J.Mech.Cont.& Math. Sci., Vol.-7, No.-1, July (2012) Pages 931-940

SOME FEATURES OF α-R₀ SPACES IN SUPRA FUZZY TOPOLOGY

By

¹M. F. Hoque, ²R. C. Bhowmik, ³M. R. Kabir, and ⁴D. M. Ali

¹Dept. of Mathematics, Pabna Science and Technology University, Pabna, Bangladesh;

²Dept. of Mathematics, Pabna Science and Technology University, Pabna, Bangladesh;

³Dept. of Mathematics, Pabna Science and Technology University, Pabna, Bangladesh

⁴Department of Mathematics, Rajshahi University, Rajshahi, Bangladesh

Abstract

This paper introduce and study four concepts of R_0 supra fuzzy topological spaces. We have shown that all these four concepts are 'good extension' of the corresponding concepts of R_0 topological spaces and established relations among them. It has been proved that all the definitions are hereditary, productive and projective. Further some other properties of these concepts are studied. **Keywords and phrases** : fuzzy set, topological spaces, supra fuzzy topological spaces.

বিমূর্ত সার (Bengali version of the Abstract)

R₀- সুপ্রা ফাজি টপোলজীয় দেশের (R₀ supra fuzzy topological spaces.) চারটি ধারণাকে এই পত্রে উপন্থাপন এবং ভাল ভাবে বিচার বিশ্লেষণ করা হয়েছে। আমরা দেখিয়েছি যে এই চারটি ধারণা হচ্ছে R₀- টপোলজীয় দেশের অনুসঙ্গী ধারণার 'ভাল সংযোজন ' এবং ইহাদের মধ্যে পারস্পরিক সম্পর্ক প্রতিষ্ঠিত করেছি। এটা প্রমাণ করা হয়েছে যে সব সংজ্ঞাগুলিই উত্তরাধিকার সূত্রে প্রাপ্ত , প্রসারণশীল এবং অভিক্ষেপক। অধিকন্তু এই সকল ধারণার আরও কিছু ধর্মকে ভাল ভাবে বিচার বিশ্লেষণ করেছি।

1. Introduction

The fundamental concept of fuzzy set was introduced first by Zadeh [10] in 1965. Later Chang [4] and Lowen [6] developed the theory of fuzzy topological spaces in the sense of Zadeh. A large number of research papers have been published dealing with various aspects of such spaces. In 1983, Mashhour et al. [7] introduced supra topological spaces and studied s-continuous functions and s*continuous functions. Abd EL-Monsef et al. [1] introduced the fuzzy supra topological spaces and studied fuzzy supra continuous functions and characterized a number of basic concepts. Hossain and Ali [5] generalized on R₀ and R₁ fuzzy topological spaces. The aim of this paper is to introduce α -R₀ supra fuzzy topological spaces and study their basic properties. Here I = [0,1] and $I_1 = [0,1)$ have their usual meaning.

1.1 Definition⁽¹⁰⁾: For a set X, a function $u: X \to [0,1]$ is called a fuzzy set in X. For every $x \in X$, u(x) represents the grade of membership of x in the fuzzy set u. Some authors say that u is a fuzzy subset of X.

1.2 Definition⁽⁴⁾: Let X and Y be two sets and $f: X \to Y$ be a function. For a fuzzy subset u in X, we define a fuzzy subset v in Y by

 $v(y) = \sup \{ u(x) \} \text{ if } f^{-1}[\{y\}] \neq \phi, x \in X$ = 0 otherwise.

and the inverse image of v under f is the fuzzy subset $f^{-1}(v)=v_0f$ in X is defined by

 $f^{-1}(v)(x) = v (f(x))$, for $x \in X$.

1.3 Definition⁽⁴⁾: Let I = [0,1], X be a non empty set and I^X be the collection of all mappings from X into I, i.e. the class of all fuzzy sets in X. A fuzzy topology on X is defined as a family t of members of I^X, satisfying the following conditions:

- $(i) 1, 0 \in t$,
- (ii) If $u_i \in t$ for each $i \in \Lambda$, then $\bigcup_{i \in \Lambda} u_i \in t$.
- (iii) If u_1 , $u_2 \in t$ then $u_1 \cap u_2 \in t$.

The pair (X, t) is called a fuzzy topological space (fts, in short) and members of t are called t- open (or simply open) fuzzy sets. A fuzzy set v is called a t-closed (or simply closed) fuzzy set if $1-v \in t$.

1.4 Definition⁽⁶⁾ : A fuzzy topology on a nonempty set X is a collection t of fuzzy subsets of X such that

(i) all constant fuzzy subsets of X belong to t.

(ii) t is closed under formation of fuzzy union of arbitrary collection of members of t.

(iii) t is closed under formation of fuzzy intersection of finite collection of members of t.

1.5 Definition⁽¹⁾: Let X be a nonempty set. A subfamily t^* of I^X is said to be a supra fuzzy topology on X if and only if

- (i) $1, 0 \in t^*$,
- (ii) If $u_i \in t^*$ for each $i \in \Lambda$, then $\bigcup_{i \in \Lambda} u_i \in t^*$.

Then the pair (X, t^{*}) is called a supra fuzzy topological space. The elements of t^{*} are called supra open fuzzy sets in (X, t^{*}) and complement of a supra open fuzzy set is called a supra closed fuzzy set. If (X, t) be a fuzzy topological space and t^{*} be a supra fuzzy topology on X. Then t^{*} is called a supra fuzzy topology associated with t if $t \subset t^*$.

1.6 Definition⁽⁸⁾: Let (X, t) and (X, s) be two topological spaces. Let t^* and s^* are associated supra topologies with t and s respectively and $f: (X, t) \longrightarrow (Y, s)$ be a function. Then the function f is a supra fuzzy continuous if the inverse image of each i.e., if for any $v \in s^*$, $f^{-1}(v) \in t^*$, the function f is called supra fuzzy homeomerphic if and only if f is supra bijective and both f and f^{-1} are supra fuzzy continuous.

1.7 Definition⁽⁸⁾: Let (X, t^*) and (Y, s^*) be two supra topological spaces. If u_1 and u_2 are two supra fuzzy subsets of X and Y respectively then the Cartesian product $u_1 \times u_2$ of two fuzzy subsets u_1 and u_2 is a supra fuzzy subsets of X × Y defined by $(u_1 \times u_2)(x, y) = \min(u_1(x), u_2(y))$, for each pair $(x, y) \in X \times Y$.

1.8 Definition⁽⁹⁾: Suppose { $X_i, i \in \Lambda$ }, be any collection of sets and X denoted the Cartesian product of these sets, ie $X = \prod_{i \in \Lambda} X_i$. Here X consists of all points $p = \langle a_i, i \in \Lambda \rangle$, where $a_i \in X_i$. For each $j_o \in \Lambda$, we define the projection $\pi_{jo} : X \longrightarrow X_{jo}$ by $\pi_{jo} (\langle a_i : i \in \Lambda \rangle) = a_{jo}$.

These projections are used to define the product supra topology.

1.9 Definition⁽¹⁰⁾: Let (X, T) be a topological space and T^{*} be associated supra topology with T. Then a function $f: X \longrightarrow R$ is lower semi continuous if and only if $\{x \in X: f(x) > \alpha\}$ is open for all $\alpha \in R$.

1.10 Definition⁽¹⁰⁾: Let (X, T) be a topological space and T^{*} be associated supra topology with T. Then the lower semi continuous topology on X associated with T^{*} is $\omega(T^*) = \{\mu: X \to [0,1], \mu \text{ is } \sup ra \ lsc\}$. We can easily show that $\omega(T^*)$ is a supra fuzzy topology on X.

Let P be the property of a supra topological space (X, T^*) and FP be its supra fuzzy topological analogue. Then FP is called a 'good extension' of P " if and only if the statement (X, T^*) has P if and only if $(X, \omega(T^*))$ has FP " holds good for every topological space (X, T).

2. α -R₀ spaces in supra fuzzy topology

- 2.1 **Definition:** Let (X, t^*) be a supra fuzzy topological space and $\alpha \in I_1$. Then
 - (a) (X, t^*) is an α –R₀ (i) space if and only if for all x, $y \in X$ with $x \neq y$, whenever there exist $u \in t^*$ with u(x) = 1 and $u(y) \leq \alpha$, then there exist $v \in t^*$ with $v(x) \leq \alpha$ and v(y) = 1.
 - (b) (X, t^*) is an $\alpha -R_0$ (ii) space if and only if for all x, $y \in X$, $x \neq y$, whenever $u \in t^*$ with u(x) = 0 and $u(y) > \alpha$, then there exists $v \in t^*$ with $v(x) > \alpha$ and v(y) = 0.

- (c) (X, t^*) is an α -R₀ (iii) space if and only if for all x, y $\in X$ with $x \neq y$, whenever there exists $u \in t^*$ with $0 \le u(x) \le \alpha < u(y) \le 1$, then there exists $v \in t^*$ with $0 \le v(y) \le \alpha < v(x) \le 1$.
- (d) (X, t^*) is an R_0 (iv) space if and only if for all x, $y \in X$ with $x \neq y$, whenever there exists $u \in t^*$ with u(x) < u(y), then there exists $v \in t^*$ with v(x) > v(y).

The following examples show that $\alpha - R_0$ (i), $\alpha - R_0$ (ii), $\alpha - R_0$ (iii) and R_0 (iv) are all independent.

2.2 Example: Let $X = \{x, y\}$ and $u , v \in I^X$ are defined by u(x) = 1, u(y) = 0 and v(x) = 0.45, v(y) = 1. Consider the supra fuzzy topology t^* on X generated by $\{0, u, v, 1, \text{Constants}\}$. Then by definition, for $\alpha = 0.55$, (X, t^*) is $\alpha - R_0(i)$, but (X, t^*) is not $\alpha - R_0(i)$.

2.3 Example: Let $X = \{x, y\}$ and $u, v \in I^X$ are defined by u(x) = 0, u(y) = 1 and v(x) = 0.73, v(y) = 0. Consider the supra fuzzy topology t^* on X generated by $\{0, u, v, 1, Constants\}$. Then by definition, for $\alpha = 0.63$, (X, t^*) is $\alpha - R_0$ (ii), but (X, t^*) is not $\alpha - R_0$ (i).

2.4 Example: Let $X = \{x, y\}$ and $u, v \in I^X$ are defined by u(x) = 1, u(y) = 0and v(x) = 0.32, v(y) = 0.69. Consider the supra fuzzy topology generated by $\{0, u, v, 1, Constant\}$. Then by definition, for $\alpha = 0.52$, (X, t^*) is α -R₀ (iii), but (X, t^*) is not α –R₀ (i) and (X, t^*) is not α – R₀(ii).

2.5 Example: Let $X = \{x, y\}$ and $u, v \in I^X$ are defined by u(x) = 1, u(y) = 0 and v(x) = 0.24, v(y) = 0.48. Consider the supra fuzzy topology t^* on X generated by $\{0, u, v, 1, \text{Constants}\}$. Then by definition, for $\alpha = 0.53$, (X, t^*) is $\alpha - R_0$ (iv), but (X, t^*) is not $\alpha - R_0$ (i), (X, t^*) is not $\alpha - R_0$ (ii), and (X, t^*) is not $\alpha - R_0$ (iii).

2.6 Example: Let $X = \{x, y, z\}$ and $u, v, w \in I^X$ are defined by u(x) = 1, u(y) = 1, u(z) = 0 and v(x) = 0, v(y) = 0, v(z) = 1 and w(x) = 0.92, w(y) = 0.52, w(z) = 0. Consider the fuzzy topology t^* on X generated by $\{0, u, v, w, 1, Constants\}$. Then for $\alpha = 0.63$, it can easily shown that (X, t^*) is $\alpha -R_0(i)$ and (X, t^*) is $\alpha -R_0(i)$. But we observe (X, t^*) is not $\alpha -R_0(ii)$, and (X, t^*)

is not R_0 (iv), Since $w(x) > \alpha \ge w(y)$ but there does not exist $q \in t^*$ such that $q(x) \le \alpha < q(y)$.

2.7 Example: Let $X = \{x, y, z\}$ and $u, v \in I^X$ are defined by u(x) = 0.83, u(y) = 0.41, u(z) = 0.36, and v(x) = 0.36, v(y) = 0.83, v(z) = 0.24. Consider the supra fuzzy topology t^* on X generated by $\{0, u, v, 1, \text{Constants}\}$. Then by definition, for $\alpha = 0.5$, (X, t^*) is $\alpha - R_0(iii)$, but (X, t^*) is not $R_0(iv)$, since u(y) > u(z) but we have no $q \in t^*$ such that q(y) < q(z).

2.8 Theorem: (X, t^*) is 0- $R_0(ii)$ if and only if (X, t^*) is 0- $R_0(iii)$.

Proof: The proof is trivial.

2.9 Theorem: Let (X, t^*) be a supra fuzzy topological space and $I_{\alpha}(t^*) = \{u^{-1}(\alpha, 1] | u \in t^*\}$. Then the following is true:

- (a) (X, t^*) is αR_0 (iii) space if and only if $(X, I_{\alpha}(t^*))$ is R_0 space.
- (b) if (X, t^*) is αR_0 (i) space, then (X, $I_{\alpha}(t^*)$) is not R_0 space and conversely.
- (c) if (X, t^*) is α R_0 (ii) space then (X, $I_{\alpha}(t^*)$) is not R_0 space and conversely.
- (d) if (X, t^*) is $R_0(iv)$, then $(X, I_\alpha(t^*))$ is not R_0 space and conversely.

Proof: Let (X, t^*) be $\alpha - R_0$ (iii). We have to prove that $(X, I_\alpha(t^*))$ is R_0 . Let $x, y \in X$ with $x \neq y$ and $M \in I_\alpha(t^*)$ with $x \in M$, $y \notin M$ or $x \notin M$, $y \in M$. Suppose that $x \in M$, $y \notin M$. We can write, $M = u^{-1}(\alpha, 1]$, for some $u \in t^*$. Then we have $u(x) > \alpha$, $u(y) \le \alpha$, i.e., $0 \le u(y) \le \alpha < u(x) \le 1$. Since (X, t^*) is $\alpha - R_0(iii)$, $\alpha \in I_1$, then there exists $v \in t^*$ such that $0 \le v(x) \le \alpha < v(y) \le 1$, i.e., $v(x) \le \alpha$, $v(y) > \alpha$. It follows that $x \notin v^{-1}(\alpha, 1]$, $y \in v^{-1}(\alpha, 1]$ and also $v^{-1}(\alpha, 1] \in I_\alpha(t^*)$. Thus $(X, I_\alpha(t^*))$ is R_0 .

Conversely, suppose that $(X, I_{\alpha}(t^*))$ is R_0 . We have to prove that (X, t^*) is $\alpha -R_0$ (iii). Let $x, y \in X$ with $x \neq y$ and $u \in t^*$ with $0 \leq u(x) \leq \alpha < u(y) \leq 1$, i.e., $u(x) \leq \alpha$, $u(y) > \alpha$, it follows that $x \notin u^{-1}(\alpha, 1]$, $y \in u^{-1}(\alpha, 1]$, and $u^{-1}(\alpha, 1] \in I_{\alpha}(t)$, for every $u \in t^*$. Since $(X, I_{\alpha}(t^*))$ is R_0 , then there exists $M \in I_{\alpha}(t^*)$ such that $x \in M, y \notin M$. We can write $M = v^{-1}(\alpha, 1]$, where $v \in t^*$, it follows that $v(x) \ge \alpha$, $v(y) \le \alpha$, ie $0 \le v(y) \le \alpha < v(x) \le 1$. Thus (X, t^*) is $\alpha - R_0(t^*)$, i.e., (a) is proved.

2.10 Example: Let $X = \{x, y, z\}$ and $u, v \in I^X$ are defined by u(x) = 1, u(y) = 0, u(z) = 0.8 and v(x) = 0, v(y) = 1, v(z) = 0.7. Consider the supra fuzzy topology t^* on X generated by $\{0, u, v, l, Constants\}$. Then for $\alpha = 0.6$, we have, (X, t^*) is $\alpha - R_0(i)$. Now, $I_\alpha(t^*) = \{X, \Phi, \{x, z\}, \{y, z\}, \{z\}\}$. It is observed that (X, t^*) is not R_0 space, since $y, z \in X$, $y \neq z$ and $\{x, z\} \in I_\alpha$ (t^*), with $z \in \{x, z\}, y \notin \{x, z\}$, but no such $U \in I_\alpha(t^*)$ with $x \notin U, y \in U$. **2.11 Example:** Let $X = \{x, y, z\}$ and $u, v \in I^X$ are defined by u(x) = 0.3, u(y) = 0, u(z) = 0.8, and v(x) = 0.8, v(y) = 1, v(z) = 0. Consider the supra fuzzy topology t^* on X generated by $\{0, u, v, 1, Constants\}$. Then, for $\alpha = 0.5$, we have, (X, t^*) is $\alpha - R_0(ii)$ and (X, t^*) is also $R_0(iv)$. Now $I_\alpha(t^*) = \{X, \Phi, \{z\}, \{y\}, \{y, z\}\}$. It is observed that $(X, I_\alpha(t^*))$ is not R_0 space, since $x, y \in X$, $x \neq y$ and $\{y\} \in I_\alpha(t^*)$ with $x \notin \{y\}, y \in \{y\}$, but no such $U \in I_\alpha(t^*)$ with $x \in U, y \notin U$.

2.12 Example: Let $X = \{x, y\}$ and u, $v, w \in I^x$ are defined by u(x) = 1, u(y) = 0, v(x) = 0.4, v(y) = 0.9, w(x) = 0.7, w(y) = 0.3. Consider the supra fuzzy topology t^* on X generated by $\{0, u, v, w, 1, Constants\}$. Then for $\alpha = 0.6$, we have, (X, t^*) is not $\alpha - R_0$ (i) and (X, t^*) is not $\alpha - R_0$ (ii). Now, $I_{\alpha}(t^*) = \{X, \Phi, \{x\}, \{y\}\}$. Then we see that $I_{\alpha}(t^*)$ is a topology on X and $(X, I_{\alpha}(t^*))$ is R_0 .

2.13 Example: Let $X = \{x, y\}$ and $u, v \in I^X$ are defined by u(x) = 0.4, u(y) = 0.5, v(x) = 0.3, and v(y) = 0.4. Consider the supra fuzzy topology t^* on X generated by $\{0, u, v, 1, \text{Constant}\}$. Then, for $\alpha = 0.6$, we have (X, t^*) is not $\alpha - R_0$ (iv). Now, $I_{\alpha}(t^*) = \{X, \Phi\}$. Then $I_{\alpha}(t^*)$ is a topology on X and $(X, I_{\alpha}(t^*))$ is R_0 .

Hence the proof is complete.

2.14 Theorem: Let (X, T^*) be a supra topological space. Then (X, T^*) is R_0 , if and only if $(X, w(T^*))$ is $\alpha - R_0(p)$, where p = i, ii, iii, iv.

Proof: Let $(X, w (T^*))$ be $\alpha -R_0(i)$. Let $x, y \in X$ with $x \neq y$ and $U \in T^*$ with $x \in U, y \notin U$. But $1_U \in w (T^*)$ and $1_U(x) = 1, 1_U(y) = 0$. Now, we have $1_U \in w (T^*)$ with $1_U(x) = 1, 1_U(y) \le \alpha$. Since $(X, w (T^*))$ is $\alpha -R_0(i)$, there exists $v \in w (T^*)$ such that $v(x) \le \alpha$, v(y) = 1. Then $x \notin v^{-1}(\alpha, 1]$, $y \in v^{-1}(\alpha, 1]$ as $v(x) \le \alpha$, v(y) = 1 and also there exists $v^{-1}(\alpha, 1] \in T^*$. Thus (X, T^*) is R_0 – space.

Conversely, suppose that (X, T^*) be a R_0 -space. We have to prove that $(X, w (T^*))$ is $\alpha - R_0(i)$. Let $x, y \in X$ with $x \neq y$ and there exists $u \in w (T^*)$ such that u (x) = 1, $u (y) \leq \alpha$. Then $x \in u^{-1}(\alpha, 1]$, $y \notin u^{-1}(\alpha, 1]$ as u (x) = 1, $u (y) \leq \alpha$. Hence $u^{-1}(\alpha, 1] \in T^*$. Since (X, T^*) is R_0 , then there exists $V \in T^*$ such that $x \notin V, y \in V$, but $1_V \in w (T^*)$ and $1_V(x) = 0$, $1_V(y) = 1$, i.e., there exists $1_V \in w (T^*)$ such that $1_v (x) \leq \alpha$, $1_V (y) = 1$. Thus $(X, w (T^*))$ is $\alpha - R_0(i)$. Hence (X, T^*) is R_0 if and only if $(X, w (T^*))$ is $\alpha - R_0(i)$.

In the same way, we can prove that

- (a) (X, T^*) is R_0 if and only if $(X, w(T^*))$ is $\alpha R_0(ii)$.
- (b) (X, T^*) is R_0 if and only if $(X, w(T^*))$ is $\alpha R_0(iii)$.
- (c) (X, T^*) is R_0 if and only if $(X, w(T^*))$ is $R_0(iv)$

Thus it is seen that $\alpha - R_0(p)$ is a good extension of its topological counter part (p = i, ii, iii, iv).

2.15 Theorem: Let (X, t^*) be a supra fuzzy topological space and $A \subseteq X$, $t^*_A = \{ u | A : u \in t^* \}$, then

- (a) (X, t^*) is an αR_0 (i) if and only if (A, t^*_A) is an αR_0 (i).
- (b) (X, t^*) is an αR_0 (ii) if and only if (A, t^*_A) is an αR_0 (ii).
- (c) (X, t^*) is an αR_0 (iii) if and only if (A, t^*_A) is an αR_0 (iii)
- (d) (X, t^*) is an $R_0(iv)$ if and only if (A, t^*_A) is an $R_0(iv)$.

Proof: Suppose that (X, t^*) is $\alpha - R_0$ (i). Then for $x, y \in A$, with $x \neq y$ and $u \in t^*_A$ such that u(x) = 1, $u(y) \le \alpha$, then also $x, y \in X$, $x \neq y$. But we can write u = w/A, where $w \in t^*$ and hence w(x) = 1, $w(y) \le \alpha$. Since (X, t^*) is $\alpha - R_0$ (i), then there exists $m \in t^*$ such that $m(x) \le \alpha$, m(y) = 1. But from the definition

 $m/A \in t^*_A$, for every $m \in t^*$ and $m/A(x) \le \alpha$, m/A(y) = 1. Thus (A, t^*_A) is $\alpha - R_0(i)$. i.e., (a) proved.

Similarly (b), (c) and (d) can be proved.

2.16 Theorem: Given (X_i, t_i^*) , $i \in \Lambda$ be supra fuzzy topological spaces and $X = \prod_{i \in \Lambda} X_i$ and t_i^* be a product supra fuzzy topology on X. Then

- (a) $\forall i \in \Lambda$, (X_i, t_i^*) is $\alpha R_0(i)$ if and only if (X, t_i^*) is $\alpha R_0(i)$.
- (b) $\forall i \in \Lambda$, (X_i, t_i^*) is $\alpha R_0(ii)$ if and only if (X, t_i^*) is $\alpha R_0(ii)$.
- (c) $\forall i \in \Lambda$, (X_i, t_i^*) is $\alpha R_0(iii)$ if and only if (X, t_i^*) is $\alpha R_0(iii)$.
- (d) $\forall i \in \Lambda$, (X_i, t_i^*) is $R_0(iv)$ if and only if (X, t_i^*) is $R_0(iv)$.

Proof: Let (X_i, t_i^*) , $i \in \Lambda$ be $\alpha - R_0(i)$. We have to prove that (X, t_i^*) is $\alpha - R_0(i)$. Let $x, y \in X$, with $x \neq y$ and $u \in t^*$ such that u(x) = 1, $u(y) \leq \alpha$. But we have $u(x) = \min\{u_i(x_i) : i \in \Lambda\}$ and $u(y) = \min\{u_i(y_i) : i \in \Lambda\}$ and hence we can find an $u_i \in t^*$ and $x_i \neq y_i$ such that $u_i(x_i) = 1$ and $u_i(y_i) \leq \alpha$. Since (X_i, t_i^*) , $i \in \Lambda$ is $\alpha - R_0(i)$, $\alpha \in I_1$, then there exist $v_i \in t_i^*$, such that $v_i(x_i) \leq \alpha$, $v_i(y_i) = 1$. But $\pi_i(x) = x_i$ and $\pi_i(y) = y_i$ and hence $v_i(\pi_i(x) \leq \alpha, v_i(\pi_i(x) < \alpha, v_i(\pi_i(x) < x_i(\pi_i(x) < x_i(\pi_i$

Conversely, suppose that (X, t^*) is $\alpha - R_0$ (i). We have to prove that (x_i, t^*_i)), $i \in \Lambda$, is $\alpha - R_0$ (i). Let for some $i \in \Lambda$, a_i be a fixed element in X_i , suppose that $A_i = \{x \in X = \prod_{i \in \Lambda} X_i / x_j = a_j \text{ for some } i \neq j\}$. So that A_i is the subset of X, and this implies that $(A_i, t^*_{A_i})$ is also the subspace of (X, t^*) . Since (X, t^*) is $\alpha - R_0(i)$, then $(A_i, t^*_{A_i})$ is also $\alpha - R_0(i)$ and A_i is a homeomorphic image of X_i . Thus (X_i, t^*_i) is $\alpha - R_0(i)$, i.e., (a) is proved.

Similarly, (b), (c) and (d) can be proved.

J.Mech.Cont.& Math. Sci., Vol.-7, No.-1, July (2012) Pages 931-940

References

- 1) Abd EL –Monsef, M. E, and Ramadan, A. E.: On fuzzy supra topological spaces; Indian J. Pure and Appl.Math. 18 (4), 322-329, 1987.
- Ali, D. M.: A note on T₀ and R₀ fuzzy topological spaces; Pro. Math. Soc. B. H. U. Vol. 3, 165-167, 1987.
- 3) Azad, K. K: On Fuzzy semi- continuity, Fuzzy almost continuity and Fuzzy weakly continuity; J. Math. Anal . Appl. 82(1), 14-32, 1981.
- 4) Chang, C. L.: Fuzzy topological spaces; J. Math. Anal Appl. 24, 182-192, 1968.
- Hossain, M. S. and Ali, D. M.: On R₀ and R₁ fuzzy topological spaces; R U Studies Part-B J Sc. 33, 51-63, 2005.
- 6) Lowen, R.: Fuzzy topological spaces and fuzzy compactness; J. Math. Anal. Appl. 56, 621-633, 1976.
- Mashhour, A. S., Allam, A. A., Mahmoud, F. S. and Khedr, F. H.: On fuzzy supra topological spaces; Indian J. Pure and Appl. Math. 14 (4), 502-510, 1983.
- Ming, P. P., Ming. L. Y.: Fuzzy topology II. Product and Quotient Spaces; J. Math. Anal. Appl. 77, 20-37, 1980.
- 9) Wong, C. K: Fuzzy points and local properties of Fuzzy topology; J. Math. Anal. Appl. 46, 316-328, 1974.
- 10) Zadeh, L. A.: Fuzzy sets. Information and control, 8, 338-353, 1965.