice S, I v J ={x: i
AjSx= VP (X A a,) for some positive intéger p where 1, jel U J} while
the set theoretic intersection is their infimum. Moreover, I 1 J = {m(i, n, j):
iel, jel}. X

An n-ideal génerated by a finite number of elements a,, a,...,3, is
called a finitely generated n-ideal, denoted by < ay, ay,...,a, >, By [3), <a,,
Ay, A >p = {yeSig) A AAANSY=(YAQD V. VT ALYV (YA
n)}, provided S is distributive

=<AABALA Ay ALZHYVA V..V AV D>y,

rThe set of finitely generated n-ideals is denoted by F,(S) which is a
nearlattice.
An n-ideal generated by a single element a is called a principal n-ideal,
denoted by < a>,. The set of principal n-ideals is denoted by P,(S).
Moreover, by [3] we have following result.
Proposition 1.1 For a central elemenl neS, P.(S) = (n]® x {n).
A prime n-ideal P is said to be a minimal prime n-ideal belonging to n-
ideall if (i) I < P and (ii) There exists no prime n-ideal Q such that Q
#PandIc Qg P
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A prime n-ideal P of a nearlattice S is called a minimal prime n-ideal

if there exists no prime n-ideal Q such that Q # P and Q < P. Thus a
minimal prime n-ideal is a minimal prime n-ideal belonging to {n}.

For any n-ideals J of a distributive nearlattice S, we define

I'= {x € S: m(x, n, j) = n for all jeJ} where n is a medial element.
Obviously, J* is an n-ideal and J N J* = {n}. In fact, this the largest n-ideal
which annihilates J and so it is the pseudocomplement of J in I,(S).
Moreover, for a distributive nearlattice S, I,(S) is a distributive algebraic
nearlattice and so it is pseudocomplemented.

Recently [1] have established the following results on prime n-ideal of a
nearlattice. These results will be needed in establishing the other results of
the paper. '

Lemma 1.2 If n is a medial element and P is a prime n-ideal of a
nearlattice S. Then P contains either (n] or [n), but not both. 5

Lemma 1.3 Let n be a medial element of a nearlattice S. Then every prime
n-ideal P of S is either an ideal or a filter. If it is an ideal, then it is also a
prime ideal. If it is a filter, then it is a prime filter,

Lemma 1.4 Let I be an ideal and D be a convex sub-nearlattice of a
distributive nearlattice S with I m~ D = ¢. Then there exists a prime ideal
PolIsuchthat PAD=¢. ;

Lemma 1.5 Letn be a medial element of a distributive nearlattice S. Then
every

n-ideal I of S is the intersection of all prz‘me' n-ideals containing it. g
Theorem 1.6 Let S be a distributive néarlartice with an upper element n
and let 1,J be two n-ideals of S. Then for anyxelv ], xvn=ivj and
xx\n=i’/\j’ Jor some i, feLjjel Wirh ijzn and i,j <n.

Proof. It is very easy.So we omit this proof.
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2. Nearlattices whose P,(S) are normal nearlattices.

We start with the following results due to [2, Lemma 1.4].

Lemma 2.1 IfS, is a subnearlattice of a distributive nearlattice S and P,
is a prime ideaf (filter) in S,, then there exists a prime ideal (filter) P in
S suchthat Py= PN S ¢

Lemma 2.2 Let S be a distributive nearlattice and neS be a medial
element. Then for any 1, JeL,(S), (In J)' NI=TANIL

Proof. SinceInJcJ so RH.S.c L.H.S.

To prove the reverse inclusion, let xeL.LH.S. Then xe I and m(x, n, t) =n
for all tel N J. Since x€l, so m(x, n, j)el N J. Thus, m(x, n, m(x, n, j)) =
n. But it can be easily seen that m(x, n, m(x, n, j)) = m(x, n, j). This implies
m(x, n, j) =n forall j € J. Hence xeR H.S, and so L.H.S. < RH.S. Thus
AnD'NnI=T"NL 4

Lemma 2.3 Sﬁppose n is a medial element of a nearlattice S. If 1¢), |,

Jel(S). then () I'=T' ~Jand (i) I" =1"nNJ.

Proof. (i) is trivial. For (i), using (i), we have,
M='NI=C ") ") Thusby Lemma 2.1, I =1"N1J. g
Theorem 2.4 Suppose S be a distributive nearlattice and neS. Let x, y€S
with
<X >, N <y >, = {n}. Then the following conditions are equivalent.
@ <x>w v<y> =S.
(ii) For any teS, <m(x, n, ) >, v <m(y, n, t) >, = <t >, where

<m(x, n, t) >,  denote the relative pseudo-complement of < m(x,

n, t) >,

in [{n}, <t>].
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Proof. It is obvious by using Lemmas 2.2 and 2.3.

Following result is due to [2]
Theorem 2.5 Let S be a distributive nearlattice with 0. Then the Jollowing
conditions are equivalent.

() S is normal.

(ii) Every prime ideal contains a urtique minimal prime ideal.

(iii) For all x, yeS, x A y = 0 implies (x]" v (y]" = S.

V) Ayl =" v i1

(v) For any two minimal prime ideals P and Q of S,Pv Q=8§. o
Theorem 2.6 Let S be a distributive nearlattice and n be a ceniral element
of S. The following conditions are equivalent. '

(@) P.(S) is normal.

(1) Every prime n-ideal of S contains a unilue minimal prime n-
ideal.

(iii) For any rwoe minimal prime n-ideals P and Q of S, Pv Q=8.
Proof. @=>(ii). Let P,(S) be normal, since P,(S) = (a]* x [n), so both (a]¢
and [n) are normal. Suppose P is any prime n-ideal of S. Then by Lemma
1.2, either P> (n] or P 5 [n). Without loss of generality, suppose P o (n].
Then by Lemma 1.3, P is prime ideal of S. Hence by Lemma 2.1, P, =P~
[n) is a prime ideal of [n). Since [n) is normal, so by [2, Th. 2.4] P,
contains a vnique minimal prime ideal R, of [n). Therefore, P contains a
unique minimal prime ideal R of S where R;=R N [n). Since neR, son e
R and hence R is a minimal prime n-ideal of S. Thus (ii) holds.
ii)=>(i). Suppose (ii) holds. Let P, be a prime ideal in [n). Then by Lemma
21, P,=P ~[n) for some prime ideal P of S. Since neP,cP,soPis
rime n-ideal. Therefore, P contains a unique minimal prime n-ideal R of

3. Thus by Lemma 2.1 P, contains the unique minimal prime ideal R, = R
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~ [n) of [n). Hence by definition [n) is normal. Similarly, we can prove

that (a]® is also normal. Since Po(S) = (@] x [n), s0 Po(S) is normal.
(ii)<=>(ii) is trivial. g

For a prime ideal P of a distributive nearlattice S with 0, Cornish in [2] has
defined O(P) = {xeS:x Ay =0 for some yeS —P}. Clearly, O(P) is an
ideal and O(P) < P. Cornish in [2] has shown that O(P) is the intersection of
all the minimal prime ideals of S which are contained in P.

Fora prime‘ n-ideal P of a distributive nearlattice S, we write n(P) = {yeS:
m(y, n, x) =n for some xeS —P}. Clearly, n(P)'. is an n-ideal and n(P) < P.
Lemma 2.7 Let n be a medial element of a distributive nearlattice S and P
be a prime n-ideal in S. Then each minimal prime n-ideal belonging to n(P)
is contained in P. | .

Proof. Let Q be a minimal prime n-ideal belonging to n(P). If Q & P, then
choose yeQ — P. Since Q is a prime n-ideal, so by Lemma 1.3, we know
that Q is either an ideal or a filter. Without loss of generality, suppose Q is
an ideal. Now let

T = {teS: m(y, n, t)en(P)}. We shall show that T < Q.

Ifnot, letD=( -Q)v[y). Thenn(P)"D=¢.

For otherwise, y A ren(P) for some reS — Q. Then by convexity,
yar<m(y,n,r) < (¥ A1) vn implies m(y,n,r) e n(P).

Hence reT < Q,which is a contradiction. Thus by Stone’s separation
theorem for _

n-ideals, there exists a prime n-ideal R containing n(P) disjoint to D.Then
RcQ. '

Moreover, R = Q as y¢R, this shows that Q is not a minimal prime n-ideal
belonging to n(P), which is a contradiction. Theréfore, T & Q. Hence there

exists

660



J.Mech.Cont.& Math. Sci., Vol.-5, No.-2, January (2011) Pages 655 ~- 663
z¢Q such that m(y, n, z)en(P). Thus m(m(y. n, z), n, X) = n for some

xeS — P, Tt is easy to see that m(m(y, n, 2), n, X) = m(m(y, n, x), n, 2).
Hence m(m(y, n, X), i, Z) = n. Since P is prime and y, x¢P so m(y, n, x)&P.
Therefore, z € n(P) < Q, which is a contradiction. Hence Qc P. g
Proposition 2.8 If'n is a medial element of a distributive nearlattice S and
P is a prime n-ideal in S, then n(P) is the intersection of all minimal prime
n-ideals contained in P.
Proof. Clearly, n(P) is contaihed in any prime n-ideal which is contained in
P. Hence n(P) is contained in the intersection of all minimal prime n-ideals
contained in P. Since S is distributive, so by Lemma 1.5, n(P) is the
intersection of all minimal prime n-ideals belonging to it. Since each prime
n-ideal contains a minimal prime n-ideal, above remarks and Lemma 2.7
establish the proposition. g |
Theorem 2.9 Let S be a distributive nearlattice and let n be central
element in S. Then the following conditions are equivalent.

(1) Pu(S) is normai.

(ii) Every prime n-ideal contains a unique minimal prime n-ideal.

(iii) For each prime n-ideal P, n(P) is prime n-ideal.

(iv)Forall X,y € S, <x>; <y >, = {n} implies < X >y v<y>; =8.

(V) For all x, yeS, (x> N <y > =<x > v<y >,
Proof. (i)=>(ii) holds by Theorem 2.6
(if)=>(iii) is a direct consequence of Lemma 2.7.
(ii)=>(iv). Suppose (iii) holds. |
Consider x, yeS with<x >, n<y>,= {n}.
If <x>, v<y>, #8, then by Lemma 1.4, there exists a prime n-ideal P
such that <x>n* v<y>n*gP,then <x>n*gP and <y>n'gP

imply
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x¢ n(P) and yen(P). But n(P) is prime and so m(x, n, y)=n € n(P) is

contradictory. Therefore, <x >, v <y >, =S§.

(iv)=>(v). Obviously, <x >, v<y>"c (< x> < y >

Conversely, let we(<x>; N <y >,,)*. Then, <w>, N <x >ﬂ N<y>=
{n}

or,

<m(w, n, X} > N <y >, = {n}

So by (iv), < m(w, n, x) >, v <y>"=8.

So, we<m(w, n, X) >, v < Y > ‘

Therefore, w A n, w v ne< m(w, n, X) >,,* v <y >, . Here w v n exists as n
is an upper element. Then by Theorem 1.6, w v n = r v s for some re<
m(w, n, X) >, and se< y >, with r,S=n. '

Now re<m(w, n, x) >," implies

raf(wa n)v(wzxx_)v(x.«xn)] vEAanvI(wAan v (xADv(wAx)] A
n=n. Observe that above left hand expression exists as S is medial. That
B,TAWADVEIAWAX)V(IAXAD YV rAn)v(wAan)v(xAn)=n,
and so (r AW A X} v n=n. This implies (rva)A(wvn)A(xvn)=n,so
tvo)A(xvn)=n as

rvnswyvn Thus, (r Ax) vn=n Hence TAXx)vrAnv({TAn=n,
which implies re< x >,". |
Therefore, wvn e <x>, v< y >,

A dual proof of above shows that w Ane <x >" v < y'_' >a. SO by
convexity,

We<x>, v< y >,,*. Therefore, (< x>, N <y >,,)‘ c<x >n' v<y >,,-*, and
S0

(Kx>n<y>) =<x> v<y>,", whichis (v).

(V)=>(iv). Let <x >, N <y >, = {n}, for some x, yeS.
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