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Abstract. 
 In this paper we have developed some properties of nilpotent ideals and radical of 
Γ-rings. At last we have prove that an external direct sum of finitely many matrix 
gamma rings over division gamma rings is a semi-simple Γn-ring.  
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¢hj§aÑ p¡l (Bengali version of the Abstract) 

HC f−œ n§eÉ gmc BC¢X−um (nilpotent ideals) Hhw N¡j¡ ¢lw (Γ-rings) - Hl j§m−Ll   

(radical) ¢LR¥ dÑ−jl  Eæue L−l¢R z f¢l−n−o Bjl¡ fËj¡Z L−l¢R −k N¡j¡ ¢lw - Hl ¢h¢iæ Aw−nl Efl 

pp£j hý jÉ¡¢VÊ„ N¡j¡ ¢lw - Hl h¢qxÙÛ fËaÉr −k¡Ngm q−μR AdÑ - plm Γn - ¢lw z  
 

1.  Introduction 
 

 The concepts of a Γ-ring was first introduced by Nobusawa [7] in 1964. His 

concept is more general than a ring. Now a day, his Γ-ring is called a Γ-ring in the 
sense of Nobusawa. 

W. E. Barnes [2] gave a definition of a Γ-ring which is more general. He 

introduced the notation of Γ- homomorphisms, Prime and Primary ideals, m-systems 

and the radical of an ideal for Γ-rings.  

 The notion of Jacobson radical, nil radical and strongly nilpotent radical for Γ-
rings were introduced by Coppage and Luh [4] and they developed some radical 
properties. Also inclusion relation for these radicals were obtained and it was shown 
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that the radicals all coincide in the case of a Γ-ring which satisfies the descending 
chain condition (DCC) on one-sided ideals. They studied Barnes prime radicals for a 

Γ-ring. 
 The general radical theory for rings had been introduced by A. Kurosh [6] and 
S.A. Amitsur [1]. They studied the generalizations of a general radical. Divinsky [5] 
studied the general radical theory, the upper radical and the lower radical. Various 
kinds of radicals were studied here and he had also shown that these radicals are equal 
by minimum condition. He also characterized special class of rings and special 
radicals.  
 G. L. Booth [3] studied radicals of matrix gamma rings. He developed various 
properties of radicals of matrix gamma rings. He also studied the properties of some 
radical classes of matrix gamma rings which were not N-radicals. 
 Hiram Paley and Paul M. Weichsel [8] studied the theory of radical of rings in a 
classical notion. They were characterizing semi-simple rings in terms of matrices. 
They developed some important characterizations in ring theories. Some 
characterizing of the radical of rings are studied by them. In this paper, we generalized 

some important result of the radical of Γ-rings of Hiram Paley and Paul M. Weichsel 
[8]. 

2.  Preliminaries. 
 
2.1   Definitions. 
 
Gamma Ring.  Let M and Γ be two additive abelian groups. Suppose that there is a 

mapping from M × Γ × M → M (sending (x, α, y) into xαy) such that 

         (i)       (x + y)αz = xαz + yαz 

                    x(α + β)z = xαz + xβz 

                    xα(y + z) = xαy + xαz 

         (ii)       (xαy)βz = xα(yβz), 

where x, y, z∈M and  α, β∈Γ.  Then M is called a Γ-ring in the sense of Barnes [1]. 
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Ideal of Γ-rings. A subset A of the Γ-ring M is a left (right) ideal of M if A is an 

additive subgroup of M and MΓA = {cαa | c∈M, α∈Γ, a∈A}(AΓM) is contained in 

A. If A is both a left and a right ideal of M, then we say that A is an ideal or two-sided 

ideal of M.  

        If A and B are both left (respectively right or two-sided) ideals of M, then A + B 

=       {a + b|a∈A, b∈B} is clearly a left (respectively right or two-sided) ideal, called 

the sum of  A and B.We can say every finite sum of left (respectively right or two-

sided) ideal of a        Γ-ring is also a left (respectively right or two-sided) ideal. 

It is clear that the intersection of any number of left (respectively right or two-

sided) ideal of M is also a left (respectively right or two-sided) ideal of M.  

        If A is a left ideal of M, B is a right ideal of M and S is any non-empty subset of 

M, then the set, AΓS = {∑
=

n

i 1
aiγsi | ai∈A, γ∈Γ, si∈S, n is a positive integer} is a left ideal 

of M and SΓB is a right ideal of M. AΓB is a two-sided ideal of M.  

Nilpotent element. Let M be a Γ-ring. An element x of M is called nilpotent if for 

some γ∈Γ, there exists a positive integer n = n(γ) such that (xγ)nx = (xγxγ ... γxγ)x = 0. 
 

The descending chain condition (DCC). A Γ-ring M is said to have the descending 
chain condition on left ideals or DCC on left ideals if every descending sequence of 

left ideals      M ⊇ A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ … terminates after a finite number steps, 
that is, there exists an integer n such that An = An + 1 = An + 2  = ......  . 

The ascending chain condition (ACC). A Γ-ring M is said to have the ascending 
chain condition on left ideals or ACC on left ideals if every ascending sequence of left 

ideals A1 ⊆ A2 ⊆ ........ ⊆ An ⊆.........  terminates after a finite number of steps, that is, 
there exists an integer n such that An = An + 1 = An + 2   = ...............  . 
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Matrix Gamma Ring. Let M be a Γ-ring and let Mm,n and Γn,m denote, respectively, 

the set of all m × n matrices with entries from M and the set of all n × m matrices with 

entries from Γ, then Mmn is a Γnm -ring and multiplication defined by  

           (aij)(γij)(bij) = (cij),  where ∑∑=
p q

qjpqipij .bγac  If m = n, then Mn is a Γn-ring. 

Division gamma ring.   Let M be a Γ-ring. Then M is called a division Γ-ring if it has 

an identity element and its only non-zero ideal is itself.  

Internal direct sum. Let M be a Γ-ring and let N1 and N2 be two left ideals of M such 
that  

(i) M = N1+ N2 = {n1+n2⏐n1∈N1,n2∈N2} 
(ii) N1 ∩ N2 = {0}. 

Then we say M is the internal direct sum or simply direct sum of N1 and N2 and we 

write      M = N1⊕  N2. 

External direct sum. Let M and N be Γ-rings. Then the external direct sum of M and 

N denoted by M
.
+ N is {(m, n)⎜m∈M, n∈N}, where for (m1, n1), (m2, n2)∈M 

.
+ N, 

(m1, n1) +(m2, n2) = (m1 + m2, n1+ n2) and (m1, n1)γ(m2, n2) = (m1γm2, n1γn2) all γ∈Γ. 

Quotient Γ-ring.  Let M be a Γ-ring. Let A be an ideal of M. Then the set {m +A ⏐ 

m∈M}is called the quotient Γ-ring of M by A. It is denoted by A
M , where (m1+ 

A)γ(m2 + A) = m1γm2 + A and (m1 + A) + (m2 + A) = (m1 + m2) +A for all m1, m2∈M 

and γ∈Γ.  
 

2.2   Theorem.  Let M1 and M2 Γ-rings with DCC (ACC) on left ideals. Then M1 
.
+ M2 has also DCC (ACC) on left ideals.  
 
 

2.3  Theorem. Let Δ be a division Γ-ring. Then Δn, the Γn-ring of all n × n matrices 

over Δ, satisfies the ACC and the DCC on left ideals.     
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3.     Nilpotent ideal of Γ-rings. 
 
 
3.1   Definition.   An ideal A of a Γ-ring M is called nilpotent if (AΓ)nA = 

(AΓAΓ...ΓAΓ)    A = 0, where n is the least positive integer. In addition, if A is 

nilpotent, then every element in A is nilpotent. 
 

3.2   Theorem.   Let M be a Γ-ring and let N1 and N2 be two nilpotent left (right) 

ideals. Then  N1 + N2 is a nilpotent left (right) ideal. 

Proof. Let M be a Γ-ring. Let N1 and N2 be nilpotent left ideals of M. Then there exist 

two least positive integers q and n such that  

 (N1Γ)qN1 = (N1ΓN1Γ ........ ΓN1Γ)N1 = 0  and 

 (N2Γ)nN2 = (N2ΓN2Γ ......... ΓN2Γ)N2 = 0.   

Then N1+N2 is also a left ideal of M. Every element of {(N1+N2)Γ} 1++nq (N1+N2) is a 

sum of products x1γx2γ ..........γxq+n+2 in which either at least (s+1) factors belong to N1 

and (r+1) factors belong to N2. In the former case, the above product may be written as 

( ) ( ) ( )
......,)γγxγ.........γxγ(x...

...γxγγxγxγxγ...γxγxγγx...γxγx

1sss

3222111

i2i1i

i2i1ii2i1ii21

+++

++++ …

 

where 1iii Nx,x,x
1s21
∈

+
… and s +1≥ n +1. Each group in parenthesis belongs to N1, 

since N1 is a left ideal of M. However, the product of any s+1 elements of N1 is 0 and so 

the above product is 0. A similar argument holds when at least (r +1) factors belong to 

N2. 

Thus {(N1+N2)Γ}s+n+1(N1+N2) = {(N1+N2)Γ(N1+N2)Γ. . . Γ(N1+N2)Γ} (N1+N2) = 0. 

Hence (N1+N2) is nilpotent. Thus the theorem is proved. 
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3.3   Corollary.   Let M be a Γ-ring and let A1, A2  ,. . .  , An be nilpotent left (right) 

ideals in M. Then  ΣAλ  is a nilpotent left (right) ideal in M. 
 

3.4   Theorem.   Let A be a nilpotent left (right) ideals in a Γ-ring M. Then AΓM 

(MΓA) is a nilpotent ideal in M. 

Proof. Since A is a left ideal, so is AΓM, and since M is a right ideal so is AΓM. Thus 

AΓM is and ideal in M. If (AΓ)nA = 0, then   
 

{(AΓM) Γ}n (AΓM) = (AΓM) Γ (AΓM) Γ ........ Γ(AΓM) Γ(AΓM) 

=  AΓ[(MΓA)Γ (MΓA)Γ ........ Γ(MΓA)Γ] M 

=  AΓ{(MΓA)Γ}n–1 (MΓA)ΓM   

⊆  AΓ{(AΓ)n–1 AΓM   

=  (AΓ)n  AΓM   

=  0ΓM   

=  0. 

Hence   AΓM  is nilpotent. 

4.     Radical of a Γ-ring. 
 
4.1   Definition.   Let M be a Γ-ring with DCC on left ideals. Let {Aλ} be the 

collection of all nilpotent left ideals of M. Then N = ΣAλ is called the radical of M.  

 We shall show that N possesses the following properties :  

(1)  N is a nilpotent ideal  

(2)  N contains all nilpotent right ideals, as well as all nilpotent left ideals; thus 

N is 

the unique ideal of M maximal with respect to being nilpotent. 

4.2   Theorem.   Let M be a Γ-ring with DCC on left ideals and let N be the radical of 

M. Then N is a nilpotent left ideal of M.  
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Proof. Let M be a Γ-ring with DCC. Then clearly N is a left ideal of M. So                            

N⊇NΓN⊇(NΓ)2N ⊇ ....... is a descending sequence of left ideals. By the DCC, there 

exists an integer n such that (NΓ)nN = (NΓ)n+1N =  ............ = (NΓ)2n+1N. 

Thus (NΓ)nN = (NΓ)2n+1N = (NΓ)nNΓ(NΓ)nN. If (NΓ)nN = 0,then N is nilpotent. So the 

theorem is proved. If (NΓ)nN ≠ 0, then there exists a left ideal A of M such that 

(NΓ)nNΓA≠ 0. By the DCC, there exists a left ideal A0 of M such that (NΓ)nNΓA0 ≠ 0. 

Now since (NΓ)nNΓA0 ≠ 0, there exists an element x (≠ 0)∈A0 such that(NΓ)nNΓx ≠ 

0.Then (NΓ)nNΓ(NΓ)nNΓx = (NΓ)2n+1NΓx = (NΓ)nNΓx ≠ 0. Since x∈A0, (NΓ)nNΓx ⊂A0. 

So by the minimality of A0, (NΓ)nNΓx = A0. Thus there exists an element y∈(NΓ)nN  

such that yγx = x for some γ∈Γ. Therefore y∈N. So y is also contained in the sum of 

finitely many nilpotent left ideals of M. By Corollary 3.3, the sum of finitely many 

nilpotent left ideals of M is also a nilpotent ideal of M. Hence y is nilpotent. So (yγ)my = 0 

for some positive integer m. We have yγx = x, then yγyγx = yγ(yγx) = yγx = x. Continue 

this process, we get x = yγx = (yγy)γx = (yγ)2yγx = . . . .  = (yγ)myγx =  ... .  Since (yγ)my = 

0, (yγ)myγx = 0γx =0. Thus x = 0, which contradicts the fact that x ≠0. Hence (NΓ)nN = 

0. Therefore N is nilpotent. Hence the theorem is proved. 

4.3   Theorem.   Let M be a Γ-ring. Let N be the sum of all nilpotent left ideals of M. 

Then N contains all nilpotent right ideal of M also.  

Proof. Let A be a nilpotent right ideal. By Theorem 3.4, MΓA is nilpotent, whence A 

+ MΓA is also nilpotent by Theorem 3.2. But A + MΓA is clearly a left ideal, so A + 

MΓA ⊆ N, whence A ⊆ N. 

 We summarize Theorems 4.2 and 4.3 in the next theorem, which implies that 

properties (1) and (2) given prior to Theorem 4.2 hold. 
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4.4   Theorem.   Let M be a Γ-ring with DCC on left ideals. Let N be the radical of M. 

Then  

(i) N is a nilpotent ideal 

(ii) N is the sum of all nilpotent right ideals 

(iii) N is the unique ideal of M maximal with respect to being nilpotent. 

Proof. (i)  By Theorem  4.2, N is a nilpotent left ideal. Since NΓM ⊕ N is a nilpotent 

left ideals, NΓM ⊕ N ⊆ N, that is, N is also a right ideal, whence N is an ideal. 

(ii)  By Theorem  4.2, N contains all nilpotent right ideals of M. Since N is also a 

nilpotent right ideal, N is clearly the sum of all nilpotent right ideals. 

(iii)  This follows from the definition of N and  (ii). 

 We note that if M has DCC on right ideals, then we could define the radical of M 

as the sum of the nilpotent right ideals, and prove that it is equal to the sum of the 

nilpotent left ideals. That is, if M has either DCC on left ideals or DCC on right ideals, 

then we get the same radical whether we define it as the sum of the nilpotent left ideals 

or the nilpotent right ideals.  

 Now let M be a Γ-ring with DCC on left ideals and let N be the radical of M. 

Since N is an ideal in M, we may form the quotient Γ-ring N
M and it is easy to see 

that N
M also has DCC on left ideals. We shall prove that the radical of N

M  is the 

zero element of N
M . 

4.5   Theorem.   Let M be a Γ-ring with DCC on left ideals. Then the radical of N
M is 

zero.  

Proof.  Let A′ be a nilpotent left ideal of N
M and let 

 A = {m∈M ⏐m + N∈ A′}. Then A is a left ideal of N
M . 
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Since A′ is nilpotent and since N is nilpotent, there exist integers s, t such that 

 (i)   (A′Γ)sA′ = 0 in N
M , that is,  (m1 + N) γ (m2 + N)γ . . . γ (ms +N) γ (a +N) = N  

  where m1, m2, . . . , ms, a∈A  and  γ∈Γ 

 (ii)   (NΓ)t N = 0. 

Now let m1, m2, . . . , mst ∈A. Then  

 a1 = m1γm2γ  . . . γ ms ∈N,  a2 = ms+1 ∈N γms+2 γ  . . . γ m2s ∈N,  . . . ,  

at = m(t–1) s+1 γ . . . γ mst ∈N , whence the product a1γa2γ . . . γ at γa of these  

(t + 1) elements of N is zero, that is,   m1γm2γ  . . . γ mst γa = 0 and so (AΓ)st A = 0. 

Since A is nilpotent, A ⊆ N and so A′ equals zero in N
M . Thus N

M  has radical zero. 

4.6   Definition.   Let M be a Γ-ring with DCC on left ideals. We say M is semi-

simple if the radical of M is 0.  

We see immediately that if M has DCC on left ideals, then N
M is semi-simple 

by Theorem 4.5. Moreover, it is easy to prove that a direct sum of finitely many matrix 

gamma rings over division Γ-rings, say )()2()1( ...
21

k
nnn k

Δ++Δ+Δ
⋅⋅⋅

, where )(iΔ is a division 

Γ-ring, is a semi-simple Γn-ring.  

4.7   Theorem.   Let )(iΔ be a division Γ-ring, i, = 1, 2, ..., k, Let n1 , n2, ... , nk be 

integers that are greater than 0. Then 

S = )(...
21

k
nnn k

Δ++Δ+Δ
⋅⋅⋅

 is semi-simple. 
 

Proof.  By Theorem 2.2 and Theorem 2.3, the Γ-ring S satisfies the DCC on left 

ideals. Thus we need only show that the radical N of S is zero. If N ≠ 0, then there 

exists an element 

 (a1 , a2,  . . . ,ai, . . .,  ak) in N,  ai ≠ 0. Since N is a two-sided ideal in S, 

(0, 0, ..., 0, bi, 0, . . ., 0) γ (a1, a2, ... ,ai, ...,  ak) γ (0, 0, ..., 0, ci, 0, ..., 0) is in N for all               
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bi, ci, ∈
inΔ  and γ∈Γ. Thus N contains all the elements of the form 

 (0, 0,. . ., 0, biγ aiγci ,..., 0,..., 0). Since )(i
ni

Δ  has no proper two-sided ideals, S 

contains the set T = {(0, 0,..., 0, xi, 0,..., 0)⏐xi∈ )(i
ni

Δ }. But this ideal T of S is contained 

in the radical of S and T is clearly not nilpotent, contradicting that N is nilpotent. Thus 

N = 0 and the proof is completed. 
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