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Abstract 

The main objective of this paper is to study the sensitivity of eigenvalues in their 

computational domain under perturbations, and to provide a solid intuition with some 

numerical example as well as to represent them in graphically. The sensitivity of 

eigenvalues, estimated by the condition number of the matrix of eigenvectors has been 

discussed with some numerical example. Here, we have also demonstrated, other 

approaches imposing some structures on the complex eigenvalues, how this structure 

affects the perturbed eigenvalues as well as what kind of paths do they follow in the 

complex plane. 
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¢hj§aÑ p¡l (Bengali version of the Abstract) 
¢hQme¡d£e NZe¡ A’−m BC−NeÚ j¡e (Eigen Value)- Hl p¤¤NË¡¢qa¡−L Ae¤på¡e Ll¡ Hhw ¢LR¥ 

p¡wMÉ Ec¡ql−Zl p¡q¡−kÉ cªt üš¡−L fËc¡e Ll¡ qu Hhw Cq¡−L −mM¢Q−œl p¡q¡−kÉ J f¢l−hne Ll¡ HC 
f−œl j§MÉ E−ŸnÉz nœp§QL jÉ¡¢VÊ−„l BC−Ne −iƒ−ll p¡q¡−kÉ BC−Ne j¡−el p¤¤NË¡¢qa¡−L NZe¡ Ll¡ 
q−u−R Hhw ¢LR¥ p¡wMÉ Ec¡ql−Zl p¡q¡−kÉ B−m¡Qe¡ Ll¡ q−u−Rz S¢Vm BC−Ne j¡−e ¢LR¥ L¡W¡−j¡ 
B−l¡f L−l AeÉ dl−Zl A¢iNj−el −r−œ HC L¡W¡−j¡ ¢hQ¢ma BC−Ne j¡−e ¢L i¡−h fËi¡¢ha L−l 
Hhw S¢Vm-a−m −L¡e dl−Zl fb Ae¤plZ a¡ fËcnÑe Ll¡ q−u−Rz 

1. INTRODUCTION : 

Mathematical models for the description of the physical behavior of a 

system typically contain measurement errors or modeling errors in different 
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parameters. This type of models are treated numerically, discretization and 

rounding errors are introduced. Moreover, usually a given model is 

applicable only for values of its parameters within certain bounds. For 

parameter values out of these bounds the model is not correct and the 

solution of the corresponding computational problem may not exist or may 

have no physical meaning. It is essential for   understanding the problems 

and estimating the accuracy of the computed results.  Indeed, the 

mathematical models that are used to solve application problems are 

typically subject to modelling uncertainties (due to simplifications), and   

measurement errors in the data. Furthermore, the solution of the problem is 

usually carried out with numerical methods that may include approximation 

errors due to truncation of infinite series or discretization of continuous 

processes. In addition to, the final result is contaminated by rounding errors 

due to the implementation of computational algorithms in finite precision 

arithmetic. The influence of the above uncertainties and errors on the 

computed result depends on the sensitivity of the problem. Thus, without a 

detailed perturbation analysis, it is not possible to assess the quality of the 

computed results. The main goal of this paper is to study the sensitivity of 

eigenvalues in computational domain, mathematical models under 

perturbations with matrix condition number and to illustrate them with some 

numerical example as well as to represent them in graphically. Here, we 

discuss how the solution changes when the data of the problem are changed. 

In a more restricted framework the objective of sensitivity analysis of 

eigenvalues is, to provide computable bounds for the perturbation in the 

solution of a given problem as a function of the perturbation in the data. At 

present, sensitivity analysis techniques of eigenvalues under perturbation are 

important issues in numerical analysis and also in all areas of science and 

engineering. There is a huge literature on this topic that covers existence and 

uniqueness of solutions, numerical methods and also, more recently, 
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perturbation analysis for special classes of such equations. In summary, we 

have seen that there are at least some important reasons to study the 

sensitivity of eigenvalue problems relative to their perturbations in the data 

from a given class. First, sensitivity analysis of eigenvalues may provide an 

independent and deep insight in the very nature of the problem, being 

therefore of independent theoretical interest. Perturbation bounds provide a 

realistic framework for most problems in mathematical modelling of objects 

and processes. Indeed, in practice there are inevitable measurement and 

other parametric or structural uncertainties. This means that we have to deal 

with a family 

of models rather than with a single model. Having a model with given 

parameters and estimates for their values, the only thing that we can 

rigorously claim is that the model will behave within a framework predicted 

by perturbation analysis.  Lastly, when a numerically stable algorithm is 

applied to solve a problem, then the solution, computed in finite precision 

arithmetic, will be close to the solution of a near problem. Having tight 

perturbation bounds and a knowledge about the equivalent perturbation for 

the computed solution, it is possible to derive condition and accuracy 

estimation. Without such estimation a computational algorithm cannot be 

recognized as reliable from the viewpoint of modern computing standards. 

The first general perturbation bounds for eigenvalue were given by 

Ostrowksi 12), in 1957. Elsner 3), in 1985, showed that an optimal bound of 

eigenvalues are possible. In these intervening years, a lot of work has taken 

place in this subject, which attracted the attention of several mathematicians.  

The most prominent conjecture on eigenvalue perturbation was that, the 

inequality ( , )d eigA eigB A B≤ −  would be true for all normal matrices A and B . 

Another inequality ( , )d eigA eigB C A B≤ −  is also true for all n-by-n normal 

matrices A and B  with 1.018<c<2.904 published by J. Holbrook 5), in 1992. 
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These inequalities have been significantly improved by the factor n, and 

replaced the previous inequalities by ( )
111( , ) 4 2 nnd eigA eigB M A B−≤ − , where 

A and B are any two n-by-n matrices. This work is done by D. Phillips and by 

R. Bhatia, L. Elsner, and G. Krause 2) in 1990. Another consequence result 

shown by J. G. Sun 16) in 1996 is that, if A is normal and B arbitrary, the 

last inequality can be improved to ( , )d eigA eigB n A B≤ − . A lot of work has 

been done in this field but we try to present it in more rigorous way.  In 8), 

the author presented the classical perturbation theory for Hermitian matrix 

eigenvalue and singular value problems that provides bounds on the absolute 

differences between approximate eigenvalues (singular values) and the true 

eigenvalues (singular values) of a matrix. The sensitivity of Lyapunov 

equations are discussed in 1), 7), 9) which we encountered in generalized 

state-spaced systems of the form Ex Ax= where E is nonsingular, and the 

system stable. Methods are presented in 14) for performing a rigorous 

sensitivity analysis for general systems of linear and nonlinear equations 

with respect to weighted perturbations in the input data, but there is no 

graphical representation. M. Konstanitinov et al. in 10) have applied the 

theory of condition developed by Rice to define condition numbers of the 

continuous-time algebraic Riccati equation and the discrete-time algebraic 

Riccati equation in the Frobenius norm and derive explicit expressions of the 

condition numbers in a uniform manner. In 11) author presented a detail 

discussion on the sensitivity of eigenvalues with example but the related 

theorems are not discussed sufficiently. In this paper we have tried to 

present an overall discussion of the sensitivity of eigenvalus and to make a 

solid intuition behind by presenting graphically to show their geometrical 

behavior.   
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2. Paper outline : 

    The rest of this paper is organized as follows. The notations used 

throughout the rest of this paper are given in 

section III. We discuss the relative perturbations theorems for eigenvalue in 

section IV. Eigenvalue sensitivity is presented in section V. Concluding 

remarks are presented in section VI. 

3. Background  Notations : 

In order to facilitate discussion in subsequent sections we introduce 

relevant notation first. We shall adopt the following convention: capital 

letters denote unperturbed matrices and capital letter with tildes denote their 

perturbed matrices. Throughout the paper, capital letters are for matrices, 

lowercase Latin letters for column vectors or scalars and lowercase Greek 

letters for scalars. 

4. Relative perturbation theorems for eigenvalue problems : 

Matrix Condition Number: It is convenient to have some number which 

defines the condition of a matrix with respect to a computing problem and 

we can say such a number is 'condition number'. Generally, it should provide 

some 'overall assessment' of the rate of change of the solution with respect to 

changes in the coefficients and should therefore be in some way proportional 

to this rate of change. If we have the eigenvalues which are very sensitive 

then the condition number would have to be very large, even if some other 

eigenvalues are very insensitive.  

Let x  be a vector and A  be a matrix. The multiplication of x  by A  

results Ax , can have a very different norm from x . This change in norm is 

directly related to the sensitivity. The range of the possible change can be 

expressed by two numbers 
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max

min

Ax
M

x

Ax
m

x

=

=

 

The maximum and minimum are taken over all non-zero vectors x . If A is 

singular then m=0.  

The ratio  ( )
max

min

Ax
xM X

Axm
x

ψ= =  

is called the condition number of A. Consider a system of equations 

Ax b= and ( )A x x b bδ δ+ = +  where we may think bδ as being the error in b and 

xδ as being the resulting error in x . The definitions of M  and m  

immediately lead to b M x and b m xδ δ≤ ≥ .  

Also, if 0, ( )
x b

m then A
x b
δ δ

ψ≠ ≤ . The quantity b
b
δ is the relative change in the 

right hand side and the quantity x
x
δ is the relative error caused by this 

change. This shows that the condition number is a relative error 

magnification factor. 

Theorem 1: (Ostrowski) Let λ be an eigenvalue of a matrix A  of algebraic 

multiplicity m. Then for any norm .  and all sufficiently small 0ε > there is a 

0δ > such that if E δ< , the disk ( ) { }, :D Cλ ε ζ ζ λ ε= ∈ − ≤ contains exactly m  

eigenvalues of A .  

Proof: Let ε be so small that ( ),D λ ε contains only the eigenvalue λ of A . 

Let ( ) ( ) ( )AAη ζ φ ζ φ ζ= − . By the continuity of the characteristic polynomial, as 

A A→  the function ( )η ζ converges to zero on the compact set D∂ . Since 

( )Aφ ζ is non zero on D∂ , there is a 0δ > such that ( ) ( )Aη ζ φ ζ<  on D∂  
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whenever E δ< . By Rouche’s theorem Aφ  and AAφ φ η= + have the same 

number of zeros in D . 

Definition 1: Let the matrix A have eigenvalues 1,..., nλ λ and A have 

eigenvalues 1,..., nλ λ . Then the spectral variation of A with respect to A is 

( ) max min i jSV jiA
A λ λ= − . 

Definition 2: The Hausdorff distance between the eigenvalues of A and A is 

( ) ( ) ( ){ }, max ,
SVhd SV AA A

A A A A= . 

Theorem 2:  (Elsner) For any A and A , ( ) ( )
1 11

2 22
, n n

hd
A A A A E

−
≤ + . 

Proof: Since the right hand side of ( ) ( )
1 11

2 22
, n n

hd
A A A A E

−
≤ +  is symmetric in 

A and A , it is sufficient to prove that it bounds ( )
SVA

A . Assume the maximum 

in the definition of spectral variation is attained for the eigenvalue λ  of A , 

and let 1,..., nx x  be orthonormal vectors with 1 1Ax xλ= . Then  

( )

( ) [ ]

( ) ( )

( )

2

1 12 2
1

2 2 2

det( )

n

i iSVA

i i

i i i

n

A

A I

A I x Hadamard inequality

A A x A I x

E A A

λ λ

λ

λ

λ>

−

≤ ∏ −

= −

≤ ∏ −

= ∏ − ∏ −

≤ +

 

The result follows on taking n-th roots in the above inequality and from the 

symmetry of the resulting bound. 

5. Eigenvalue sensitivity : 

To get a basic conception of sensitivity and accuracy of eigenvalues assume 

that A  has a full set of linearly independent eigenvectors and suppose A  has 

the eigenvalue decomposition 

1 ( 1 )A X X −= Λ                              
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We may rewrite this as 1X AX−Λ = . Now suppose Aδ  denotes a small change 

of 

A  which caused round off errors or any other kind of perturbation. Then 
1( )A X A A Xδ δ−Λ + = +  where 1 .A X AXδ δ−=  Taking matrix norms on both sides, 

we get,  

1

1 . . ( )

A X X

or A X X A X A

δ δ

δ δ ψ δ

−

−

=

≤ =
 

where ( )Xψ is the matrix condition number. Here note that, the key factor is 

the condition of X , the matrix of eigenvectors, not the condition of A itself. 

This simple analysis tells us that, in terms of matrix norms, a perturbation 

Aδ  can be magnified by a factor as large as ( )Xψ in δΛ . However, since 

δΛ  is usually not a diagonal matrix, this analysis does not immediately say 

how much the eigenvalues themselves may be affected. To compute and 

visualize numerically, here we consider two matrices 

149 50 154
537 180 546

27 9 25

− − −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 

and  

9 11 21 63 252
70 69 141 421 1684
575 575 1149 3451 13801

3891 3891 7782 23345 93365
1024 1024 2048 6144 24572

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥

− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

which are known as gallery(3) and gallery(5) in Mat Lab language 

respectively. We use the function condset from Mat Lab to estimate the 

condition number of the eigenvector matrix. In this case, we use a 3-by-3 

matrix gallery (3) to see the effect.  
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       A=gallery (3) 

       [x , lamda]=eig(A); 

       condition_number=condest(x) 

The value of condition number is 1.2002e+003. So a perturbation of the 

above matrix could result in perturbation in its eigenvalues that are 
212 10× times as large which yields that the eigenvalues of the above matrix 

are slightly ill conditioned. A more detailed analysis can be found in the left 

eigenvectors which are row vectors Hy that satisfies the equation H Hy A yλ= . 

To check and verify the sensitivity of an individual eigenvalue, suppose that 

A varies with a perturbation parameter 

and let A′denote the derivative with respect to that parameter. Taking 

differentiation both sides of the equation Ax xλ= we get 
( 2 )A x A x x xλ λ′ ′ ′ ′+ = +  

Multiply both sides by the left eigenvector Hy of the equation (2) we get 
H H H Hy A x y Ax y x y xλ λ′ ′ ′ ′+ = +  

Since H Hy A x y xλ′ ′=  it implies that  
H Hy A x y xλ′ ′=   

⇒ ( 3 )
H

H

y A x
y x

λ
′

′ =  

Taking norm on both sides of equation (3), we can get 
H

H

H

y A x

y x
y x

A
y x

λ

λ

′
′ =

′ ′≤

 

Define the eigenvalue condition number ψ as  

( ), H

y x
A

y x
ψ λ =  

Therefore 

( ), ( 4 )A Aλ ψ λ′ ′≤   
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So, we can conclude that ( ), Aψ λ is the magnification factor relating to a 

perturbation in the matrix A  to the resulting perturbation in an eigenvalue λ . 

If we wish to compute the left eigenvectors then consider X  is a matrix 

whose columns are the eigenvectors. To compute the left eigenvectors 

set 1Hy X −= . Therefore, H HY A Y= Λ , the rows of HY  are the left eigenvectors. 

In this case, the left eigenvectors are normalized so that HY X I= , 

consequently the denominator in ( ), Aψ λ is 1Hy x = . Therefore, ( ), A y xψ λ = . 

Since x X≤  and y Y≤ , we have ( ) ( ), A Xψ λ ψ= . This shows that the 

condition of the eigenvector matrix is an upper bound for the individual 

eigenvalue condition numbers. We compute the eigenvalue condition 

numbers with the MatLab function condeig of the matrix gallery 

(3) which are shown in Table I. This indicates that 1 1λ = is effectively  

TABLE I.   

VALUES OF THE CONDITION NUMBERS 
λ  ψ  

1.0000 603.6390 
2.0000 395.2366 
3.0000 219.2920 

more sensitive than 2 2λ = or 3 2λ = . A perturbation in the matrix gallery 

(3) may result in perturbations in its eigenvalues that are 200 to 600 times 

as large. This is consistent with the harder estimates 212 10× obtained from 

condest(x).We make a small random perturbation in A = gallery 

(3) to see and check what happens to its eigenvalues. 
              format long 

      delta=1.e-6 

      A=gallery(3); lamda=eig(A) 

      lamda_bar=eig(A+delta*rand(3)) 

      perturb_eigenvalue=lamda_bar-lamda 

      Perturb_condition=delta*condeig(A) 
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The last column of the Table-II is the perturbation of the eigenvalue which is 

smaller than we estimated by condeg and the perturbation analysis, but 

roughly the same size. If A is real and symmetric, or complex and 

Hermitian, then it’s left and right eigenvectors are the same. In this 

case, Hy x y x= , therefore for symmetric and Hermitian matrices, ( ), 1Aψ λ = . 

Thus the eigenvalues of symmetric and Hermitian matrices are perfectly 

well conditioned. For multiple eigenvalues, roughly it is also true that the 

perturbations in the matrix lead to perturbations in the eigenvalues with the 

same size. In our discussion we considered, A has a full set of linearly 

independent eigenvectors. If kλ  is a multiple eigenvalue that does not have a 

corresponding full set of linearly independent eigenvectors, then the 

previous analysis does not apply. In this case, the characteristic polynomial 

for an n-by-n matrix can be written ( ) ( )( ) det( ) m
kp A I qλ λ λ λ λ= − = −  where m is 

the multiplicity of kλ  and ( )q λ  is a polynomial of degree ( )n m−  that does not 

vanish at kλ . Now make a perturbation of sizeδ in the matrix A. The result 

will be change and the 

characteristic polynomial ( ) 0p λ = would be something like ( ) ( )p Oλ δ= . We 

can write it in this form 

( ) ( ) ( 5 )
( )

m
k

O
q

δλ λ
λ

− = . 

Thus the roots of this equation are 

TABLE II.   

VALUES OF THE CONDITION NUMBERS 
λ  λ  Perturbed eigenvalue Perturbed condition number 

1.0000 0.999977883966814 1.0e-003×0.493725272157297 1.0e-03× 0.6036389649562 

2.0000 1.999994195745145 1.0e-003×0.288054643827751 1.0e-03×0.3952366379896 

3.0000 3.000029282827517 1.0e-003×0.208036628212671 1.0e-03×0.2192920427184 
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1

( 6 )m
k Oλ λ δ

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
. 

From this equation the behavior of the m-th root, concludes that the multiple 

eigenvalues without a full set of eigenvectors are extremely sensitive to 

perturbation. Here we provide an illustrative example. We consider a 16-by-

16 matrix with 2's on the main diagonal, 1's on the superdiagonal, δ  in the 

lower left-hand corner, and 0's elsewhere. 

2 1
2 1

2 1
2

A

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The characteristic equation of A  is ( )162λ δ− = . If 0δ = , this matrix has an 

eigenvalue of multiplicity 16 at 2λ = , but there is only one eigenvector to go 

along with this multiple eigenvalue. If 1610δ −≈ , i.e. the floating point of round 

off error, then the eigenvalues are on a circle in the complex plane with 

center at 2 and radius ( )
1

16 1610 0.1− = . Therefore, a perturbation on the size of 

round off error changes the eigenvalue from 2.0000 to16 different values. A 

great small change in the matrix elements causes a much larger change in the 

eigenvalues. Here, we discuss the behavior of another important matrix A = 

gallery (5), which corroborates the same phenomena. The matrix A  

provides an interesting eigenvalue structure which is related with exact 

eigenvalues and eigenvectors problem. By the naive approach, the computed 

eigenvalues of A yields 

-0.040520367667793 

-0.011779333466727 + 0.038286113829096i 

-0.011779333466727 - 0.038286113829096i 

0.032039517299891 + 0.022811592233697i 

0.032039517299891 - 0.022811592233697i 
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Can we guess, how much accurate are these computed eigenvalues? 

Somewhat, more reliable information can be obtained from polynomial 

matrix of A , by the function poly (A).  This may lead to the conjecture 

that ( ) 5p λ λ=  is the characteristic polynomial of A , which would imply that 

0λ = is a 5-fold eigenvalue, i.e. 0λ =  has the algebraic multiplicity 5. 

According to the Cayley-Hamilton theorem every matrix satisfies its 

characteristic equation, which would mean 5 0A =  if the above conjecture is 

true.  We can solve the characteristic equation manually by hand and this 

can be easily verified by noting that 5 0A = , which is computed without any 

round off error, is the zero matrix. We clearly find that five eigenvalues are 

actually equal to zero. The computed eigenvalues exhibit a little warning to 

indicate that the “correct” eigenvalues are all zero. We must have to confess 

 
 
 

 
 

 

Figure 1. Plot of eigenvalues 
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that the computed eigenvalues are not very accurate. This problem can be 

addressed with the Mat Lab function eig. The inaccuracy of the computed 

eigenvalues is caused by their sensitivity, not by anything wrong with eig. 

We can demonstrate this in a graphical representation. We plot the 

eigenvalues in Figure-1 which shows that the computed eigenvalues are the 

vertices of a regular pentagon in the complex plane, centered at the origin. 

 

Figure 2. The orientation of eigenvalues

 

Figure 3. Variation of the radius 
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The radius is about 0.04. Now, we repeat this experiment with a matrix 

where each element is perturbed by a single round off error. We will clearly 

see that the pentagon flips orientation (Figure 2) and that its radius varies 

(Figure 3) between 0.035 and 0.070, but that the computed eigenvalues of 

the perturbed problems behave pretty much like the computed eigenvalues 

of the original matrix. So the matrix A with which we are presented is an 

approximation to the matrix which corresponds to exact measurements. It 

can be asserted that the error in every element of A is bounded by a positive 

numberδ  (say), then we can say that the true matrix is (A+E), where E is 

some matrix for which ije δ≤ . 

6. CONCLUSIONS : 

In this paper, we have addressed some aspects of sensitivity and accuracy of 

eigenvalues with their perturbations. The structure on the errors for 

eigenvalues, the effect on their perturbation and what kinds of paths do they 

follow in the complex plane are also discussed. It is seen that the sensitivity 

of eigenvalues is estimated by the condition number of the matrix of 

eigenvectors. Our demonstration shows that the computed eigenvalues of a 

particular five-by-five matrix named gallery (5) are the vertices of a 

regular pentagon in the complex plane, centered at the origin. The pentagon 

flips in orientation and its radius varies in some range. Our experiment 

provides evidence for the fact that the computed eigenvalues are the exact 

eigenvalues of a matrix A + E, where the elements of E are on the order of 

round off error compared to the elements of A. This is the best we can expect 

to achieve a solid intuition behind the sensitivity and accuracy of 

eigenvalues with floating point computation. 
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