A NOTE ON THE GROWTH PROPERTIES OF WRONSKIANS

BY
${ }^{1}$ Sanjib Kumar Dutta \& ${ }^{2}$ Tanmay Biswas
${ }^{1}$ Department of Mathematics, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India.
${ }^{2}$ Department of Mathematics, University of North Bengal, Raja Rammohunpur, Darjeeling - 734013, West Bengal, India.

Abstract

: In the paper we study the comparative growth properties of composite entire and meromorphic functions on the basis of $\mathcal{L} \mathbf{-}(p, q)$ th order ($\mathcal{L}-(p, q)$ th lower order) and $L^{\hbar}-(p, q)$ order $\left(L^{\hbar}-(p, q)\right.$ th lower order $)$ where $L ■ L(r)$ is a slowly changing function and $p_{l} q$ are positive integers and $p=a$. Keywords and phrases : composite entire function, composite entire meromorphic function, comparative growth properties

\section*{বিমূর্ত সার (Bengali version of the Abstract)} $L-(p, q)$ - তম ক্রুমের ভিত্তিতে [$L-(p, q)-$ তম ন্মিমক্ম] এবং $L^{*}-(p, q)$ তম ক্রমের ভিত্তিতে [L^{*} - phic Function) - এর তুলনামূলক বৃদ্ধির ধর্মাকে অনুসজ্ধান করা হয়েছে যখন $L=L(r)$)ীta পরিবর্তনশীল অদেককক এবং p, q ঋণাত্যক পূর্ণ সংখ্যা এবং $p>q$

1 Introduction, Definitions and Notations :

We denote by \mathbb{C} the set of all finite complex numbers. Let f be a meromorphic function defined on \mathbb{C}. We use the standard notations and definitions in the theory of entire and meromorphic functions which are available in [5] and [2]. In the sequel we use the following notation:

The following definitions are well known.

Definition 1 A meromorphic function $\boldsymbol{a} \square a(z)$ is called small with respect to f if $\quad T\left(r_{r} a_{i}\right)=S\left(r_{t} f\right)$.

Definition 2 Let $\alpha_{1 /} \alpha_{2 \ell} \ldots a_{k}$ be linearly independent meromorphic functions and small with respect to f. We denote by $L(f)=W\left(a_{1}, a_{4}, \ldots, a_{k} l f\right)$ the Wronskian determinant of $a_{1} \alpha_{2}, \ldots, a_{k} f$ i.e,

Definition 3 If $a \in \mathbb{C} \cup\left\{\propto_{\infty}\right\}$, the quantityType equation here.

$$
\begin{gathered}
\delta\left(a_{1} f\right)=1-\limsup _{r=\infty} \frac{N\left(r_{r}, f_{1} f\right)}{T\left(r_{r} f\right)} \\
=\liminf _{r \rightarrow \infty} \frac{m\left(r_{r}, a_{1} f\right)}{T\left(r_{n} f\right)}
\end{gathered}
$$

is called the Nevanlinna's deficiency of the value ' a '.
From the second fundamental theorem it follows that the set of values of $a \in \mathbb{C U}\{\infty\}$ for which $\delta(a f)>0$ is countable and $\sum_{a \in \infty} E\left(a_{1} f\right)+\delta(c \infty f) \propto_{n} 2$ \{cf. [2], p.43\}. If in particular, $\sum_{a} E(m f)+\delta\left(\infty_{1} \mid f\right)=\mathbf{2}$, we say that f has the maximum deficiency sum.

Definition 4 The order p_{f} and lower order λ_{f} of a meromorphic function f are defined as

$$
\rho_{f}=\limsup _{n \rightarrow \infty} \frac{\log T\left(r_{r} f\right)}{\log r} \quad \text { and } \quad \lambda_{f}=\liminf _{r \rightarrow \infty} \frac{\log _{0} T\left(r_{v} f\right)}{\log r} \text {, }
$$

If f is entire then

$$
P_{f}=\limsup _{n \rightarrow \infty} \frac{\log _{g}^{[b]} M\left(n_{v} f\right)}{\log r} \quad \text { and } \quad \lambda_{f}=\liminf _{r \rightarrow i=1} \frac{\log \left[{ }^{[2]} M\left(r_{n} f\right\rangle\right.}{\log r}
$$

Somasundaram and Thamizharasi [4] introduced the notions of L order and L-lower order for entire functions where $J_{1}=l_{r}(r)$ is a positive continuous function increasing slowly i.e., $L(a r) \sim L(r)$ as $r \rightarrow \infty$ for every positive constant ${ }^{\prime} a^{\prime}$. Their definitions are as follows:

Definition 5[4] The L-order ρ_{f}^{2} and the L-lower order $\lambda_{f}^{\frac{2}{f}}$ of an entire function f are defined as follows:

When f is meromorphic, then

$$
\rho_{f}^{f}=\limsup _{r \rightarrow \infty} \frac{\log T\left(r_{f} f\right)}{\log [r L(r)]} \quad \text { and } \quad \lambda_{f}^{L}=\liminf _{r \rightarrow \infty} \frac{\log T\left(r_{r} f\right)}{\log [r L(r)]}
$$

Juneja, Kapoor and Bajpai [3] defined the (p, q) th order and (p, q) th lower order of an entire function f respectively as follows:

where $p_{t} q$ are positive integers and $p=Q$.
When f is meromorphic, one can easily verify that

$$
\rho_{f}(p, q)=\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[p-1]} T(r, f)}{\left.\log _{g}^{[s]}\right]_{r}} \quad \text { and } \quad \lambda_{f}(p, q)=\underset{r \rightarrow \infty}{\lim \operatorname{lnf}^{2}} \frac{\log ^{[p-1]} T(r, f)}{\log ^{[\sin } r}
$$

where $p_{v} q$ are positive integers and p.
So with the help of the above notion one can easily define the $L-(\mu, q)$ th order and $L-\left(p_{r} q\right)$ th lower order of entire and meromorphic functions.

Definition 6 The $L-(p, q)$ th order $p_{F}^{2}(p, q)$ and the $L-(p, q)$ th lower or$\operatorname{der} \lambda_{f}^{L}(p, q)$ of an entire function f are defined as
where $q_{v} q$ are positive integers and $\%=a$.
When f is meromorphic, one can easily verify that
J.Mech.Cont. \& Math. Sci., Vol.-6, No.-1, July (2011) Pages 797-805

where $p_{t} q$ are positive integers and $\varphi>q$.
The more generalised concept of $L-(p, q)$ th order and $L-(p, q)$ th lower order of entire and meromorphic functions are $L^{n}(P, G)$ th order and $L^{n}\left(P_{G}\right)$ th lower order respectively. In order to prove our results we require the following definitions:
 romorphic function f are defined by

When f is entire, one can easily verify that

Definition 8 The $L^{\nu}(p, q)$ th order $p^{p^{n}}(p, q)$ and the $L^{n}(p, q)$ th lower order $\lambda f_{f}^{\prime \prime}(p, q)$ of an entire function f are defined as
where $p_{0} q$ are positive integers and $s a$.
When f is meromorphic, one can easily verify that

$$
P_{f}^{L^{*}}(\mathrm{p}, \mathrm{q})=\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[p-1]} T\left(r_{r} f\right)}{\log ^{[q]}\left[r \mathrm{e}^{L(p)}\right.} \quad \text { and } \quad \lambda_{f}^{k^{*}}(\mathrm{p}, \mathrm{q})=\underset{r \rightarrow \infty}{\lim \ln f} \frac{\log { }^{[p-1]} T\left(r_{r} f\right)}{\log [g]\left[r e^{L(p)}\right]}
$$

where p, q are positive integers and $p \approx \&$.
Since the natural extension of a derivative is a differential polynomial, in this paper we prove our results for a special type of linear differential polynomials viz. the Wronskians. In the paper we study the comparative growth properties of composite entire and meromorphic functions on the basis of $E-(p, q)$ th order $\left(-(p, q)\right.$ th lower order) and $L^{n}(p, q)$ order ($L^{n}(p, q)$ th lower order) where $L \backsim L(r)$ is a slowly changing function.

2 Lemmas.

In this section we present a lemma which will be needed in the sequel.
Lemma 1 [1] If f be a transcendental meromorphic function having the maximum deficiency sum. Then the $L^{n}-(\eta, q)$ th order (the $L^{n}-(p, q)$ th lower order) of $E(f)$ and that of f are same where p, q are positive integers and $p{ }^{2} a x$.

Lemma 2 [1] Let f be a transcendental meromorphic function having the maximum deficiency sum. Then the $Z-\left(p, q_{2}\right)$ th order (the $L-(p, q)$ th lower order) of $E(f)$ and that of f are same where $p_{q} q$ are positive integers and $p z^{2 x} a$.

3 Theorems.

In this section we present the main results of the paper.
Theorem 1 Let f be meromorphic and g be a transcendental entire function with the maximum deficiency sum such that

where $p_{v} m$ and q are positive integers such that $p q$ and $m q^{z} q$ i.e., $\operatorname{man}\left\{p_{i} m\right\}=q$.

Proof From the definition of $L^{\wedge}(p, q)$ th order and $L^{\natural}(p, q)$ th lower order of $L(\mathrm{~g})$ where g is a transcendental entire function we have for arbitrary positive ε and for all sufficiently large values of r,
and

$$
\begin{equation*}
\log g^{[m-1]}\left(r_{v} E(g)\right) 2\left(\lambda L^{2}(\mathrm{~s})(\mathrm{m} q)-s\right) \log \Phi^{[r]}\left[r \varepsilon^{L(r)}\right] \tag{2}
\end{equation*}
$$

Now in view of Lemma 1 we get from (1) for all sufficiently large values of r that

$$
\begin{equation*}
\ln g^{[m-4]}\left(r_{v} F_{t}(g)\right) \leq\left(\rho_{t}^{s^{9}}\left(m_{t} q\right)+\pi\right) \ln \varepsilon^{[q]}\left[r^{L(v)}\right] \tag{3}
\end{equation*}
$$

Similarly in view of Lemma 1 we get from (2) for all sufficiently large values of r

Also for a sequence of values of r tending to infinity,

$$
\begin{equation*}
\log _{2}^{[m-t]}\left(r_{t} L(\Omega)\right) \&\left(\lambda L_{i n}^{\prime}\left(m_{r} q\right)+s\right) \log [\varepsilon]\left[r \varepsilon^{L(p)}\right] \tag{5}
\end{equation*}
$$

and

So in view of Lemma 1 we get from (5) for a sequence of values of r tending to infinity that

$$
\begin{equation*}
\log _{0}^{[m-2]}\left(r_{v} L(\mathrm{~g})\right) \varepsilon_{\Delta}\left(x_{\mathrm{E}}\left(\mathrm{~m}_{v} \mathrm{q}\right)+\mathrm{s}\right) \log _{0}\left[\log ^{2}\left[\mathrm{~s}^{L(r y}\right]\right. \tag{7}
\end{equation*}
$$

Also in view of Lemma 1 we get from (6) for a sequence of values of r tending to infinity that

Now again from the definition of $L^{n} \boldsymbol{-}(p, q)$ th order and $L^{n} \boldsymbol{-}(p, q)$ th lower order of the composite function f og we have for arbitrary positive ε and for all sufficiently large values of r,
and

Again for a sequence of values of r tending to infinity
and

$$
\begin{equation*}
\log ^{[p-1]}(r, f \circ g) \geq\left(\rho_{f=\mathrm{s}}^{L^{*}}(\mathrm{p}, q)-s\right) \log \left[{ }^{[q]}\left[r e^{L(r)}\right]\right. \tag{12}
\end{equation*}
$$

Now from (3) and (10) it follows for all sufficiently large values of r,

As $s(0)$ is arbitrary, we obtain that

Again combining (4) and (11) we get for a sequence of values of r tending to infinity,

Since $s(\infty)$ is arbitrary, it follows that

Similarly from (8) and (9) it follows for a sequence of values of r tending to infinity that,

As $s(0)$ is arbitrary, we obtain that

Now combining (13),(14) and (15) we get that

$$
\begin{aligned}
& \frac{\lambda_{p_{0}}^{n}(p, q)}{P_{i}^{L}(m, q)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[p-1]} T(r, f=g)}{\log ^{[p m-11}(r, L(g))}
\end{aligned}
$$

Now from (7) and (10) we obtain for a sequence of values of r tending to infinity,

Choosing $s \rightarrow 0$ we get that

$$
\begin{equation*}
\underset{r \rightarrow \infty}{\limsup } \frac{\log _{g}^{[p-1]} T\left(r_{r} f \rho g\right)}{\log ^{[m-1]}\left(r_{n} L(\mathrm{~g})\right)} \geq \frac{\lambda_{\mathrm{f}^{\prime \prime}}(\mathrm{p}, \mathrm{q})}{\lambda_{g}^{E}(\mathrm{~m}, \mathrm{q})} . \tag{17}
\end{equation*}
$$

Again from (4) and (9) it follows for all sufficiently large values of r,

As $s\left(x_{0}\right)$ is arbitrary, we obtain that

Similarly combining (3) and (12) we get for a sequence of values of r tending to infinity,

Since $s(0)$ is arbitrary, it follows that

Therefore combining (17),(18) and (19) we get that

Thus the theorem follows from (16) and (20).
Remark 1 Considering f to be a transcendental meromorphic function with the maximum deficiency sum and g be an entire function if we take
 and the other conditions remain the same then also Theorem 1 holds with g replaced by f in the denominator.

In the line of Theorem 1 and in view of Lemma 2 we may state the following theorem without proof.

Theorem 2 Let f be meromorphic and g be a transcendental entire function with the maximum deficiency sum such that
where $p_{r} m$ and q are positive integers such that $p q$ and $m{ }^{2} q$ i.e., $\left.m \ln \left\{p_{s} m\right\}\right\}^{3} q$.

Remark 2 Considering f to be a transcendental meromorphic function with the maximum deficiency sum and g be an entire function if we take
 other conditions remain the same then also Theorem 2 holds with g replaced by f in the denominator.

References

1) Datta, S. K. and Biswas, T.: On the $E-(p q)$ th order of Wronskians, Int. J. Pure Appl. Math., Vol.50, No. 3 (2009), pp.373-378.
2) Hayman, W.K.: Meromorphic Functions, The Clarendon Press, Oxford (1964).
3) Juneja, O.P.: Kapoor, G.P. and Bajpai, S.K.: On the (p, q) -order and lower (p, q)-order of an entire function, J.Reine Angew. Math., 282(1976), pp.53-67.
4) Somasundaram, D and Thamizharasi, R.: A note on the entire functions of L-bounded index and L-type, Indian J. Pure Appl. Math. , Vol. 19, No. 3 (1988), pp. 284-293.
5) Valiron, G.: Lectures on the general theory of integral functions, Chelsea Publishing Company, 1949.
