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Abstract:

The object of this paper is to study the thermal stresses in a long in-homogeneous
aelotropic cylinder with the variable thermal conductivity of the material varies as m"
power of the radial distance, the elastic constants and the coefficients of thermal
expansion of the material vary as n™ power of the redial distance.
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1. Introduction :

For past some years an intensive attention had been paid to the
determination of thermal stresses in isotropic cylinders subject to internal
heat generation due to axisymmetric radiation.

Mollah[5] (1989) obtained the thermal stresses in the case of an in-
homogeneous aelotropic cylinder subject to y-ray heating, where the co-
efficient of thermal expansion, thermal conductivity and the elastic constants
vary linearly as the radial distance.

De and Choudhury [2] (2009) solved the same problem where the

thermal conductivity of the material varies as linearly of the radial distance,
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the coefficients of thermal expansion and elastic constants vary as the n™
power of the redial distance.

The aim of this paper is to extend the previous works. In this paper the
thermal stresses in the case of an in-homogeneous transversely isotropic
long hollow cylinder is obtained, the outer curved surface of which is
perfectly insulated and the source of generation of heat being due to y-ray
radiation. For the non homogeneity of the material it is assumed that the
elastic constants and the co-efficient of thermal expansion vary as n" power
of the radial distance and the thermal conductivity of the material varies as
m™ power of the radial distance.

Finally the authors have shown numerically and graphically, for the
material magnesium that the Radial stresses on the inner boundary gradually

increase for ¢ =10 and gradually decrease for z =20,30. The hoop stresses

on the inner boundary gradually increase and reaches to a maximum and

than gradually decrease as the thickness of the cylinder gradually increases.

2. Formulation and Solution of the problem, distribution of
temperature:

We use the cylindrical co-ordinates and take the z axis coinciding with
the axis of the cylinder. Let the temperature be symmetrical about the axis of
the cylinder and be independent of axial co-ordinate. If H denotes the rate at
which heat is generated in the vessel, we have the following law vide [1]:

H=He*!"™® (1)
where

H,= heat generation rate on the inside wall of the cylinder, a=inner radius
and u =the absorption coefficient for y —ray energy.

For the present problem, the temperature T satisfies the conductivity

equation vide[6]:
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K[dzT 1 de dK dT

I T, e'ﬂ(r'a) 2
dr2+rdr +drdr H ()

where K=thermal conductivity of the material.
For non-homogeneity of the material we assume:
K =K,r" 3)
where K, is a non-zero positive constant.
Using (2) and (3) we obtain:

2
ndT +(Mm+1)r™! I _Hi s 4)

.
dr’ dar K,

The outer wall being insulated and the inner wall being kept at a

constant temperature, the boundary conditions are:

T=T, on r=a
5
and d—Tzo on r=>b ©
dr

The general solution of equation (4) is:

el o NP ,PA_T\rPm N\, M
Topy AL HE SO (ol | (D" (- Dlogt) ©)
rm wK o pl(p—m) ml

p=m

where A and B are constants.
Using (5) in (6) we get:
T:B+Am+ZLprp‘m+Kmlog(r) (7)
r -
p=m

where

H.e ™ (bu+1)
mK,u*

A=-—
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H,e ™ (bu+1
L (bu+1)

B=T, ;
mK, " a"
Hie | (D P (p-DaP™ (<D™ u"(m-1)log(a)
; , + , (8)
H Ko p=0 p(p_m) m:

p=m

L _ (_1)p Hieluaﬂp_z
" pl(p-mK,

_ (D "He u"(m-1)
m'K,

and K

m

3. Stress distribution:
We assume that the axial displacement is zero throughout so that
considering the axially symmetric character of the problem, the non

vanishing components of stress tensors are o,,, o,, o, and o,,.

o
Thus the stress-strain relations for transversely isotopic materials are

given by vide[7]:

O, =C\8, +C,8, +Ce, —bT

Cpp =ClaByy +Cl8y +Cle, —b/T

0, =Cl.&, +C&, +Che, —bT

o, =C,e,
where b/ = (C{ | —C{z)al/ +c;3a, and by =2¢};a; + ¢, and ¢ are elastic

constants and functions of r. T is the temperature at a point (r,6,z) and o,

and «a, are the coefficients of thermal expansion along and perpendicular to

the z-axis, respectively.
Considering the axisymmetric character of the problem, the strain
components are given by:

ou u ow ou ow
= A erz =+
oz or

where

u =u, u,=0, u,=w.
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Assuming u to be dependent on r alone and w =0, the above components

reduce to:

e,r:(;l:, e%:%, e,=0,¢e,=0 (10)
For non-homogeneity of the material we assume:
cp =¢;r",al =a;r", n=0 (11)
where ¢; and ¢; are non-zero positive constants.

The relations (9) with (10) and (11) reduce to:

du _
o, =C,I"—+c,r"'u—br>T
dr

du _

Gy =Cpol"—+C,r"'u—br’T (12)
dr
du _

0, =Cul"—+Cr"'u—b,r’'T
dr

O-rz = O
where
b =(c, +¢y)e +Ce, b, =2¢,; +Cy, (13)

The stress equations of equilibrium in absence of the body forces are (vide

Timoshenko and Goodier [8]):

8Grr + ao-rz + O — Oy =0,

or 0z r (14)
aarz aazz O-rZ
—r 4+ —2 4+ =0,

or 0z r
The second equation of (14) automatically holds and the first, by (12) and

(7) becomes:

d’u du ¢
r’—+n+hr—+M-2-u=
dr? ( )dr (c“ )
(15)
b 2n—m)Ar"™ +@2nB+ K )r™! +2nK r™ log(r)+ > (2n+ p—m)L,r*"

11 p=0
p#m

The complementary function of the equation (15)is C,r” +C,r”:
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where
2 Cll 2 11
-n+ [4+n? —4n-1L -n- _[4+n?—4nt
ﬁ — CIZ ,ﬂ _ C12
! 2 : 2
and g, + B, =-n.

The particular integral of equation (15) is

n-m+1 n+1 n+l1 p+n-m+l1
K,r +K,r™ +E, r™ log(r) + > B, r

p=0
p=m
where
K = (2n—m)b, A
1_Cll(n_m+1_ﬂ1)(n_m+l_ﬂ2)
2nK 2nK
K, = b, 2nB+ K, + Mo M }
c,(n+1=4)(n+1-4,) p—-n-1 p,-n-1

E - 2nb, K.,
e, (n+1-8)(n+1-2,)
B 2n+p-m)b,L,
- c(p+n—m+1-8)p+n—-m+1-24,)

BP

The general solution of equation (15) is:

U=Cr/ +Cor” + Kir"™™ + Kr™ +E,  r™ log(r)+ D B r*"™  (16)

p=0
p=m

In equation (16) C, and C, are constants.

Thus the stresses as calculated from (12) are:

G =3+ )G 4+ B8, +6,)C T e K (n—mD)+0 K B A" +
(O+1¢, K, +6, Ey, 6K, - B +(0+1¢, E,y, +¢,E,, —b K log) + (17a)

i[Bp(|o+n—m+1)c1 6B, —blelrW‘”“
p=0

p=m
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o= +C DG+ +6 )™ +C K (M) +6 K -B AT +
(O+De K, +¢,E, +6 K, -b B)rzn +((0+De,Ey, +6 By - Km)rzn logf)+ (17b)
(@+n-m+1c, + )8, b Jr*
p=0

p#m

T =€ +CICT™ +(C8, +C )™ +(C K (N—m+2)—b, Ar™™ +

((n +2’)C|3K2 +C13Em,n _sz)rzn +((n+2)C13Em,n _bZKm)r2n log(‘) + (170)

Z[Bp(p+n—m+2)c13 —blelrp””‘m

p=0

p=m

A distribution of normal force according to (17) is required to be applied
at the ends of the cylinder just to maintain w=0 throughout. Let us suppose

axial stress o,, =, (constant) on the system such that choosing c, properly,

we can make the resultant forces on the ends zero. According to Saint-

Venant’s Principle, such a distribution produces local effect only at the ends.

Due to superposition of the uniform axial stress ¢,, o, and o,, will
be undisturbed in value, while u is effected. A term c, /c,, should be added
to the expression of u in (16). The question of displacements being set
aside, we set the boundary conditions to determine the constants C, and C,
for our problem. In this case:

o,=0 on r=a and r=»b (18)
Using the boundary conditions (18) we get:

C = Fz (a)F3 (b)_ Fz (b)F3 (a) nd C. = F1 (b)Fs (a)_ I:1 (a)F3 (b)

1= and C, = (19)
Fl (a) Fz (b) - F] (b) Fz (a) F] (a) Fz (b) - I:1 (b) Fz (a)

where,
Fl(r) = (Cllﬂl + Clz)rnJrﬂ]*l , Fz(l’) — (CH,BZ + Clz)rn+ﬂ271
F3 (= (CllKl(n_m+1)+C12K1 _blA)an—m "’((n"’l)CnKz +CllEm,n +CIZK2 _bl B)rzn +

((1+1)¢, Epy +CoEnny 5K log) + Y [B, (p+n—m+1)c,, +,B, b L, Jre>™
p=0

p#m
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Substituting the values of C, and C, we get the stress components as
followings:
— Fz (a)Fs (b) — Fz (b)Fs (a)

F.(b)F,(a) - F, (a)F, (b) (20)

Fi(r)+

F,(r)+ F;(r)

T F(a)F,(b) - F(b)F,(a) F,(a)F,(b) - F,(b)F,(a)
— Fz(a)F3(b)_ Fz(b)Fs(a) E (l’)+ F] (b)F3(a)_ Fl(a)Fz(b) = (r)+ E (r) (21)
Y F(a)F,(b)-F(0F,(a) " F(a)F,(b)-FbF () ° °
_R@FEO-FOF@ . FOFR@-F@F®) - o (22)
* F(a)F,(b)-F (b)F,(a) ’ F.(a)F,(b) - F,(b)F,(a) ° ’

where,
F4(r) = (CIZIBI + Cll )rn+ﬁ'1’1 > FS (r) = (CIZﬁZ + Cll )rn+ﬁ'2’l
(N =K (-m+D+¢ K —bAr" +((+1)c, K, +¢,E,, +6,K, b Br’" +
(O+Dc By +6, B —B KI" log()+il((p+n—m+1)c12Jr(:“)Bp —blelr"*”'n
p=0

p=m

F7(r) = (Cl3ﬂ1 + CIS)rmﬂl_l , FS(I‘) — (Cl3ﬂ2 + Clg)rn+ﬂ2_1

F, = (CsK,(Nn—=m+2)—b, A)yr* ™ +((n+2)c,,K, +C,E,, —b,B)r*" +

13Emn
(N +2)0,E,r, —byK,)F log(r) + S [B, (p+n—m+2)c,, b, L, e
p=0
pem
4. Particular Cases:
For m=1, n=1 we get corresponding results of S. A. Mollah [5].
For m=1, n=n we get corresponding results of De & Choudhury [2].
5. Numerical results and discussions:
We calculate our numerical results for the following range of

parameters: 10< £ <30, 1.5<b<3.0 and a=1.

We consider the material to be made of magnesium, for which the

elastic constants on the inner boundary r =a =1 are given by [2]:
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¢, =0.565x10" dyne/cm?,
¢, =0.232x10" dyne/cm?,
¢, =0.181x10" dyne/cm?,
C,; = 0.587x10" dyne/cm”,
c,, =0.168x10" dyne/cm”’.

The coefficients of linear thermal expansion of the said material on the inner
boundary r =a=1 are:

o, =27.7x10° cms/c,
a, =26.6x10° cms/c.

Further we choose arbitrarily: T, =500"C and H, =1

The Following table shows the variation of Radial stress and Hoop

stress on the inner wall of the cylinder for m=2, n=2, 4 =10 with variable

thickness of the cylinder.

L T o e
1.00 0.066637 10" 19677 «10"
1.05 0.156399x10° 2.0317 =105
1.10 0.2456140x10" 2.0955x10"
1.15 0.326000:x10" 2.1461x10"
1.20 0.404070:x10" 21967 =10%
1.25 0.477120x10% 2.23095x10%
1.30 0.348370x10" 22635210
1.35 0.611740x=10% 2.2797 x10"

0 1.40 u_ﬁﬁguuuxw’f z_zguxml-j
1.45 0.730920:x10" 2.2853x10"
1.50 0.786730x10" 2276810
1.55 0.8335060x10" 224105105
1.60 0.868870:x10" 2.2053=10"
1.65 0.924070:x10" 2.1385x10%
1.70 0.964760x10" 2.0717 =10"
1.75 0.007530:x10" 1.96045:210"
1.80 1.001200:<10" 1.8672x10F
1.85 1.054700:x10" 1.725%10%
1.90 1.072100:x10" 1.5828=10"
1.95 1.094600:x10" 1.39358x10"
2.00 1.057900:x10" 1208810
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The Following table shows the variation of Radial stress and Hoop
stress on the inner wall of the cylinder for m=2, n=2, x4 =20 with variable

thickness of the cylinder.

L r g, O
1.00 ' —-01.0029x10" | 3.6968x10%
1.05 -233460x10% | 3.81815x10"
1.10 -036663x10% | 3.9305x10%
1.15 ~484865%10% | 4.03695x10%
1.20 —06.0313x10" | 4.1344x10%
1.25 -7.08285x10™ | 4.2025x10%
1.30 _08.1347x10% | 4.2706x10%
1.35 -006535x10% | 4.30345x10"
20 1.40 09996010 | 43363x10%
1.45 -10.8095x10" | 4.3276x10%
1.30 -11.6230x10% | 43189 x10"
1.33 -12.3200x10% | 4.26215x10%
1.60 —13.0170x10% | 42054 x10%
1.65 -13.5935x10" | 4.0934x10%
1.70 -14.1700x10" | 3.9814x10®
1.75 -14.6205x10" | 3.8068x10"
1.80 ~15.0710x10% | 3.6322x10%
1.85 15.3885x10% | 3.38705x10%
1.90 -15.7060x10" | 3.1419x10®
1.95 -15.8805%10% | 2.8170%10®
2.00 ~16.0350x10% | 2.4939x10"
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The following table shows the variation of Radial stress and Hoop
stress on the inner wall of the cylinder for m=2, n=2, x =30 with variable

thickness of the cylinder.

u r o, O as
1.00 -0.50916=10% 2.98265 =10%
1.05 ~1.18483:10% 3.022635 105
1.10 -1.86070=10% 3.1188=10%
1.15 24607510 319615 =105
1.20 -3 06080107 327335 =107
1.25 3504410 3.3277 =10%
1.30 4 12800107 33819107

30 1.35 —4.60025 =107 3.4083 =107
1.40 507250107 34347 =107
1.45 54854107 3.42845 =107
1.50 ~5.89830x10% 3.4222x10%
1.55 _6.2518=10% 3.378x107%
1.60 _6.60530=10% 33338105
1.65 -6.8978:x107 3.24615 2107
1.70 - 712030107 3.1586x10%
1.75 74189107 30217 107
1.80 T 64750107 2.8848 =107
1.85 _7 B0835x10% 26924 107
1.20 _T 96920107 2.5000 =107
1.95 _8.05735x107 1.84936 =107
2.00 -8.14590%107 199125107

Following graphs show the variation of radial stress (o, ) on the inner
wall of the cylinder with variable thickness of the cylinder.

12

0.8

06
a,, x10™

04 4

D T T T T
u] 0.5 1 15 2 25

- Thickness of the Cylinder
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Figl: Variation of the radial stress on the inner wall of the cylinder with the

variable thickness of the cylinder when 2 =10, m=2, n=2.

Ty x 10718

e Thickness of the Cylinder

Fig2.

Fig2: Variation of the radial stress on the inner wall of the cylinder
with the variable thickness of the cylinder when x = 20, m=2, n=2.
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a, %1072

B — Thickness of the Cylinder

o, x107%

oo
S O < T S~ T R

! '
[{n] o

Fig3.

Fig3: Variation of the radial stress on the inner wall of the cylinder with the
variable thickness of the cylinder when x =30, m=2, n=2.

Following graphs show the variation of Hoop stress on the inner
wall of the cylinder with variable thickness of the cylinder.

a,, x 107

a 04

1 15 2 25
#»  Thickness of the Cylinder

Fig4.
Fig4: Variation of the Hoop stress on the inner wall of the cylinder with the
variable thickness of the cylinder when =10, m=2, n=2.
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-1z
Tge %10

1] 05 1 15 2 25

#  Thickness of the Cylinder

Fig5.

Fig5: Variation of the Hoop stress on the inner wall of the cylinder with the
variable thickness of the cylinder when x = 20, m=2, n=2.

4

35
3
25
0, %107 2
15
1
05
0
0 0.8 1 15 2 25
*  Thickness of the Cylinder
Fig6.

Fig6: Variation of the Hoop stress on the inner wall of the cylinder with the

variable thickness of the cylinder when xz =30, m=2, n=2.

5. Conclusion:

In case of figure 1, for £ =10, the radial stress gradually increases with
increasing thickness of the cylinder and in figure 2 and 3, for x =20,30 the

radial stress gradually decreases with increasing thickness .Here one thing
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we notice that for all values of ux the hoop stress initially increases and
reaches to a maximum value and after some time it gradually decreases with
increasing thickness. In figure 4, 5 and 6 for # =10, 20 and 30 respectively,
we see that the hoop stress gradually increases and reaches to a maximum

value and after some time it gradually decreases with increasing thickness.
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