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Abstract:  

The natural frequencies of an annular plate of exponentially varying thickness 

under the action of a hydrostatic in-plane force have been studied on the basis of 

the classical theory of plates. The governing differential equation has been 

obtained and solved. The effects of in-plane force parameter, radii ratio and taper 

constants on the frequency parameter have been investigated for two different 

boundary conditions. Critical buckling loads have been computed for different 

values of taper constant and radii ratio for both the plates. 
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¢hj§aÑ p¡l (Bengali version of the Abstract) 

−fÔ−Vl −j±¢mL a−šÄl Efl ¢i¢š L−l EcÚ°ÙÛ¢aL pjamÙÛ h−ml ¢œ²u¡d£e p§QL£u −i−cl f¤l¦−aÆl 

hmu¡L«¢a −fÔ−Vl ü¡i¡¢hL LÇfe¡w−L Ae¤på¡e Ll¡ q−u−Rz ¢eu¿»L A¿¹lLme pj£LlZ Hhw Cq¡l 

pj¡d¡e ¢eZÑu Ll¡ q−u−Rzc¤¢V ¢iæ fË¡¢¿¹L p−aÑl SeÉ LÇfe¡wL fË¡Q−ml (Parameter) Efl pjamÙÛ 

hm fË¡Qm, Al£u (hÉ¡p¡dÑ) Ae¤f¡a Hhw −Vf¡l dË¥hL…¢ml fËi¡h Ae¤på¡e Ll¡ q−u−Rz −Vf¡l dË¥hL Hhw 

Al£u Ae¤f¡a…¢ml ¢h¢iæ j¡−el SeÉ Eiu −fÔ−Vl −r−œ œ²¡¢¿¹L Bua¡wL i¡l (Critical bulking 

load) NZe¡ Ll¡ q−u−Rz  

1. Introduction:  

In the past years there has been growing interest in the study of 

buckling and vibration of plates of non-uniform thickness because of their 

applications in various engineering structure. Circular annular plates are 
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extensively used as structural elements in the construction of aircrafts, ships, 

automobiles and other vehicles. Annular plates used in naval and aerospace 

structures are often subjected to in-plane forces. Soni and Amba-Rao[9] 

studied the axisymmetric vibrations of annular plates of variable thickness. 

Rosen and Libai[8] analysed the transverse vibrations of uniformly 

compressed annular plate free at the inner and simply supported at the outer 

boundary. Gupta and Lal [4] investigated the buckling and vibration of 

circular annular plates of paraebolically varying thickness. 

 The object of the present work is to extend the work of Gupta and Lal 

[4]. Here authors investigate the effect of an in-plane force on the frequency 

parameter of thin annular circular plate of exponentially varying thickness 

on the basis of classical theory. For axisymmetric motions, the governing 

fourth order linear differential equation with variable coefficients has been 

solved by Frobenius method. Frequencies for the first mode of vibration 

have been computed for two different boundary conditions and for various 

values of in-plane force parameter, taper constant. By allowing the 

frequency to approach zero, the critical buckling loads have also been 

determined. 

2. Equation of motion and Solution:  

The small deflection of a thin circular plate of radius a , thickness 

( )h r  and density )(rρ  in the presence of in-plane forces is governed by the 

equation (Jain [6]) 
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    (1) 

where w  is the transverse deflection, N is the uniform in-plane tensile force, 

D  is the flexural rigidity and other symbols have their usual meanings. 
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 The thickness variation can be of any type (Conway [1], Gupta and 

Lal[4], Tomar and Gupta[10], Gallegojuarez[2]). For free transverse 

vibration of the plate, we consider ( ) exp( )w W x i t
a

ω= . 

If the thickness of the plate varies exponentially in the redial direction 

then, nReha
h

0=  . The density also varies exponentially as nRea
2

0ρ
ρ = , 

where a
rR = . 

By the use of these non-dimensional quantities, equation (1) now reduces to, 
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where,..
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NnBnBNnBnBnB −=−=−=+== νν 2
54

2
321 9,3,9),1(3,6 , 

0aD
NN = ,  also ratio radii and rediusandouter redius,inner === εba . 

3. Solution: 

A series solution for W is assumed in the form, 

0, 0
0

≠= +
∞

=
∑ aRaW kc

k
k              (3) 

By Frobenius method the series solution of equation (2) is given by, 

21 BFAFW +=                (4) 

where,  

 

 

For equation (2) the indicial roots are 0, 0, 2 and 2. 2a  becomes 

indeterminate for 0=c .Also 

..........)log(

...........
7

7
6

6
5

5
4

4
3

3112

7
7

6
6

5
5

4
4

3
3

2
2101

+++++++=

++++++++=

RbRbRbRbRbRbRFF

RaRaRaRaRaRaRaaF



 

J.Mech.Cont.& Math. Sci., Vol.-6, No.-2, January (2012) Pages 835-842  

 838

122
42

222
421

3

022
421

1

)1()3(
)1)((

)1()3(
)2}()1()1({

,
)1()1(

})1()2)(1({

a
cc

cBcB
a

cc
cBcBccB

a

a
cc

cBcBccBa

++
++

−
++

+++++
−=

−+
+−+−−

−=
 

The remaining coefficients of 1F  are determined in terms of 0a  and 2a  by 

the following recurrence relation: 
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4. Boundary Conditions:  

 The following two sets of boundary conditions have been considered: 

(i) Both the inner and outer edges are clamped (C-C). 

(ii) Clamped at the inner and simply supported at the outer edge (C-S). 

The edge which is clamped satisfies the condition, 0==
dR
dWW  and the 

simply supported edge satisfies the condition, 0)( 2

2

=+=
dR
dW

RdR
WdW ν . 

Applying these boundary conditions to the equation (4), we get, the 

frequency equation after eliminating the arbitrary constants. 

5. Numerical Calculations: 

 Critical values of N  have been computed for various taper constant n 

and the radii ratio ε  .  The effect of taper constant n, the radii ratio ε   and 

the in-plane force parameter N  on the frequencies have been investigated 

for 3.0=ν .  
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TABLE 1 

Comparison of frequency parameter Ω , for 0=n , 0=N  and 3.0=ν . 

Boundary condition Obtained by 
present authors 

Obtained by 
Gupta and 

Lal[4] 

Obtained by 
Leissa[7] 

C-C 

3.0=ε  

First 
mode 45.3462 45.3457 45.2 

Second 
mode 125.362 125.3502 125 

5.0=ε  

First 
mode 89.2508 89.2507 89.2 

Second 
mode 246.199 246.3235 246 

C-S 

3.0=ε  

First 
mode 29.9777 29.9783 29.9 

Second 
mode 100.423 100.4211 100 

5.0=ε  

First 
mode 59.8199 59.82 59.8 

Second 
mode 198.054 198.0512 198 

 

TABLE 2 

Values of  N  for the critical buckling load in compression for 3.0=ν . 

Boundary 
condition 

 
2.0=ε

 
3.0=ε

 
4.0=ε

 

 
5.0=ε

 

 
6.0=ε

 

 
7.0=ε

 

 
8.0=ε

 

 
9.0=ε

 

C-
C 

0=n  -63.20 -73.29 -77.79 -83.61 -80.41 -68.27 -58.18 -49.01 
1.0=n

 -80.85 -70.88 -72.27 -74.46 -80.93 -67.58 -57.41 -49.35 

C-
S 

0=n  -28.73 -37.89 -51.38 -63.40 -76.92 -65.82 -56.95 -48.63 
1.0=n

 -28.14 -37.16 -49.68 -58.26 -85.15 -65.47 -56.13 -48.69 
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TABLE 3 

Values of  N  for the critical buckling load in compression N  for 3.0=ν  and  

5.0=ε   

Boundary 
condition 

1.0=n
 

2.0=n
 

3.0=n
 

4.0=n
 

5.0=n
 

6.0=n
 

7.0=n
 

8.0=n
 

9.0=n
 

C-C -74.46 -70.14 -67.76 -67.12 -70.14 -65.68 -45.54 -41.27 -40.18 

C-S -58.26 -55.29 -53.37 -52.69 -55.31 -46.81 -37.92 -35.39 -35.54 

 

Figure1: Variation of Ω  with varying N  

for 1=n , for first mode. 

 Figure2: Variation of  Ω   with 

varying N  for 2=n , for first mode. 
 

  

Figure 3: Variation of  Ω  with varying ε  for first mode. 

 



 

J.Mech.Cont.& Math. Sci., Vol.-6, No.-2, January (2012) Pages 835-842  

 841

6. Conclusion:  

Frequency equations are solved for plates having different thickness 

and density. In the present work, the effect of in-plane force parameter, the 

radii ratio and the taper constant on the frequency parameter have been 

investigated. Figure 1 and figure 2 show the variation of frequency 

parameter with N . From these two figures (Fig. 1 and Fig. 2) we observe 

that for C-C plate, the frequency parameter Ω  initially increases and then 

gradually decreases but for C-S plate, the frequency parameter Ω  gradually 

decreases. For 1=n  the values of frequency parameter for C-C plate are 

lesser as compared to that for C-S plate. But for 2=n  the values of 

frequency parameter for C-C plate is higher then that of C-S plate. Figure 3 

shows the variation of frequency parameter with radii ratio for 1=n  and 

1=N . From figure 3 we see that the frequency of the C-C plate is initially 

higher then the C-S plate, but after a certain point frequency of the C-S plate 

become higher then the C-C plate.  
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