THERMAL STRESSES IN A LONG IN-HOMOGENEOUS CYLINDER WITH VARIABLE ELASTIC CONSTANTS, THERMAL CONDUCTIVITY AND THERMAL CO-EFFICIENT #### $\mathbf{R}\mathbf{Y}$ # Anukul De and Ajoy Kanti Das Tripura University, Suryamaninagar-799130, Tripura, India. ### Abstract: The object of this paper is to study the thermal stresses in a long in-homogeneous aelotropic cylinder with the variable thermal conductivity of the material varies as m^{th} power of the radial distance, the elastic constants and the coefficients of thermal expansion of the material vary as n^{th} power of the redial distance. **Keywords and phrases**: the thermal stress, aelotropic cylinder, thermal expansion, redial distance. # বিমূর্ত সার (Bengali version of the Abstract) এই পত্রে দীর্ঘ অসমদৈশিক বেলন (Cylinder)-এ তাপজ পীড়ণকে অনুসন্ধান করা হয়েছে যখন ইহা বস্তুর তাপ পরিবাহিতা অরীয় (ব্যাসার্ধ) দূরত্বের m-তম ঘাতের সূচকীয় ভেদে থাকে এবং বস্তুর স্থিতিস্থাপক ধ্বুবক এবং তাপজ প্রসারণ গুণাঙ্ক অরীয় দূরত্বের n-তম ঘাতের সূচকীয় ভেদে থাকে। অরীয় পীড়ণ এবং হূপ পীড়ণ (Hoop Stress)-এর বিক্ষেপকে গণনা করা হয়েছে এবং ইহা তালিকাকারে এবং লেখচিত্রের সাহায়্যে দেখানো হয়েছে। ### 1. Introduction: For past some years an intensive attention had been paid to the determination of thermal stresses in isotropic cylinders subject to internal heat generation due to axisymmetric radiation. Mollah[5] (1989) obtained the thermal stresses in the case of an inhomogeneous aelotropic cylinder subject to γ -ray heating, where the coefficient of thermal expansion, thermal conductivity and the elastic constants vary linearly as the radial distance. De and Choudhury [2] (2009) solved the same problem where the thermal conductivity of the material varies as linearly of the radial distance, the coefficients of thermal expansion and elastic constants vary as the nth power of the redial distance. The aim of this paper is to extend the previous works. In this paper the thermal stresses in the case of an in-homogeneous transversely isotropic long hollow cylinder is obtained, the outer curved surface of which is perfectly insulated and the source of generation of heat being due to γ -ray radiation. For the non homogeneity of the material it is assumed that the elastic constants and the co-efficient of thermal expansion vary as n^{th} power of the radial distance and the thermal conductivity of the material varies as m^{th} power of the radial distance. Finally the authors have shown numerically and graphically, for the material magnesium that the Radial stresses on the inner boundary gradually increase for $\mu = 10$ and gradually decrease for $\mu = 20,30$. The hoop stresses on the inner boundary gradually increase and reaches to a maximum and than gradually decrease as the thickness of the cylinder gradually increases. # 2. Formulation and Solution of the problem, distribution of temperature: We use the cylindrical co-ordinates and take the z axis coinciding with the axis of the cylinder. Let the temperature be symmetrical about the axis of the cylinder and be independent of axial co-ordinate. If H denotes the rate at which heat is generated in the vessel, we have the following law vide [1]: $$H = H_i e^{-\mu(r-a)} \tag{1}$$ where H_i = heat generation rate on the inside wall of the cylinder, a =inner radius and μ = the absorption coefficient for γ - ray energy. For the present problem, the temperature T satisfies the conductivity equation vide[6]: $$K\left(\frac{d^2T}{dr^2} + \frac{1}{r}\frac{dT}{dr}\right) + \frac{dK}{dr}\frac{dT}{dr} = H_i e^{-\mu(r-a)}$$ (2) where *K*=thermal conductivity of the material. For non-homogeneity of the material we assume: $$K = K_0 r^m \tag{3}$$ where K_0 is a non-zero positive constant. Using (2) and (3) we obtain: $$r^{m} \frac{d^{2}T}{dr^{2}} + (m+1) r^{m-1} \frac{dT}{dr} = \frac{H_{i}}{K_{0}} e^{-\mu(r-a)}$$ (4) The outer wall being insulated and the inner wall being kept at a constant temperature, the boundary conditions are: The general solution of equation (4) is: $$T = B + \frac{A}{r^{m}} + \frac{H_{i}e^{\mu l}}{\mu^{2}K_{0}} \left[\sum_{\substack{p=0\\p\neq m}}^{\infty} \frac{(-1)^{p} \mu^{p} (p-1)r^{p-m}}{p!(p-m)} + \frac{(-1)^{m} \mu^{m} (m-1)\log(r)}{m!} \right]$$ (6) where A and B are constants. Using (5) in (6) we get: $$T = B + \frac{A}{r^{m}} + \sum_{\substack{p=0\\p \neq m}}^{\infty} L_{p} r^{p-m} + K_{m} \log(r)$$ (7) where $$A = -\frac{H_i e^{-\mu(b-a)} (b\mu + 1)}{mK_0 \mu^2}$$ $$B = T_i + \frac{H_i e^{-\mu(b-a)} (b\mu + 1)}{m K_0 \mu^2 a^m} +$$ $$\frac{H_{i}e^{\mu a}}{\mu^{2}K_{0}}\left[\sum_{\substack{p=0\\p\neq m}}^{\infty}\frac{(-1)^{p-1}\mu^{p}(p-1)a^{p-m}}{p!(p-m)}+\frac{(-1)^{m-1}\mu^{m}(m-1)\log(a)}{m!}\right]$$ (8) $$L_p = \frac{(-1)^p H_i e^{\mu a} \mu^{p-2}}{p! (p-m) K_0} \text{ and } K_m = \frac{(-1)^m H_i e^{\mu a} \mu^{m-2} (m-1)}{m! K_0}$$ ### 3. Stress distribution: We assume that the axial displacement is zero throughout so that considering the axially symmetric character of the problem, the non vanishing components of stress tensors are σ_{rr} , $\sigma_{\theta\theta}$, σ_{zz} and σ_{rz} . Thus the stress-strain relations for transversely isotopic materials are given by vide[7]: $$\sigma_{rr} = c_{11}' e_{rr} + c_{12}' e_{\theta\theta} + c_{13}' e_{zz} - b_1' T$$ $$\sigma_{\theta\theta} = c_{12}' e_{rr} + c_{11}' e_{\theta\theta} + c_{13}' e_{zz} - b_1' T$$ $$\sigma_{zz} = c_{13}' e_{rr} + c_{13}' e_{\theta\theta} + c_{33}' e_{zz} - b_2' T$$ $$\sigma_{rz} = c_{44}' e_{rz}$$ $$(9)$$ where $b_1' = (c_{11}' - c_{12}')\alpha_1' + c_{13}'\alpha_2'$ and $b_2' = 2c_{13}'\alpha_1' + c_{33}'\alpha_2'$ and c_{ij}' are elastic constants and functions of r. T is the temperature at a point (r, θ, z) and α_1' and α_2' are the coefficients of thermal expansion along and perpendicular to the z-axis, respectively. Considering the axisymmetric character of the problem, the strain components are given by: $$e_{rr} = \frac{\partial u}{\partial r}, \quad e_{\theta\theta} = \frac{u}{r}, \quad e_{zz} = \frac{\partial w}{\partial z}, \quad e_{rz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial r}$$ where $$u_r = u$$, $u_\theta = 0$, $u_z = w$. Assuming u to be dependent on r alone and w = 0, the above components reduce to: $$e_{rr} = \frac{du}{dr}, \quad e_{\theta\theta} = \frac{u}{r}, \quad e_{zz} = 0, \quad e_{rz} = 0$$ (10) For non-homogeneity of the material we assume: $$c'_{ii} = c_{ii}r^{n}, \alpha'_{i} = \alpha_{i}r^{n}, n \neq 0$$ (11) where c_{ij} and α_i are non-zero positive constants. The relations (9) with (10) and (11) reduce to: $$\sigma_{rr} = c_{11}r^{n} \frac{du}{dr} + c_{12}r^{n-1}u - b_{1}r^{2n}T$$ $$\sigma_{\theta\theta} = c_{12}r^{n} \frac{du}{dr} + c_{11}r^{n-1}u - b_{1}r^{2n}T$$ $$\sigma_{zz} = c_{13}r^{n} \frac{du}{dr} + c_{13}r^{n-1}u - b_{2}r^{2n}T$$ $$\sigma_{rz} = 0$$ (12) where $$b_1 = (c_{11} + c_{12})\alpha_1 + c_{13}\alpha_2 \qquad b_2 = 2c_{13}\alpha_1 + c_{33}\alpha_2$$ (13) The stress equations of equilibrium in absence of the body forces are (vide Timoshenko and Goodier [8]): $$\frac{\partial \sigma_{rr}}{\partial r} + \frac{\partial \sigma_{rz}}{\partial z} + \frac{\sigma_{rr} - \sigma_{\theta\theta}}{r} = 0, \frac{\partial \sigma_{rz}}{\partial r} + \frac{\partial \sigma_{zz}}{\partial z} + \frac{\sigma_{rz}}{r} = 0,$$ (14) The second equation of (14) automatically holds and the first, by (12) and (7) becomes: $$r^{2} \frac{d^{2}u}{dr^{2}} + (n+1)r \frac{du}{dr} + (n\frac{c_{12}}{c_{11}} - 1)u =$$ $$\frac{b_{1}}{c_{11}} \left[(2n-m)Ar^{n-m+1} + (2nB + K_{m})r^{n+1} + 2nK_{m}r^{n+1}\log(r) + \sum_{\substack{p=0\\p \neq m}}^{\infty} (2n+p-m)L_{p}r^{p+n-m+1} \right]$$ (15) The complementary function of the equation (15) is $C_1 r^{\beta_1} + C_2 r^{\beta_2}$ where $$\beta_1 = \frac{-n + \sqrt{4 + n^2 - 4n\frac{c_{11}}{c_{12}}}}{2}, \beta_2 = \frac{-n - \sqrt{4 + n^2 - 4n\frac{c_{11}}{c_{12}}}}{2}$$ and $\beta_1 + \beta_2 = -n$. The particular integral of equation (15) is $$K_1 r^{n-m+1} + K_2 r^{n+1} + E_{m,n} r^{n+1} \log(r) + \sum_{\substack{p=0 \ p \neq m}}^{\infty} B_p r^{p+n-m+1}$$ where $$K_{1} = \frac{(2n-m)b_{1}A}{c_{11}(n-m+1-\beta_{1})(n-m+1-\beta_{2})}$$ $$K_{2} = \frac{b_{1}}{c_{11}(n+1-\beta_{1})(n+1-\beta_{2})} \left[2nB + K_{m} + \frac{2nK_{m}}{\beta_{1}-n-1} + \frac{2nK_{m}}{\beta_{2}-n-1} \right]$$ $$E_{m,n} = \frac{2nb_{1}K_{m}}{c_{11}(n+1-\beta_{1})(n+1-\beta_{2})}$$ $$B_{p} = \frac{(2n+p-m)b_{1}L_{p}}{c_{11}(p+n-m+1-\beta_{1})(p+n-m+1-\beta_{2})}$$ The general solution of equation (15) is: $$u = C_1 r^{\beta_1} + C_2 r^{\beta_2} + K_1 r^{n-m+1} + K_2 r^{n+1} + E_{m,n} r^{n+1} \log(r) + \sum_{\substack{p=0\\ p \neq m}}^{\infty} B_p r^{p+n-m+1}$$ (16) In equation (16) C_1 and C_2 are constants. Thus the stresses as calculated from (12) are: $$\sigma_{rr} = (c_{1}\beta_{1} + c_{12})C_{1}r^{n+\beta_{1}-1} + (c_{1}\beta_{2} + c_{12})C_{2}r^{n+\beta_{2}-1} + (c_{1}K_{1}(n-m+1) + c_{12}K_{1} - b_{1}A)r^{2n-m} + ((n+1)c_{11}K_{2} + c_{11}E_{mn} + c_{12}K_{2} - b_{1}B)r^{2n} + ((n+1)c_{11}E_{mn} + c_{12}E_{mn} - b_{1}K_{m})r^{2n}\log(c) + \sum_{p=0}^{\infty} [B_{p}(p+n-m+1)c_{11} + c_{12}B_{p} - b_{1}L_{p}]r^{p+2n-m}$$ $$(17a)$$ $$\sigma_{\theta\theta} = (c_{12}\beta_{1} + c_{11})C_{1}r^{n+\beta_{1}-1} + (c_{12}\beta_{2} + c_{11})C_{2}r^{n+\beta_{2}-1} + (c_{12}K_{1}(n-m+1) + c_{11}K_{1} - b_{1}A)r^{2n-m} + ((n+1)c_{12}K_{2} + c_{12}E_{m,n} + c_{11}K_{2} - b_{1}B)r^{2n} + ((n+1)c_{12}E_{m,n} + c_{11}E_{m,n} - b_{1}K_{m})r^{2n}\log(t) + \sum_{\substack{p=0\\p\neq m}}^{\infty} ((p+n-m+1)c_{12} + c_{11})B_{p} - b_{1}L_{p} r^{p+2n-m}$$ (17b) $$\sigma_{zz} = (c_{13}\beta_1 + c_{13})C_1r^{n+\beta_1-1} + (c_{13}\beta_2 + c_{13})C_2r^{n+\beta_2-1} + (c_{13}K_1(n-m+2) - b_2A)r^{2n-m} + ((n+2)c_{13}K_2 + c_{13}E_{m,n} - b_2B)r^{2n} + ((n+2)c_{13}E_{m,n} - b_2K_m)r^{2n}\log(r) + \sum_{\substack{p=0\\p\neq m\\p\neq m}} \left[B_p(p+n-m+2)c_{13} - b_1L_p\right]r^{p+2n-m}$$ $$(17c)$$ A distribution of normal force according to (17) is required to be applied at the ends of the cylinder just to maintain w = 0 throughout. Let us suppose axial stress $\sigma_{zz} = c_1$ (constant) on the system such that choosing c_1 properly, we can make the resultant forces on the ends zero. According to Saint-Venant's Principle, such a distribution produces local effect only at the ends. Due to superposition of the uniform axial stress c_1 , σ_{rr} and $\sigma_{\theta\theta}$ will be undisturbed in value, while u is effected. A term c_1/c_{13} should be added to the expression of u in (16). The question of displacements being set aside, we set the boundary conditions to determine the constants C_1 and C_2 for our problem. In this case: $$\sigma_{rr} = 0$$ on $r = a$ and $r = b$ (18) Using the boundary conditions (18) we get: $$C_1 = \frac{F_2(a)F_3(b) - F_2(b)F_3(a)}{F_1(a)F_2(b) - F_1(b)F_2(a)} \quad \text{and } C_2 = \frac{F_1(b)F_3(a) - F_1(a)F_3(b)}{F_1(a)F_2(b) - F_1(b)F_2(a)}$$ (19) where, $$\begin{split} F_1(r) &= (c_{11}\beta_1 + c_{12})r^{n+\beta_1-1} \quad , \quad F_2(r) = (c_{11}\beta_2 + c_{12})r^{n+\beta_2-1} \\ F_3(r) &= (c_{11}K_1(n-m+1) + c_{12}K_1 - b_1A)r^{2n-m} + ((n+1)c_{11}K_2 + c_{11}E_{m,n} + c_{12}K_2 - b_1B)r^{2n} + \\ & ((n+1)c_{11}E_{m,n} + c_{12}E_{m,n} - b_1K_m)r^{2n}\log(r) + \sum_{\substack{p=0\\p\neq m}}^{\infty} \left[B_p(p+n-m+1)c_{11} + c_{12}B_p - b_1L_p\right]r^{p+2n-m} \end{split}$$ Substituting the values of C_1 and C_2 we get the stress components as followings: $$\sigma_{rr} = \frac{F_2(a)F_3(b) - F_2(b)F_3(a)}{F_1(a)F_2(b) - F_1(b)F_2(a)} F_1(r) + \frac{F_1(b)F_3(a) - F_1(a)F_3(b)}{F_1(a)F_2(b) - F_1(b)F_2(a)} F_2(r) + F_3(r) \tag{20}$$ $$\sigma_{\theta\theta} = \frac{F_2(a)F_3(b) - F_2(b)F_3(a)}{F_1(a)F_2(b) - F_1(b)F_2(a)} F_4(r) + \frac{F_1(b)F_3(a) - F_1(a)F_3(b)}{F_1(a)F_2(b) - F_1(b)F_2(a)} F_5(r) + F_6(r)$$ (21) $$\sigma_{z} = \frac{F_{2}(a)F_{3}(b) - F_{2}(b)F_{3}(a)}{F_{1}(a)F_{2}(b) - F_{1}(b)F_{2}(a)}F_{7}(r) + \frac{F_{1}(b)F_{3}(a) - F_{1}(a)F_{3}(b)}{F_{1}(a)F_{2}(b) - F_{1}(b)F_{2}(a)}F_{8}(r) + F_{9}(r)$$ (22) where, $$\begin{split} F_4(r) &= (c_{12}\beta_1 + c_{11})r^{n+\beta_1-1} \ , \ F_5(r) = (c_{12}\beta_2 + c_{11})r^{n+\beta_2-1} \\ F_6(r) &= (c_{12}K_1(n-m+1) + c_{11}K_1 - b_1A)r^{2n-m} + ((n+1)c_{12}K_2 + c_{12}E_{m,n} + c_{11}K_2 - b_1B)r^{2n} + \\ &((n+1)c_{12}E_{m,n} + c_{11}E_{m,n} - b_1K_m)r^{2n}\log(r) + \sum_{\substack{p=0\\p\neq m}}^{\infty} [(p+n-m+1)c_{12} + c_{11})B_p - b_1L_p]r^{p+2n-m} \\ F_7(r) &= (c_{13}\beta_1 + c_{13})r^{n+\beta_1-1} \ , F_8(r) = (c_{13}\beta_2 + c_{13})r^{n+\beta_2-1} \\ F_9 &= (c_{13}K_1(n-m+2) - b_2A)r^{2n-m} + ((n+2)c_{13}K_2 + c_{13}E_{m,n} - b_2B)r^{2n} + \\ &((n+2)c_{13}E_{m,n} - b_2K_m)r^{2n}\log(r) + \sum_{\substack{p=0\\p\neq m}}^{\infty} \left[B_p(p+n-m+2)c_{13} - b_1L_p\right]r^{p+2n-m} \end{split}$$ ## 4. Particular Cases: For m=1, n=1 we get corresponding results of S. A. Mollah [5]. For m=1, n=n we get corresponding results of De & Choudhury [2]. ### 5. Numerical results and discussions: We calculate our numerical results for the following range of parameters: $10 \le \mu \le 30$, 1.5 < b < 3.0 and a = 1. We consider the material to be made of magnesium, for which the elastic constants on the inner boundary r = a = 1 are given by [2]: $$\begin{split} c_{11} &= 0.565 \text{x} 10^{12} \text{ dyne/cm}^2, \\ c_{12} &= 0.232 \text{x} 10^{12} \text{ dyne/cm}^2, \\ c_{13} &= 0.181 \text{x} 10^{12} \text{ dyne/cm}^2, \\ c_{33} &= 0.587 \text{x} 10^{12} \text{ dyne/cm}^2, \\ c_{44} &= 0.168 \text{x} 10^{12} \text{ dyne/cm}^2. \end{split}$$ The coefficients of linear thermal expansion of the said material on the inner boundary r = a = 1 are: $$\alpha_1 = 27.7 \times 10^{-6} \text{ cms/c},$$ $\alpha_2 = 26.6 \times 10^{-6} \text{ cms/c}.$ Further we choose arbitrarily: $T_i = 500^{\circ} \text{C}$ and $H_i = 1$ The Following table shows the variation of Radial stress and Hoop stress on the inner wall of the cylinder for m=2, n=2, μ = 10 with variable thickness of the cylinder. | μ | r | σ,, | $\sigma_{\scriptscriptstyle{ heta heta}}$ | |----|------|---------------------------|--------------------------------------------| | | 1.00 | 0.066657×10 ¹³ | 1.9677×10 ¹³ | | | 1.05 | 0.156399×10 ¹³ | 2.0317×10 ¹³ | | | 1.10 | 0.246140×10 ¹³ | 2.0955×10 ¹³ | | | 1.15 | 0.326000×10 ¹³ | 2.1461×10 ¹³ | | | 1.20 | 0.404070×10 ¹³ | 2.1967×10 ¹³ | | | 1.25 | 0.477120×10 ¹³ | 2.23095×10 ¹³ | | | 1.30 | 0.548370×10 ¹³ | 2.2652×10 ¹³ | | | 1.35 | 0.611740×10 ¹³ | 2.2797×10 ¹³ | | 10 | 1.40 | 0.669000×10 ¹³ | 2.2942×10 ¹³ | | 10 | 1.45 | 0.730920×10 ¹³ | 2.2855×10 ¹³ | | | 1.50 | 0.786730×10 ¹³ | 2.2768×10 ¹³ | | | 1.55 | 0.835060×10 ¹³ | 2.24105×10 ¹³ | | | 1.60 | 0.868870×10 ¹³ | 2.2053×10 ¹³ | | | 1.65 | 0.924070×10 ¹³ | 2.1385×10 ¹³ | | | 1.70 | 0.964760×10 ¹³ | 2.0717×10 ¹³ | | | 1.75 | 0.997530×10 ¹³ | 1.96945×10 ¹³ | | | 1.80 | 1.001200×10 ¹³ | 1.8672×10 ¹³ | | | 1.85 | 1.054700×10 ¹³ | 1.725×10 ¹³ | | | 1.90 | 1.079100×10 ¹³ | 1.5828×10 ¹³ | | | 1.95 | 1.094600×10 ¹³ | 1.3958×10 ¹³ | | | 2.00 | 1.057900×10 ¹³ | 1.2088×10 ¹³ | J.Mech.Cont. & Math. Sci., Vol.-6, No.-1, July (2011) Pages 754-768 The Following table shows the variation of Radial stress and Hoop stress on the inner wall of the cylinder for m=2, n=2, μ = 20 with variable thickness of the cylinder. | μ | r | σ,, | $\sigma_{\scriptscriptstyle heta}$ | |----|------|---------------------------|-------------------------------------| | | 1.00 | -01.0029×10 ¹⁸ | 3.6968×10 ¹⁸ | | | 1.05 | -2.33460×10 ¹⁸ | 3.81815×10 ¹⁸ | | | 1.10 | -03.6663×10 ¹⁸ | 3.9395×10 ¹⁸ | | | 1.15 | -4.84865×10 ¹⁸ | 4.03695×10 ¹⁸ | | | 1.20 | -06.0313×10 ¹⁸ | 4.1344×10 ¹⁸ | | | 1.25 | -7.08285×10 ¹⁸ | 4.2025×10 ¹⁸ | | | 1.30 | -08.1347×10 ¹⁸ | 4.2706×10 ¹⁸ | | | 1.35 | -9.06535×10 ¹⁸ | 4.30345×10 ¹⁸ | | 20 | 1.40 | -09.9960×10 ¹⁸ | 4.3363×10 ¹⁸ | | | 1.45 | -10.8095×10 ¹⁸ | 4.3276×10 ¹⁸ | | | 1.50 | -11.6230×10 ¹⁸ | 4.3189×10 ¹⁸ | | | 1.55 | -12.3200×10 ¹⁸ | 4.26215×10 ¹⁸ | | | 1.60 | -13.0170×10 ¹⁸ | 4.2054×10 ¹⁸ | | | 1.65 | -13.5935×10 ¹⁸ | 4.0934×10 ¹⁸ | | | 1.70 | -14.1700×10 ¹⁸ | 3.9814×10 ¹⁸ | | | 1.75 | -14.6205×10 ¹⁸ | 3.8068×10 ¹⁸ | | | 1.80 | -15.0710×10 ¹⁸ | 3.6322×10 ¹⁸ | | | 1.85 | -15.3885×10 ¹⁸ | 3.38705×10 ¹⁸ | | | 1.90 | -15.7060×10 ¹⁸ | 3.1419×10 ¹⁸ | | | 1.95 | -15.8805×10 ¹⁸ | 2.8179×10 ¹⁸ | | | 2.00 | -16.0550×10 ¹⁸ | 2.4939×10 ¹⁸ | The following table shows the variation of Radial stress and Hoop stress on the inner wall of the cylinder for m=2, n=2, μ = 30 with variable thickness of the cylinder. | μ | r | σ_{rr} | $\sigma_{\scriptscriptstyle 66}$ | |-----|------|---------------------------|----------------------------------| | | 1.00 | -0.50916×10 ²³ | 2.9265×10 ²³ | | | 1.05 | -1.18493×10 ²³ | 3.02265×10 ²³ | | | 1.10 | -1.86070×10 ²³ | 3.1188×10 ²³ | | | 1.15 | -2.46075×10 ²³ | 3.19615×10 ²³ | | | 1.20 | -3.06080×10 ²³ | 3.2735×10 ²³ | | | 1.25 | -3.5944×10 ²³ | 3.3277×10 ²³ | | | 1.30 | -4.12800×10 ²³ | 3.3819×10 ²³ | | 30 | 1.35 | -4.60025×10 ²³ | 3.4083×10 ²³ | | | 1.40 | -5.07250×10 ²³ | 3.4347 ×10 ²³ | | | 1.45 | -5.4854×10 ²³ | 3.42845×10 ²³ | | | 1.50 | -5.89830×10 ²³ | 3.4222×10 ²³ | | | 1.55 | -6.2518×10 ²³ | 3.378×10 ²³ | | | 1.60 | -6.60530×10 ²³ | 3.3338×10 ²³ | | | 1.65 | -6.8978×10 ²³ | 3.24615×10 ²³ | | | 1.70 | -7.19030×10 ²³ | 3.1586×10 ²³ | | | 1.75 | -7.4189×10 ²⁸ | 3.0217×10 ²³ | | | 1.80 | -7.64750×10 ²³ | 2.8848×10 ²³ | | | 1.85 | -7.80835×10 ²³ | 2.6924×10 ²³ | | | 1.90 | -7.96920×10 ²³ | 2.5000×10 ²³ | | | 1.95 | -8.05755×10 ²⁵ | 1.84956×10 ²³ | | · · | 2.00 | -8.14590×10 ²⁵ | 1.9912×10 ²³ | Following graphs show the variation of radial stress (σ_{rr}) on the inner wall of the cylinder with variable thickness of the cylinder. Fig1: Variation of the radial stress on the inner wall of the cylinder with the variable thickness of the cylinder when $\mu = 10$, m=2, n=2. Fig2: Variation of the radial stress on the inner wall of the cylinder with the variable thickness of the cylinder when $\mu = 20$, m=2, n=2. Fig3: Variation of the radial stress on the inner wall of the cylinder with the variable thickness of the cylinder when $\mu = 30$, m=2, n=2. Following graphs show the variation of Hoop stress on the inner wall of the cylinder with variable thickness of the cylinder. Fig4: Variation of the Hoop stress on the inner wall of the cylinder with the variable thickness of the cylinder when $\mu = 10$, m=2, n=2. Fig5: Variation of the Hoop stress on the inner wall of the cylinder with the variable thickness of the cylinder when $\mu = 20$, m=2, n=2. Fig6: Variation of the Hoop stress on the inner wall of the cylinder with the variable thickness of the cylinder when $\mu = 30$, m=2, n=2. # 5. Conclusion: In case of figure 1, for $\mu = 10$, the radial stress gradually increases with increasing thickness of the cylinder and in figure 2 and 3, for $\mu = 20,30$ the radial stress gradually decreases with increasing thickness. Here one thing we notice that for all values of μ the hoop stress initially increases and reaches to a maximum value and after some time it gradually decreases with increasing thickness. In figure 4, 5 and 6 for $\mu = 10$, 20 and 30 respectively, we see that the hoop stress gradually increases and reaches to a maximum value and after some time it gradually decreases with increasing thickness. ### **References:** - Bagchi, M. C., 'Thermal Stresses in long Hollow Aelotropic Cylinder Subject to γ Ray Heating', Journal of Science and Engineering Research, Res., vol.5, No. 9, pp. 171-178, 1965. - 2) De, A., Choudhury, M., 'Thermal Stresses in a Long In-homogeneous Transversely Isotropic Elastic Annular Subject to γ Ray Heating'. Bulletin of Calcutta Mathematical Society, vol., No. 2, pp. 101, 2009. - 3) Hearman, R. F. S., An introduction to applied anisotropic elasticity, 1961. - 4) Martin, W. T., Reissner, E., Elementary differential equation, 1958. - 5) Mollah, S. H., 'Thermal Stresses in a Long In-homogeneous Aelotropic Cylinder Subjected to γ Ray Heating', Mechanika Teoretyczna Estosowana, vol. 4, pp. 27, 1989. - 6) Nowinski, J., 'Thermoelastic Problem for an Isotropic Sphere with Temperature Dependent Properties1', ZAMP, vol. X, pp. 565, 1959. - 7) Sharma, B., Jour. App. Mech., vol. 23, no. 4, 1956. - 8) Timoshenko, S. and Goodier, J. N., *Theory of elasticity*, second edition, 1966.