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Abstract:  

The object of this paper is to study the thermal stresses in a long in-homogeneous 
aelotropic cylinder with the variable thermal conductivity of the material varies as mth 
power of the radial distance, the elastic constants and the coefficients of thermal 
expansion of the material vary as nth power of the redial distance.   

Keywords and phrases :  the thermal stress, aelotropic cylinder, thermal expansion, redial 
distance.   

¢hj§aÑ p¡l (Bengali version of the Abstract) 

HC f−œ c£OÑ Apj°c¢nL −hme (Cylinder)-H a¡fS f£sZ−L Ae¤på¡e Ll¡ q−u−R kMe Cq¡ 
hÙ¹¥l a¡f f¢lh¡¢qa¡ Al£u (hÉ¡p¡dÑ) c§l−aÆl  m-aj O¡−al p§QL£u −i−c b¡−L Hhw hÙ¹¥l ¢ÙÛ¢aÙÛ¡fL 
dË¥hL Hhw a¡fS fËp¡lZ …Z¡ˆ Al£u c§l−aÆl n-aj O¡−al p§QL£u −i−c b¡−Lz Al£u f£sZ Hhw q¨f 
f£sZ (Hoop Stress)-Hl ¢h−rf−L NZe¡ Ll¡ q−u−R Hhw Cq¡ a¡¢mL¡L¡−l Hhw −mM¢Q−œl p¡q¡−kÉ 
−cM¡−e¡ q−u−Rz 

1. Introduction : 

For past some years an intensive attention had been paid to the 

determination of thermal stresses in isotropic cylinders subject to internal 

heat generation due to axisymmetric radiation.  

 Mollah[5] (1989) obtained the thermal stresses in the case of an in-

homogeneous aelotropic cylinder subject to γ -ray heating, where the co-

efficient of thermal expansion, thermal conductivity and the elastic constants 

vary linearly as the radial distance.  

 De and Choudhury [2] (2009) solved the same problem where the 

thermal conductivity of the material varies as linearly of the radial distance, 
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the coefficients of thermal expansion and elastic constants vary as the nth 

power of the redial distance. 

. The aim of this paper is to extend the previous works. In this paper the 

thermal stresses in the case of an in-homogeneous transversely isotropic 

long hollow cylinder is obtained, the outer curved surface of which is 

perfectly insulated and the source of generation of heat being due to γ-ray 

radiation. For the non homogeneity of the material it is assumed that the 

elastic constants and the co-efficient of thermal expansion vary as nth power 

of the radial distance and the thermal conductivity of the material varies as 

mth power of the radial distance.  

Finally the authors have shown numerically and graphically, for the 

material magnesium that the Radial stresses on the inner boundary gradually 

increase for 10=μ  and gradually decrease for 30,20=μ . The hoop stresses 

on the inner boundary gradually increase and reaches to a maximum and 

than gradually decrease as the thickness of the cylinder gradually increases. 

2. Formulation and Solution of the problem, distribution of 

temperature: 

 We use the cylindrical co-ordinates and take the z axis coinciding with 

the axis of the cylinder. Let the temperature be symmetrical about the axis of 

the cylinder and be independent of axial co-ordinate. If H denotes the rate at 

which heat is generated in the vessel, we have the following law vide [1]: 
( ) ( )- - 1i
r aH H e μ=  

where 

iH = heat generation rate on the inside wall of the cylinder, a =inner radius 

and μ = the absorption coefficient for rayγ − energy.  

For the present problem, the temperature T satisfies the conductivity 

equation vide[6]: 
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where K=thermal conductivity of the material. 

For non-homogeneity of the material we assume: 
mrKK 0=                (3) 

where 0K  is a non-zero positive constant. 

Using (2) and (3) we obtain: 

)1(2

2

++ m
dr

Tdr m

dr
dTr m 1− )(

0

ari e
K
H −−= μ         (4) 

 The outer wall being insulated and the inner wall being kept at a 

constant temperature, the boundary conditions are: 

(5)
0

iT T on r a
dTand on r b
dr

= = ⎫
⎪
⎬

= = ⎪⎭

 

The general solution of equation (4) is: 
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where A  and B  are constants. 

Using (5) in (6) we get: 
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3. Stress distribution: 

 We assume that the axial displacement is zero throughout so that 

considering the axially symmetric character of the problem, the non 

vanishing components of stress tensors are , ,rr zzθθσ σ σ  and rzσ . 

 Thus the stress-strain relations for transversely isotopic materials are 

given by vide[7]: 

/ / / /
11 12 13 1
/ / / /
12 11 13 1
/ / / /
13 13 33 2
/
44

(9)
rr rr zz

rr zz

zz rr zz

rz rz

c e c e c e b T

c e c e c e b T

c e c e c e b T

c e

θθ

θθ θθ

θθ

σ

σ

σ

σ

= + + −

= + + −

= + + −

=

where ( )/ / / / / /
1 11 12 1 13 2b c c cα α= − +  and / / / / /

2 13 1 33 22b c cα α= +  and /
ijc  are elastic 

constants and functions of r. T is the temperature at a point ( ), ,r zθ  and /
1α  

and /
2α  are the coefficients of thermal expansion along and perpendicular to 

the z-axis, respectively. 

 Considering the axisymmetric character of the problem, the strain 

components are given by: 

, , ,rr zz rz
u u w u we e e e
r r z z rθθ
∂ ∂ ∂ ∂

= = = = +
∂ ∂ ∂ ∂

 

where  

, 0,r zu u u u wθ= = = . 
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Assuming u  to be dependent on r  alone and w  =0, the above components 

reduce to: 

, , 0, 0 (10)rr zz rz
du ue e e e
dr rθθ= = = =  

For non-homogeneity of the material we assume: 
n

ii
n

ijij rrcc αα == // , , 0≠n           (11) 

where ijc and iα  are non-zero positive constants. 

The relations (9) with (10) and (11) reduce to: 
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where 

1 11 12 1 13 2 2 13 1 33 2( ) 2 (13)b c c c b c cα α α α= + + = +  

The stress equations of equilibrium in absence of the body forces are (vide 

Timoshenko and Goodier [8]): 

⎪
⎪
⎭

⎪⎪
⎬

⎫

=+
∂

∂
+

∂
∂

=
−

+
∂

∂
+

∂
∂

,0

,0

rzr

rzr
rzzzrz

rrrzrr

σσσ

σσσσ θθ

             (14) 

The second equation of (14) automatically holds and the first, by (12) and 

(7) becomes: 
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 The complementary function of the equation (15) is  21
21

ββ rCrC +  
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The general solution of equation (15) is: 

∑
∞

≠
=

+−++++− +++++=

mp
p

mnp
p

n
nm

nmn rBrrErKrKrCrCu
0

11
,

1
2

1
121 )log(21 ββ  (16) 

In equation (16)  1C  and 2C  are constants. 

Thus the stresses as calculated from (12) are: 
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A distribution of normal force according to (17) is required to be applied 

at the ends of the cylinder just to maintain 0w =  throughout. Let us suppose 

axial stress 1zz cσ =  (constant) on the system such that choosing 1c  properly, 

we can make the resultant forces on the ends zero. According to Saint-

Venant’s Principle, such a distribution produces local effect only at the ends. 

 Due to superposition of the uniform axial stress 1, rrc σ  and θθσ will 

be undisturbed in value, while u  is effected. A term 1 13/c c  should be added 

to the expression of u  in (16). The question of displacements being set 

aside, we set the boundary conditions to determine the constants 1C  and 2C  

for our problem. In this case:         
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Substituting the values of 1C  and 2C  we get the stress components as 

followings: 
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4. Particular Cases: 

For m=1, n=1 we get corresponding results of S. A. Mollah [5]. 

For m=1, n=n we get corresponding results of De & Choudhury [2].    

5. Numerical results and discussions: 

We calculate our numerical results for the following range of 

parameters: 3010 ≤≤ μ , 1.5 3.0b< <  and 1a = . 

We consider the material to be made of magnesium, for which the 

elastic constants on the inner boundary 1r a= =  are given by [2]: 
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0.565x10  dyne/cm ,

0.232x10  dyne/cm ,

0.181x10  dyne/cm ,

0.587x10  dyne/cm ,

0.168x10  dyne/cm .
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The coefficients of linear thermal expansion of the said material on the inner 

boundary 1r a= =  are: 

 
6

1
6

2

27.7x10  cms/c,

26.6x10  cms/c.

α

α

−

−

=

=
 

Further we choose arbitrarily: 500 C  and  1i iT H= =  

The Following table shows the variation of Radial stress and Hoop 

stress on the inner wall of the cylinder for m=2, n=2, 10=μ  with variable 

thickness of the cylinder. 
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The Following table shows the variation of Radial stress and Hoop 
stress on the inner wall of the cylinder for m=2, n=2, 20=μ  with variable 
thickness of the cylinder. 
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The following table shows the variation of Radial stress and Hoop 
stress on the inner wall of the cylinder for m=2, n=2, 30=μ  with variable 
thickness of the cylinder.   

 
 

Following graphs show the variation of radial stress ( rrσ ) on the inner 
wall of the cylinder with variable thickness of the cylinder. 

 
Fig1. 
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Fig1: Variation of the radial stress on the inner wall of the cylinder with the 

variable thickness of the cylinder when 10=μ , m=2, n=2.  

 

 
 

Fig2. 
 

Fig2: Variation of the radial stress on the inner wall of the cylinder 
with the variable thickness of the cylinder when 20=μ , m=2, n=2. 
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Fig3. 

 
Fig3: Variation of the radial stress on the inner wall of the cylinder with the 

variable thickness of the cylinder when 30=μ , m=2, n=2.  

Following graphs show the variation of Hoop stress on the inner 

wall of the cylinder with variable thickness of the cylinder. 

 

 
Fig4. 

 Fig4: Variation of the Hoop stress on the inner wall of the cylinder with the 
variable thickness of the cylinder when 10=μ , m=2, n=2.     
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Fig5. 

 
Fig5: Variation of the Hoop stress on the inner wall of the cylinder with the 

variable thickness of the cylinder when 20=μ , m=2, n=2. 

 
Fig6. 

 
Fig6: Variation of the Hoop stress on the inner wall of the cylinder with the 

variable thickness of the cylinder when 30=μ , m=2, n=2. 

5. Conclusion:  
In case of figure 1, for 10=μ , the radial stress gradually increases with 

increasing thickness of the cylinder and in figure 2 and 3, for 30,20=μ  the 

radial stress gradually decreases with increasing thickness .Here one thing 
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we notice that for all values of μ  the hoop stress initially increases and 

reaches to a maximum value and after some time it gradually decreases with 

increasing thickness. In figure 4, 5 and 6 for 10=μ , 20 and 30 respectively, 

we see that the hoop stress gradually increases and reaches to a maximum 

value and after some time it gradually decreases with increasing thickness.                           

 
 
 

References: 
 
1) Bagchi, M. C., ‘Thermal Stresses in long Hollow Aelotropic Cylinder 

Subject to  γ  Ray Heating’, Journal of  Science and Engineering 

Research, Res., vol.5, No. 9, pp. 171-178, 1965. 

2) De, A., Choudhury, M., ‘Thermal Stresses in a Long In-homogeneous 

Transversely Isotropic Elastic Annular Subject to γ  Ray Heating’. 

Bulletin of Calcutta Mathematical Society, vol., No. 2, pp. 101, 2009. 

3) Hearman, R. F. S., An introduction to applied anisotropic elasticity, 

1961. 

4) Martin, W. T., Reissner, E., Elementary differential equation, 1958. 

5) Mollah, S. H., ‘Thermal Stresses in a Long In-homogeneous Aelotropic 

Cylinder Subjected to γ  Ray Heating’, Mechanika Teoretyczna 

Estosowana, vol. 4, pp. 27, 1989. 

6) Nowinski, J., ‘Thermoelastic Problem for an Isotropic Sphere with 

Temperature Dependent Properties1’, ZAMP, vol. X, pp. 565, 1959. 

7) Sharma, B., Jour. App. Mech., vol. 23, no. 4, 1956. 

8) Timoshenko, S. and Goodier, J. N., Theory of elasticity, second edition, 

1966. 

 


