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Abstract 

Based on the Struble technique, a simple formula is presented for obtaining 
approximate solutions of over-damped nonlinear differential systems when one of 
the roots of the unperturbed equation is much smaller than the other roots. The 
method is easier than the existing perturbation techniques. An example is given to 
biological system. 
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¢hj§aÑ p¡l (Bengali version of the Abstract) 

ØVÊ¡hÚm (Struble) L«v−L±n−ml Efl ¢i¢š L−l A¢a-Ahj¢¾ca A°l¢ML AhLme a−¿»l Apæj¡−e 

pj¡d¡e HL¢V pqS p§−œl p¡q¡−kÉ ¢eZÑu Ll¡ q−u−R kMe Cq¡−cl A¢hQ¢ma pj£Ll−Zl HL¢V h£S 

AeÉ…¢m −b−L A−eL r¥â quz HC fÜ¢a¢V haÑj¡−e ¢hcÉj¡e ¢hQ¢ma L«v−L±nm fÜ¢a −b−L A−eL 

pqSz S£h¢hcÉ¡l −rœ HL¢V Ec¡qlZ −cJu¡ q−u−Rz 

1. Introduction 

Among the methods used to study nonlinear systems with a small non-

linearity, the Krylov-Bogoliubov-Mitropolskii (KBM) [1-5] method is 

particularly convenient and it is widely used technique to obtain the 

approximate solutions. The method was originally developed by Krylov and 

Bogoliubov [1] for obtaining periodic solution of a second order nonlinear 
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differential equation. The method was amplified and justified by Bogoliubov 

and Mitropolishkii [2-5]. Popov [6] extended the method to a damped 

oscillatory process in which a strong linear damping force acts. Murty, 

Dekshatulu and Krisna [7] extended the method to over-damped nonlinear 

system. Shamsul [8-10] investigated over-damped nonlinear systems and 

found approximate solutions of Duffing’s equation when one root of the 

unperturbed equation was respectively double or triples of the other. 

Recently Shamsul [18] has developed the general Struble’s techniques for 

several damping effect. In [18], it has been shown that the general Struble’s 

technique is identical to the unified KBM method [1-5]. In this paper, an 

asymptotic solution of a biological system has been found by Struble’s 

techniques  

Three such models are described below: 

(i) A modified Lotka-Volterra model: Assuming in presence of predator 

and a logistic growth for prey one obtains the well-known equations [15,17] 

)(),( 23212221222131121111 NkNkkNNNkNkkNN ++=++= ��     (1) 

where 1N  and 2N  are two populations. 

(ii) Oscillating chemical reaction: Lefever and Nicolis [14] have 

considered a set of chemical reactions modeled by the chemical kinetic 

equations 

 YXBXYXBXYXAX 22 , −=−−+= ��            (2) 

where X  and Y  are concentrations, and A  and B  are initial product 

concentrations. Lefever and Nicolis [14] have studied the phase portrait in 

the phase plane ),( YX  both analytically and numerically, and shown the 

existence of a limit cycle. 

(iii) The FitzHugh equations: To investigate the physiological state of 

nerve membranes, FitzHugh [11] introduce a theoretical model described by 
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 )(,
3 2212
1

211 xxx
x

xxx βγρα −−=−++=�      (3) 

where it is assume that ),(, ∞−∞∈γα  and )1,0(, ∈ρβ . For 0=== γβα , 

equation (3) reduces to a Van der Pol equation. This particular model has 

been studied by Troy [16], Hsu and Kazarinoff [13]. FitzHugh [11] 

investigated the model quantitatively in the phase plane, while Hsu and 

Kazarinoff [13] dealt with periodic solutions using the Poincare-Hopf 

bifurcation theory. 

It will be shown that all the modeling equation (i)-(iii) can be presented 

in the neighborhood of the equilibrium position by a second order 

differential equation of the type [8-10]. 

 …����� +ε+ε=++ ),(),(2 2
2

1 xxfxxfxcxkx             (4) 

where ε  is a small positive parameter, and the significant damping term is 

expressed by the linear term xk �2 . The damping coefficients k [of order 

O(1)], and also c, are constant. The assumption ck >  ensures that the 

system is over-damped. When 0=ε , equation (4) has two roots, say 

0,,, >−− μλμλ . Therefore, the unperturbed solution of the equation (4) is 
tt exextx μλ −

−
− += 0,10,1)(  , which describes a non-oscillatory motion. Here 

0,1x  and 0,1−x  are two arbitrary constants. 

2. The Struble’s Techniques for Over-Damped Systems 

Equation (4) is slightly more general than the equation initially studied by 

Popov [6], which does not include the term ),(2
2 xxf �ε . Following the 

Struble’s techniques [18]  

…2
1110,10,1 ),,(),( εεε μλ +++= −

−
−

− txxuexextx tt        (5) 

where 0,1x  and 0,1−x  satisfy the first order differential equations 

,2
1 …� εε += Ax    ,2

1 …� εε +=− Bx        (6)  
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Now differentiating (5) twice with respect to t , substituting the 

derivatives xx ��� ,  and the dependent variable x  in (4), utilizing (6) and 

comparing the coefficients of various power of ε , we obtain 

( ) ( ) ( )( ) )0(
1 fuDDBeDAeD tt =++++++ −− μλλμ μλ     (7) 

where ),( 00
)0()0( xxff �=  and  tt exexx μλ −

−
− += 0,10,10  

In general, )0(f  can be expanded in a Taylor’s series as  

 ∑
=

+−=
0,

)(
,

)0(

kj

tkj
kj eFf μλ           (8) 

We assume that 1u  does not contain the terms with tkje )( μλ+−  where  

2
,)( 11

μλμλ +
=+≤+ cckjkj , so that the coefficient in the expansion of 1u  

does not become large and 1u  do not contain the secular type terms. 

 Substituting the values of )0(f  from (8) into (7) using our assumption, 

we obtain 

 ( ) ( ) ∑
=

+−−− =+++
0,

)(
,

kj

tkj
kj

tt eFBeDAeD μλμλ λμ        (9) 

where 
2

,)( 11

μλ
μλ

+
=+≤+ cckjkj  

and  ( )( ) ∑
=

+−=++
0,

)(
,1

kj

tkj
kj eFuDD μλμλ          (10) 

 Solving equation (10), we obtain 

 ∑ −+−+
=

+−

))((

)(
,

1 μμλλμλ

μλ

kjkj
eF

u
tkj

kj           (11) 

 In order to determine the unknown functions A  and B , we can replace 

1x   and 1−x  in the right hand sides of (9) by their respective values obtained  

in the linear case and assume that the coefficients of A  and B do not become 

large. 
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3. A Special Case of the Model (1) 

A special case (over-damped) of the model (1) has been discussed by 

Goh [12]. 

).11(),6.05.06.5( 21222111 NNNNNNNN ++−=−−= ��     (12)  

where 1N  be prey density and 2N  be predator density. There exists a single 

steady state solution 1,10 *
2

*
1 == NN  of (12), obtained for 0,0 21 == NN �� , 

i. e., from the equilibrium equations. Here we can show that, one of the roots 

is much smaller than the others. Goh [12] showed the equilibrium of the 

model (12) is locally stable. If the solution initially starts for 

3,11 *
2

*
1 == NN  it rends rapidly to 0*

1 =N  and ∞=*
2N , although the steady 

state solution 1,10 *
2

*
1 == NN  is not very far from the steady state solution. 

That is why we are interested to investigate quantitative solutions in the 

neighborhood of the steady state solution. 

The solution in the neighborhood of the steady state are presented by x 

and y 

where     )()(),()( *
22

*
11 tyNtNtxNtN εε +=+=        (13) 

Using (12) and (13), we obtain 

 
).(

),6.05.0()10(
2yxyyxy

yxxx
+++=

++−=

ε

ε
�
�

          (14) 

Eliminating y from equation (13) and (14) leads to a second order 

differential   equation for x 

 )(]
15
1

6
7

15
11[4 222 ε+−−ε=++ Oxxxxxxx �����       (15) 

Here the unperturbed equation, i. e. 04 =++ xxx ���  has the roots -2+√3 

and -2-√3. It is clear that the ratio of the roots is 12.34. i. e. one of the roots 

is much smaller than the others. 

Therefore, for modeling equation (12), equation (7) becomes 
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( ) ( ) ( )( )

)4353544(
30

)23522(
30

)23522(
30

)(11

22
2

122
2

1

1

λμμλ

μμλλ

μλλμ

μλ

μλ

μλ

−+++

−++−+=

++++++

+−−

−−−

−−

t

tt

tt

exx

e
x

e
x

uDDBeDAeD

      (16) 

Here 

( ) )4353544(
30

)(11 λμμλμ μλλ −++=+ +−−− tt exxAeD        (17)   

( ) )23522(
30

22
2

1 μμλ μμ −+=+ −−− tt e
x

BeD           (18) 

( )( ) )23522(
30

22
2

1
1 λλμλ λ −+=++ − te

x
uDD         (19) 

and 

Solving equations (17)-(19), we obtain 

 )4353544(
30

11 λμμλ
λ

μ −++= −− texxA          (20) 

)23522(
)2(30

2
2

1 μμ
λμ

μ −+
−

= − texB          (21) 

 texnu λ22
111

−=  where )23522(
)2(30

1 2
1 λλ

μλλ
−+

−
=n      (22) 

Substituting the values of A  and B  into equation (6), we obtain  
texxlx με −

−= 1111�                         texmx με −
−− = 2
111�        (23) 

 where )4353544(
30

1
1 λμμλ

λ
−++=l , )23522(

)2(30
1 2

1 μμ
λμ

−+
−

=m  

First equation of (23) has an exact equation but the second equation 

of (23) has no exact solution. So, we solved the first equation analytically 

and assume that 1x  is constant in the right hand side of the second equation 

of (23). 
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Therefore, 

με μ /)1(
0,11

0,11
texlexx

−
− −= ,     

με μ /)1(1 0,11

0,1
1 texm

x
x −

−

−
− −−
=                 (24) 

Thus the first order approximate solution of (15) is 

111 uexexx tt εμλ ++= −
−

−                                            (25) 

Where 1x  and  1−x  are given by (24) and  1u  is given by (22). 

 4.  Results and Discussion 

In order to test the accuracy of an approximate solution obtained by a 

certain perturbation method, we compare the approximate solution to the 

numerical solution. With regard to such a comparison concerning the 

presented Struble’s techniques of this article, we refer to the work of Murty 

and Deekshatulu [7], Shamsul [18]. In this article, we have compare the 

approximate solution (25) (when 1,2 == ck  and 5.0=ε ) to those obtained 

by a fourth order Runge-Kutta method. 

Here we have considered the equation (12) [special case of modeling 

equation (1)] in which 1,10 *
2

*
1 == NN  (in lakh, 1 lakh=1,00,000). Let us 

assume that 20 thousands prey have been added to this population. For that 

we have chosen 0.0)0( =y  and 5.0=ε . First of all, )(tx  has been computed 

by our asymptotic solution (25) with initial condition 4.0)0( =x  and 

04.2)0( −=x� . Then )()( *
11 txNtN ε+=  has been computed. To verify the 

results, corresponding numerical solutions of )(1 tN  has been computed by 

fourth order Runge-Kutta method. All the results are shown in Fig. 1(a). 

From Fig. 1(a) it is clear that the asymptotic solution (25) shows good 

agreement with the numerical solution. 

To compute )(2 tN  or )(ty , we have to compute )(tx� . Differentiating )(tx  

from (25) and then substituting the values of )(tx�  and )(tx  into the first 

equation of (14) and simplifying, we have computed )(ty  and 
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then )()( *
22 tyNtN ε+= . Corresponding numerical results of )(2 tN  have been 

computed and both the results are shown in Fig. 1(b). From Fig. 1(b), we see 

that the perturbation results of )(2 tN  also agree with the numerical results. 

9.92
9.93
9.94
9.95
9.96
9.97
9.98
9.99

10

1 51 101 151

x

t

Fig. 1

 
Fig. 1(a): Perturbation solutions (solid line) and numerical solutions (dotted 

line) of 1N  are computed when 2.10)0(1 =N and 0.1)0(2 =N [or 2.101 =N and 0.12 =N ]. 

In this case, 4.0)0( =x , 04.2)0( −=x�  and 5.0=ε  or 529798.00,1 =a  and 153345.2,1 −=a . 

Error! 
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Fig. 1(b): Perturbation solutions (solid line) and numerical solutions (dotted 

line) of 2N  are computed   with the same initial conditions as in Fig. 1(b). 
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4.  Conclusion 

An asymptotic solution is found based on the Struble technique for non-

oscillatory nonlinear biological systems, when one of the roots of the 

unperturbed equation is much smaller than the other. The results agree with 

the numerical solutions nicely. 
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