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Abstract: 

The mathematical analysis presents the study of heat transfer and magneto 

hydrodynamic effects on pulsatile flow of blood through geometrically irregular 

arterial system, and its effects on cardiovascular disorder and arterial diseases. 

Considering the influence of magnetic field on the steno- tic artery, the effect of 

transverse magnetic field and multi-stenosis on the blood flow in blood vessels is 

studied theoretically. The blood flow is considered to be axi-symmetric with an outline 

of the irregular stenosis obtained from a three-dimensional casting of mild stenosed 

artery, so that the physical problem becomes more realistic from the physiological 

point of view. The MARKER AND CELL (MAC) and SUCCESSIVE –OVER-

RELAXATION (SOR) methods are respectively used to solve the governing unsteady 

magneto-hydrodynamic equations and pressure-Poisson equation numerically. The 

present observations certainly have some clinical implications relating to magneto-

therapy. It may help reducing the complex flow separations zones causing flow 

disorder and leading to the formation and propagation of the arterial diseases and 

cardiovascular disorders.  
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¢hj§aÑ p¡l (Bengali version of the Abstract) 

SÉ¡¢j¢aL ¢hoj dje£ a−¿»l jdÉ ¢c−u l−š²l Øf¾ce fËh¡−ql a¡f ÙÛ¡e¡¿¹lZ J −Q±ðL - EcÚN¢aL£ Hhw 

q©cÚ-pwhqe e¡¢mL¡l −N¡m−k¡N J dje£l −l¡−Nl Efl Cq¡l fËi¡−hl Ae¤på¡e¢Vl N¡¢Z¢aL ¢h−nÔoZ EfÙÛ¡fe 

Ll¡ q−u−Rz pwL¥¢Qa dje£−a −Q±ðL −r−œl fËi¡h−L ¢h−hQe¡ L−l lš² e¡m£−a lš² fËh¡−q hý-pw−L¡Q−el 

Hhw ¢akÑL −Q±ðL −r−œl fËi¡h−L ašÄNai¡−h Ae¤på¡e Ll¡ q−u−Rz 

 nl£l hªš£u cª¢ø−L¡e −b−L h¡Ù¹h pjpÉ¡¢V −ke B−l¡ −h¢n h¡Ù¹h pÇja qu −p SeÉ lš² fËh¡q−L üÒf 

pwL¥¢Qa dje£l ¢œ-j¡¢œL Ry¡Q ¢e¢ZÑa ¢hoj pw−L¡Q−el f¢l−m−Ml p¢qa Ar£u fË¢apj ¢qp¡−h dl¡ q−u−Rz  

¢eu¿»L flhaÑ£ −Q±ðL - EcÚN¢aL£ pj£LlZ Hhw Q¡f-−f¡uy¡p pj£Ll−Zl p¡wMÉj¡−e pj¡d¡e ¢eZÑu Ll¡ q−u−R 

kb¡œ²−j j¡lL¡l Hhw −pm (MARKER AND CELL) Hhw p¡L−p¢pi-Ji¡l ¢lm¡−„n¡e (SUCCESSIVE –

OVER‐RELAXATION) fÜ¢al j¡dÉ−jz −Q±ðL-−bl¡f£ (Magnetic Therapy) pÇf¢LÑa ¢LR¥ ¢LÓ¢eLmÚ 

Ef−k¡¢Na¡ haÑj¡e fkÑ−hrZ −b−L AhnÉC f¡Ju¡ k¡uz  

 fËh¡q −N¡m−k¡N Hhw dje£l −l¡N q©cÚ-pwhqe e¡¢mL¡l −N¡m−k¡N NWe J ¢hÙ¹¡l−Zl L¡lZ HC fªbL 

fªbL S¢Vm fËh¡q−L Cq¡ fËp¡¢la Ll−a f¡−lz 

1. Introduction: 

Among all the fatal diseases of the human body, circulatory disorders are a 

still a major cause of death. A systematic study on the rheological and 

hemodynamic properties of blood and blood-flow could play a significant role 

in the basic understanding, diagnosis and treatment of many cardiovascular, 

cerebro-vascular and arterial diseases. It is well known that stenosis (narrowing 

in the local lumen in the artery) is responsible for many cardiovascular diseases. 

When the degree of narrowing becomes significant enough to impede the flow 

of blood from the left ventricle to the arteries, heart problems develop. While 

the exact mechanism of the formation of stenosis in a conclusive manner 

remains somewhat unclear from the standpoint of physiology and pathology, 

the abnormal deposition of various substances like cholesterol, fat on the 
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endothelium of the arterial wall, and proliferation of connective tissues 

accelerate the growth of the disease. Plaques are thereby formed and lead to 

serious circulatory disorders. Plaque forms when cholesterol, fat and other 

substances build up in the inner lining of the artery. This process is called 

Carotid circulatory disorders. It greatly disturbs the normal blood flow leading 

to malfunction of the hemodynamic system (the flow of blood) and cardio 

vascular system. Carotid artery stenosis is a major risk factor for Ischemic 

stroke (most common form of stroke usually caused by blood-clot plugging an 

artery). 

From biomechanics point of view, the laminar flow of blood in different 

arteries under certain conditions behaves like a visco-elastic fluid motion [6]. 

Also the blood flow effects the thermal response of living tissues which 

depends on the geometric structure of artery (tapered artery), and flow variation 

of blood due to stenosis. The main complication in describing the axi-

symmetric blood flow leads to develop a constitute model for unsteady non-

Newtonian flow through multistenosed tapered arteries in presence of a 

magnetic field [1]. It has been established that once a mild stenosis is 

developed, the resulting flow disorder further influences the development of the 

disease and arterial deformity, and change the regional blood rheology [8, 9]. 

Steady flow through an axi-symmetric stenosis has been investigated 

extensively by Smith using an analytical approach indicating that the flow 

patterns strongly depend on the geometry of the stenosis and the upstream 

Reynolds number (n). In recent years some studies (Katiyar and Basavarajappa, 

2002; Kinouchi et al., 1996; Sud and Sekhon, 1989; Tashtoush and Magableh, 

2008; Tzirtzilakis, 2005) have been reported on the analysis of blood flow 

through single arteries in the presence of externally applied magnetic field. 
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  It is assumed that the arterial segment is a cylindrical tube with time 

dependent multi-stenosis. In the proposed investigation an attempt will be made 

to deal with a problem, considering hemodynamic and cardiovascular disorders 

due to non-Newtonian flow of blood in multistenosed arteries [1, 2]. The 

present investigation has been devoted to the problem of blood flow through a 

stenosed segment of an artery where the rheology of blood is described by 

Herschel–Bulkley model and Bringham plastic fluid model. The dispensability 

of an arterial wall has been accounted for based on local fluid mechanics. Then 

an appropriate finite difference technique will be adopted to solve the unsteady 

non-Newtonian flow of blood with different boundary conditions in cylindrical 

co-ordinate system. A quantitative analysis will be taken based on numerical 

computations by taking the different values of material constants and other 

parameters [10, 12]. The variation of skin-friction with axial distance and 

impedance in the region of the stenosis are presented graphically with respect to 

velocity of flow of blood in arterial segment. The qualitative and quantitative 

changes in the skin-friction, the flow resistance and the volumetric flow rate at 

different stages of the growth of the stenosis have also been presented. 
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Nomenclature

τ shear stress

Hτ yield stress

Rτ skin-friction

τ non-dimensional skin-friction

δ stenosis height

λ flow resistance

λ
 

non-dimensional flow 

resistance

Q volumetric flow rate

r radial coordinate

z axial coordinate

u Axial average velocity of flow

0R radius of the artery

R(z) radius of the artery at 

stenosed portion

L half-length of the artery

0L half-length of the stenosis

p pressure

k viscosity coefficient

n fluid index
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2.  The problem and its solution: 

      Let us consider steady laminar fully developed one-dimensional flow of 

blood obeying the constitutive equation given by Herschel–Bulkley model 

through a stenosed artery. 

The equation governing the flow of blood is taken in the form 

1 ( )d p d r
d z r d r

τ
− =

           
(1)                                  

in which τ represents the shear stress of blood considered as Herschel–Bulkley 

fluid and p the pressure at any point. The constitutive equation may be put as 

1( ) ( );H H
du f
dr k

τ τ τ τ τ= = − ≥  = 0; τ≥ Hτ       (2) 

where u stands for the axial velocity of blood and  Hτ is the yield shear 

stress and k, n are parameters which represent non-Newtonian effects. 

 Let us consider a bell-shaped stenosis geometry given by 

2 2 2

0 2
0 0

( ) [1 exp( )]m zR z R
R R
δ ε

= − −
        

(3)
 

Where 0R  stands for the radius of the arterial segment outside the stenosis, 

R (z) is the radius of the stenosed portion of the arterial segment under 

consideration at a longitudinal distance z from the left-end of the segment; 

δ is the depth of the stenosis at the throat and m is a parametric constant; 

� characterizes the relative length of the constriction, defined as the ratio 

of the radius to half length of stenosis, i.e.
0

R
L

ε = . 
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                                                                  Figure: 1 

 (Picture of arterial stenosed segments & stenosis throat)    

Considering the stenosis geometry to be of the form (cf. Fig. 1)  

 
2

0

( ) 1 bzR z ae
R

−= −
            

(4) 

With 
0

a
R
δ

= and 
22

2
0

mb
R
ε

=  

Equations (1) and (2) are to be solved subject to the boundary conditions 

u=0 at r=R (z)    (no slip condition)          (5) 

τ is finite at r = 0 (regularity condition)        (6)                                

Integrating Equation (1) and using (6) we get 

=  -  
2
r d p

d z
τ

              
(7) 

The skin-friction Rτ  is given by 

2R
R dp

dz
τ = −

              
(8) 
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Where R=R (z) 

The volumetric flow rate Q is given by the Rabinowitsch equation 

Q=
3

2
3

0

( )
R

R

R f d
τπ τ τ τ

τ ∫
            

(9)
 

Where τ and Rτ given by the equations (7) and (8) respectively. 

Therefore substituting the value of f(τ) from equation (2) we get. 

3
2

3
0

1Q = ( )
R

n
H

R

R d
k

τπ τ τ τ τ
τ

−∫           (10) 

(Where n=fluid index parameter)                                                                                                        

 =
3

1 22 2(1 ) 1 ( ) ( )
( 3) 2 ( 1)( 2)

n
nR H H H

R R R

R
k n n n n
π τ τ τ τ

τ τ τ
+ ⎡ ⎤

− + +⎢ ⎥+ + + +⎣ ⎦      
(11) 

When ( H

R

τ
τ

) ≤1 the above equation reduces to 

Q= ( )
3 3
3 2

n

R H
R n

k n n
π τ τ⎧ + ⎫⎛ ⎞−⎨ ⎬⎜ ⎟+ +⎝ ⎠⎩ ⎭

         (12)  

Again assuming that the flowing blood is representing a Newtonian fluid 

Then 
1dp ur

dz r r r
μ∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂⎝ ⎠            

(13) 

Where u is the velocity of flow. 

Now the volumetric flow flux Q is thus calculated as 
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{ }

( )

0

2

2

( )

R Z

Q rudr

Q R z u

π

π

=

=

∫              (14) 

Now from (12) and (14) we have 

Q=
3 3( )

( 3) 2

n

R H
R n

k n n
π τ τ+⎡ ⎤−⎢ ⎥+ +⎣ ⎦

= { }2( )R z uπ       (15) 

 u=

3

2

3( )
2

( 3) ( )

n

R H
nR
n

k n R z

τ τ+⎧ ⎫−⎨ ⎬+⎩ ⎭
+            (16) 

Again resistance to flow λ defined by 

 

1 2P P
Q

λ −
=

  

Using 2R
R dp

dz
τ = −

 

Where R=R(z)  in equation  

3 3( )
( 3) 2 2

n

H
R R dp nQ

k n dz n
π τ+⎡ ⎤= − −⎢ ⎥+ +⎣ ⎦          

(17)
 

  

1

3

2 ( 3) 2( 3)
( 2)

n n
H

n

dp kQ n n
dz R n R

τ
π +

⎧ ⎫+ +
− = +⎨ ⎬ +⎩ ⎭         

(18)
 

 Now integrating equation (18) along the length of the artery and using the  
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Conditions that   P = P1  at z = - L and P = P2 at z=L we obtain, 

1

1 2 33 1 0
0

0

2 ( 3) 2( 3)
( 2) ( )( )

z L z Ln n
H

n
z L z Ln

kQ n dz n dzP P RR n RR RR

τ
π

= =

+ +
=− =−

⎧ ⎫+ +
− = +⎨ ⎬ +⎩ ⎭

∫ ∫
     

(19) 

Thus the resistance of flow is defined by 

1 2P P
Q

λ −
=

 
1

33 10 0
0

0
1

3

2 ( 3) 2( 3)
( 2) ( )( )

2 ( 3) 2( 3)
( 2)

z L z Ln n
H

n
z L z Ln

n n
H

n

kQ n dz n dz
RR n RR RR

kQ n n
R n R

τ
π

λ
τ

π

= =

+ +
=− =−

+

⎧ ⎫+ ++⎨ ⎬ +⎩ ⎭

=
⎧ ⎫+ +

+⎨ ⎬ +⎩ ⎭

∫ ∫

        (20) 

In absence of any constriction the resistance to flow Nλ  is defined by 

1
1/

3
0 0

4( 3) ( 3)[{ } ]
( 2)

n
n H

N
n L n kQ
QR R n

τλ
π

−+ +
= +

+           (21) 

Now in dimensionless form the flow resistance may be expressed as  

1

33 10 0
0

0
1

1/
3

0 0

2 ( 3) 2( 3)
( 2) ( )( )

4( 3) ( 3)[{ } ]
( 2)

z L z Ln n
H

n
z L z Ln

n
n HN

kQ n dz n dz
RR n RR RR

n L n kQ
R R n

τ
π

λλ
τλ

π

= =

+ +
=− =−

−

⎧ ⎫+ ++⎨ ⎬ +⎩ ⎭

= =
+ +

+
+

∫ ∫

     

(22) 

Therefore substituting the value of { }2( )Q R z uπ=  we have from (22), 
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1
2

33 10
0

0
2

1/
3
0

( 3) ( 3)
( 2) ( )( )

( 3)( 3)[{ } ]
( 2)

z L z Ln

H
z L z Ln

n
n H

k n R u dz n dz
RR nR RR

nn kL R u
R n

τ

λ
τ

π

= =

+
=− =−

⎧ ⎫+ +
+⎨ ⎬ +⎩ ⎭

=
++

+
+

∫ ∫

 

0 0
1

2

0 033 10 0 0
0

0
2

1/
3
0

( 3) ( 3)[( ) ] [( ) ]
( 2) ( )( )

( 3)( 3)[{ } ]
( 2)

L Ln

H
n

n
n H

k n Ru dz n dzL L L L RR nR RR
nn kLRu

R n

τ

λ
τ

π

+

⎧ ⎫+ +
− + + − +⎨ ⎬ +⎩ ⎭

=
++

+
+

∫ ∫

      

(23)  

Therefore from (3) we have, substituting the value of    0

0

R
L

ε =    

2 2

2
0

( )

0 0

( )( ) [1 ( )e ]
m z
LR z

R R
δ −

= −
            

(24)
 

In order to have an estimate of the quantitative effects of the various 

parameters involved in the analysis, it is necessary to evaluate the analytical 

results obtained for dimensionless resistance to flow, λ. It is based on area-axial 

average velocity of flow on constant tube diameter, where the constitutive co-

efficient  m=0.1260 g/cm .s in Power law fluid model and n=0.8 (Power law 

fluid model), u=(0.5,1,1.5,2,2.5,3), 
0R
δ =(0.1,0.2,0.3,0.4,0.5), 0L =1 cm, 

L=(1,2,5) cm Hτ =0.05 then k=4 and when Hτ =0.10 then k=7. 
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0R
δ =0.1      

0R
δ =0.2      

0R
δ =0.3      

0R
δ =0.4      

0R
δ =0.5 

Z 

0

( )R z
R

 
z 

0

( )R z
R

 
z 

0

( )R z
R

 
z 

0

( )R z
R

 
z 

0

( )R z
R

 

-2.5 0.9093 -2.5 0.8188 -2.5 0.7283 -2.5 0.6377 -2.5 0.5472 

-2.0 0.9061 -2.0 0.8123 -2.0 0.7184 -2.0 0.6246 -2.0 0.5307 

-1.5 0.9034 -1.5 0.8070 -1.5 0.7105 -1.5 0.6140 -1.5 0.5175 

-1.0 0.9015 -1.0 0.8031 -1.0 0.7047 -1.0 0.6063 -1.0 0.5078 

-0.5 0.9003 -0.5 0.8007 -0.5 0.7011 -0.5 0.6015 -0.5 0.5019 

 0.0 0.9  0.0 0.8  0.0 0.7  0.0 0.6  0.0 0.5 

 0.5 0.9003  0.5 0.8007  0.5 0.7011  0.5 0.6015  0.5 0.5019 

 1.0 0.9015  1.0 0.8031  1.0 0.7047  1.0 0.6063  1.0 0.5078 

 1.5 0.9034  1.5 0.8070  1.5 0.7105  1.5 0.6140  1.5 0.5175 

 2.0 0.9061  2.0 0.8123  2.0 0.7184  2.0 0.6246  2.0 0.5307 

 2.5 0.9093  2.5 0.8188  2.5 0.7283  2.5 0.6377  2.5 0.5472 

average 0.9037 average 0.8076 average 0.7115 average 0.6152 average 0.5191 

With the data the graphical representation of different values of 
0

( )R z
R

for 

different values of (
0R
δ ) is shown below: 
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Figure: 2 

 (Series-1)-values of    
0

( )R z
R

 when 
0R
δ =0.1, (series-2)-values of    

0

( )R z
R

 when 

0R
δ =0.2, (series-3)-values of    

0

( )R z
R

 when 
0R
δ =0.3,(Series-4)-values of    

0

( )R z
R

 

when 
0R
δ =0.4, (series-5)-values of    

0

( )R z
R

 when 
0R
δ =0.5.  
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Figure: 3 

 

0

( )R z
R

 =.9037 when 

0R
δ =0.1 

0

( )R z
R

 =.8076 when 

0R
δ =0.2 

0

( )R z
R

 =.5191 when 
0R
δ =0.5 

 U λ  u λ  u λ  

0.5 1.6141 0.5 2.7455 0.5 21.9644 

1.0 1.6161 1.0 2.7535 1.0 22.2823 

1.5 1.6167 1.5 2.7558 1.5 22.3759 

2.0 1.6170 2.0 2.7569 2.0 22.4191 

2.5 1.6171 2.5 2.7575 2.5 22.4434 



 

J.Mech.Cont.& Math. Sci., Vol.-6, No.-2, January (2012) Pages 859 - 874 

  873

3. Conclution:  

The variation of flow resistance in the stenosed portion of the artery with 

average flow velocity is exhibited in figures 1 and 2. For a given set of the 

values of different parameters and material constants, it is observed from the 

theoretical investigation that the flow resistance at the stenosed portion of the 

artery increases marginally with the increase of the average flow velocity. The 

corresponding results (flow resistance) are seen to increase with the decrease in 

the radius of the artery in the stenosed portion and the stenosis depth. 
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