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Abstract:  

In this paper we have developed a new technique to determine optimal solution 

to box pushing problem by two robots . Non-Dominated sorting  genetic algorithm and 

Biogeography-based optimization algorithm are combined to obtain optimal solution. 

A modified algorithm is developed to obtain better energy and time optimization to the 

box pushing problem. 
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¢hj§aÑ p¡l (Bengali version of the Abstract) 

−l¡hVàu (two robots) L«a h„ f¤¢nw (box pushing)  pjpÉ¡u fËL«øaj pj¡d¡e ¢eÑZ−ul SeÉ 

HC f−œ Bjl¡ HL¢V e§ae L«v−L±n−ml Eáh L−l¢R z Cq¡l fËL«ø pj¡d¡e ¢eÑZ−ul SeÉ A-¢eu¿»L hÑ−Nl 
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pjpÉ¡l A¢dLal n¢š² Hhw pj−ul fËL«øaj j¡e ¢eÑZ−ul SeÉ Dov f¢lhÑae L«a HÉ¡m−N¡¢lc−jl Eáh Ll¡ 
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1. Introduction: 

The use of perceptual cues in multi robot box pushing was investigated by 
Kube, C.R and Zhang, H (9). Brooks, R.A (8) presented a robust layered control for a 
mobile robot. Genetic algorithm for multi-object optimal solution formulated and 
generalized by Fonseca, C.M and Flaming, P.J.(11). This work was further extended 
to Multi-objective programaning using uniform design and genetic algorithm by 
Leung, Y.W. and Wang, Y.P (10). Langle, T and Worn, H.(6) investigated the 
problem of Human-robot co-operation using multi-agent system. Innocenti, B., Lopez, 
B and Salvi, J.(7) presented a multi-agent architecture with co-operative fuzzy control 
for a mobile robot. Deb, K.(4) developed a fast and Elitist Multi-objective Genetic 
algorithm: NSGAII. Department of Electrical Engineering, Shaoxing University, 
China(3) had presented an analysis of the equilibrium of Migration Models for 
Biogeography-based optimization. Biogeography-based optimization was also deduce 
by Simon, D.(2). Rotation and Translation selective pareto optimal solution to the box-
pushing problem by mobile robot using NSGA-II was developed by Chakraborty, J., 
Konar, A., Nagar, A. and Das, S.(1). 

However, optimal solution to box pushing problem by two robot by using 
BBO – NSGA-II algorithm has not been yet investigated by any researcher in a similar 
approach. The objective of the present paper is to find optimal solution to box pushing 
problem by developing combination of two algorithms: Non-Dominated sorting 
Genetic algorithm and Biogeography-based algorithm. 

1. Statement of the problem and its solution. 

Let us consider two robots participating in Solid lines represent initial and final 
positions and dashed lines represent other positions between initial and final. The 
stepwise performance is as follows- 

Step1: A translation operation is carried out where one robot is pushing the box and 
the other is pulling it in order to move it along its width. 
Step2: A rotational operation is carried out where two robots are applying equal and 
opposite forces to bring about rotation of the box about its centre. 
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M EXPRESSIONS FOR BOX PUSHING PROBLEM: 
Let G(Xg , Yg) be the centre of gravity and A(Xa, Ya), B(Xb, Yb), C(Xc, Yc) and 
D(Xd, Yd) be the 4 vertices of the box. 
 

1. for translatory motion the fallowing equations are derived 
Xg/ = Xg + Dcos α          Yg/ = Yg + Dsinα  (1) 
Xm/ = Xm + Dcos α          Ym/ = Ym+ Dsinα  (2)  
for all m ЄP={a,b,c,d} 
α = θ + 180o                                   

Box pushing as shown in fig-1, fig-2, and fig-3.    Fig.-1 

 
2. For rotational motion the following equations are derived: 
Xm/ = Xg(1 – cos θ) + Xmcos θ – (Yg – Ym) sin θ     (3) 

 Ym/ = Xg(1 – cos θ) + Ymcos θ – ( Yg – Ym ) sin θ     (4) 
 for all m ЄP={a,b,c,d} 
  

 
Fig.-2 

 
3. For combined translator and rotational motion : 

Co-ordinates after rotational movement we have, 
    Xm/ = Xg(1 – cos θ) + Xmcos θ – ( Yg – Ym ) sin θ     (5) 

Ym/ = Xg(1 – cos θ) + Ymcos θ – ( Yg – Ym ) sin θ     (6) 
for all m ЄP={a,b,c,d} 

 
Co-ordinates after translatory movement we have 

Xg/ = Xg + S cos α          Yg/ = Yg + S sin α  (7) 
Xm// = Xm/ + S cos α          Ym//= Ym/ + S sin α  (8)                  Fig.-3 
for all m ЄP={a,b,c,d}                      
 
4..  Algorithms: 

In this paper, two algorithms are combined to obtain optimization: 
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A. Non Dominated Sorting Genetic Algorithm.[3] 
B. Biogeography-Based Optimization Algorithm. 
A. Non Dominated Sorting Genetic Algorithm: 

NSGA-II is a non-dominated sorting based Multi Objective Evolutionary 
Algorithm(MOEA)[3] which overcomes 3 problems of common MOEA- 

1. Computational complexity reduces from O(MN3) to O(MN2) where M is the number 
of objective and N is the population size. 

2. Non elitism approach. 
3. Need for a shared parameter. 

Here a selection operator is introduced which selects the best solution with respect to fitness 
among the N solutions i.e. the combination of parent and child solutions. This process also 
introduces three new techniques- 

a. Fast non-dominated sorting procedure 

b. Fast crowding distance estimation procedure 

c. A simple crowded comparison operator 

In order to determine the solution of crowding distance  have to add the differences between 
the value of the solutions of two adjacent objective functions. 
Solutions. Let us consider solutions for two objective functions be fi and f2.Now for the first 

and second objective functions, the value of the distance value for  the i-th solution will be- 

    CR 1distance  [i ] = f1 [i + 1] − f1 [i − 1]  

    CR 2 distance[i ] = f 2 [i − 1] − f 2 [i + 1]respectively. 

Calculation of crowding distance 

Now, for the solution of crowding distance for the solution we 
have to obtain the sum of the distance values for each objective 
function. 

Process: 

NSGA-II procedure can be summarized as follows- 

1) At first  a random parent population P0 is initialized. 

2) Sorting of population is done based on non-domination. 
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3) Each solution is given a fitness or rank based on their nondomination level starting 

from 1 as the best level. In this way we achieve minimization of fitness. 

4) A child population Q0 of size N is created using binary tournament selection, 
recombination and mutation. 

5) Due to the introduction of elitism a different procedure is followed after the initial 
generation- 
A. Let in t th generation, parent population be denoted as Pt (size N) and child 

population as Qt(size N).A combined population Rt= PtUQt of size 2N is formed. 
B. Rt is sorted according to non-domination. Due to the presence of previous and 

current population members in Rt elitism is ensured. 
C. Solutions belonging to best non-domination set (say F1) are of best solutions in 

the combination population. 
D. If size of F1<N , then all members of F1 are selected for the new population Pt+1 . 
E. The remaining members of  Pt+1  are selected from the consecutive ranked non-

dominated sets. The solutions from sets F2, F3 …..and so on are selected as 
shown in the fig.4 

F. To select exactly N population members we sort the last set Fl using crowded 
comparison operator αn in descending order and select best solutions needed to fill 
the population slots.  αn requires both rank and crowded distance of each solution 
in the population. These quantities are calculated while forming population Pt+1. 

G. The new population Pt+1 of size N is now used to create a new population Qt+1 of 
same size by the process of selection, crossover and mutation.  

 

 
Fig.4 

A. Biogeography–based  optimization: 

BBO algorithm deals with the migration of species from one ‘island’ to another.Here 
the word ‘island’ means a geographically isolated habitat.Different species migrate 
between islands. Some of the islands are more suitable to live for some species than 
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others depending on its topography ,climate etc.This suitability is expressed in the 
form of a variable called suitability index variable(SIV).Habitats with high suitability  
is said to have high habitat suitability index(HHSI) and those with low suitability is 
said to have low habitat suitability index(LHSI).High HSI indicates high emigration 
rate[2](more species leave the habitat) and  low immigration rate[2](fewer species 
enter the habitat).It happens because in highly suited habitats density of species are 
near to the saturation and they tend to migrate to other  habitats with more 
opportunities. Low HSI indicates high immigration rate[2](more species enter  the 
habitat) and  low emigration rate(fewer species leave the habitat). 

 

Fig.1 

Now this fig.1 shows the migration curve, where λ is the immigration rate and µ is the 
emigration rate. Both λ and µ are functions of the number of species in a habitat. 

  From the immigration curve it is clear that immigration rate is 
maximum (I) when there is no species in a habitat. But when the habitat becomes 
more populated with species, possibility of successful survival of immigration to the 
habitat decreases i.e. λ  decreases. When the number of species becomes Smax and the 
habitat is saturated with species the immigration rate λ becomes zero. 

  Again from the emigration curve it is clear that emigration rate is zero 
when there is no species in a habitat. But when the habitat becomes more populated 
with species, possibility of leaving the habitat increase i.e.µ increases. When the 
number of species becomes Smax and the habitat is saturated with species the 
emigration rate becomes maximum(E). 
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  In the curve the intersection point S0 shows the equilibrium state that 
means both the immigration rate and emigration rate are equal at this point. Now 
migration can occur from S0 in two ways –positive excursion(immigration) and 
negative excursion(emigration).Positive excursion occurs due to a sudden arrival of a 
huge number of species from neighboring habitat by flotsam, flying, swimming or due 
to a sudden increase in speciation. Negative excursion occurs due to natural calamity, 
disease etc. 

  Now suppose probability to contain S species in a habitat is Ps.From 
time t to (t+Δt) the probability Ps  changes as follows: 

Ps(t+Δt)= Ps(t)(1-λsΔt- µsΔt)+Ps-1λs-1Δt+Ps+1 µs+1Δt(9)[2] 

Where λs  and µs are the immigration and emigration rates for S species in the habitat. 
This equation is true if one of the following conditions must satisfy: 

1) At time t there were S number of species in the habitat and no species arrived in the 
habitat or no species left the habitat between the time t and (t+Δt)  ; 

2) At time t there were (S-1) number of species, and one species arrived in the habitat. 

3) At time t there were (S+1) number of species, and one species left from the habitat. 

 Here Δt is so small that probability of migration of more than one species can 
be neglected. 

Application of BBO to optimization problems : 

I. Migration[2]: 

In a problem , the population of possible solutions can be considered as vectors of 
integers. Each integer in the solution vector represents a SIV. Good solutions are 
considered to be habitats with high HSI and poor solutions are considered to be 
habitats with low HSI.HSI in BBO is equivalent to “fitness” function as in other 
population based genetic algorithms. For each solution(habitat)  an identical 
species curve is assumed i.e. E=I as shown in fig.2. 
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Fig.2 

 S1=habitat with few species(high HSI) and S2=habitat with many species(low 
HSI) 
 From here we can conclude immigration rate(λ) of S1 is greater than 

immigration rate of S2 and emigration  rate (µ)of S1 is lower than emigration rate 

of S2. 

II. Mutation[2]: 

HSI of a habitat is prone to changes of environment. The species count suffers a 
deviation from its equivalent value under unusual circumstances (i.e.arrival  of large 
number of migrants from other habitats). 
       Probabilities of each species is expressed by the differential equation- 

s=-( λ s+µs)Ps+ µs+1Ps+1     ,          S=0                                                                                       

=-( λ s+µs)Ps+ µs-1Ps-1+ µs+1Ps+1,  1≤S≤Smax-1 

 =-( λ s+µs)Ps+ µs-1Ps-1  ,                 S=Smax           (10)[2] 

From the fig.1 it can be concluded that species having low count and high count have 
relatively low probabilities compared to species with medium count. The reason 
behind this is that species with medium count are near to the equilibrium 
point(S0).Thus it can be inferred that medium HSI solutions are relatively more 
probable than both high HSI and low HSI solutions. 

Solutions with low probability is more prone to mutate to some other solutions than 
solutions with high probability. The implementation can be expressed as  

m(S)=mmax(1-Ps)/Pmax(11)[2] 
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Here m(S) is the mutation rate which is inversely proportional to solution probability 
and mmaxis an user defined parameter. 

Mutation is applied both on low HSI and high HSI solutions but not on medium 
HSI solutions. This modification helps the low HSI solutions to improve and decrease 
the dominance of high HSI solutions(which are also improving).If mutation destroys 
HSI of the best solution we use elitism approach to restore it. 

III. Modifications: 
To obtain better energy and time optimization of the box pushing problem we combine 
the NSGA-II and BBO algorithms. The modified algorithm is as follows- 

1. At first a random  population(habitat)P0 with N number of species(solution) is 
initialized. Each solution is a D-dimensional vector. Box parameters are initialized 
as xcurnt = xc and ycurnt = yc 

2. Calculate HSI of each solution of population P0 ,then sorting of solutions in 
population P0is done based on non-domination using those HSI values. 

3. Calculate immigration rate λ and emigration rate µfor each solution in population 
P0 . 

4. Child solutions of size D is created from randomly selected parent solution 
exchanging the SIV between two chromosomes (solution) keeping other fields 
unchanged, called migration. Calculate HSI of each child. Then non-dominated 
sorting is performed on child population based on HSI. 

5. After migration, mutation takes place. Calculate the probability of population 
using equation (9). Calculate mutation rate for each species in population. 
Mutation chooses equiprobable solution and increases diversity among population. 
If mutation destroys HSI of the best solution we use elitism approach to restore it. 

6. Compare HSI of parent & child solution.  
i.e. || HSIPARENT  - HSICHILD || < € or not. 

7. If  || HSIPARENT  - HSICHILD || < € , then parent  population   P0 is selected.  
Otherwise check for three conditions- 

a) If  HSIPARENT >HSICHILD ,then  
  select parent populationP0. 

b)  If  HSIPARENT  <HSICHILD ,then   
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select childpopulationQ0. 

c) If  HSIPARENT  =HSICHILD, then 
we have to select the best 

solution using crowding  

distance[1]. 

8. Hence, xcurnt andycurnt  are updated using equations 1-8. 
9. Above mentioned steps (step 1 - 9) are repeated until the termination criteria 

i.e.(|xcg-xcurnt|and|ycg-ycurnt|) <βis met. Here β is an arbitrarily small number 
and(xcg,ycg) is the co-ordinate of the centre of gravity of  the box. 
IV. Pseudo code:   

 Input: Initial centre of gravity(cg) of the box(xc,yc), final centre of gravity(cg) of the 
box(xcg,ycg). 

Output: Forces(FA,FB) applied by the two robots, Total energy consumed , Total time 
taken.  

Begin: 

Initialize parameters for the box: 

xcurnt = xc; 

ycurnt = yc; 

Repeat 

Call  BBO-NSGAII(xcurnt,ycurnt) 

 Update(xcurnt,ycurnt)in each step using eqns.1 to 8. 

Until (|xcg-xcurnt|and|ycg-ycurnt|) < β 

/* β is an arbitrarily small no.*/ 

End 

     Procedure BBO-NSGAII(xcurnt,ycurnt) 
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Begin: 

• Initialize a  random population P0  Set  t=0; 

• Determine HSI of each solution of population P0 , 

apply Non-dominated sort on P0based on those HSI. 

• Calculate immigration and emigration rate for each solution in the population.  

• Using Habitat modification, BBO migration creates a child solution and 
calculate their corresponding HSI. 

• Then non-dominated sorting is performed on child population based on HSI. 

• Mutation takes place for each child solution. 

• Check || HSIPARENT  - HSICHILD || < € or not. 

If  || HSIPARENT  - HSICHILD || < € 

Select parent population. 

else 

  If  HSIPARENT>HSICHILD  

Select parent population. 
Else If HSIPARENT<HSICHILD  

Select child population. 
Else Call Crowding_distance_determination(Pt+1 , Fi , N) 
End 

End 

End 

Procedure  Crowding_distance_determination(Pt+1 , Fi , N) 

Begin : 

• Initialize Pt+1 = null , i=1,Fi = N-(P0+Q0); 
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Repeat: 
1. Calculate Crowding distance fornon-dominated solution. 
2. Pt+1 = Pt+1 + Fi; 

             i = i+1; 

Until(Pt+1 + Fi)<= N 

V. COMPUTER SIMULATION AND EXPERIMENTAL RESULT: 
 

ARENA1 USING NSGAII ARENA1 USING BBO-NSGAII 

        
 

 ARENA2 USING ABC-NSGA II         ARENA2 USING ABC-NSGA II 

      
The experimental simulations for the environment ARENA1 and ARENA2 need 

4steps and 11 steps respectively to move the box to the goal position. 

 A brief description of the results for  ARENA1 is presented inTable I and 

Table II. In Table I, we have entered the forces appliedby two robots to turn the box, 

the turning angle, and the x, yco-ordinate of the point on the box around which turning 

is to take place and in table II we have provided the forces applied by the robot for 

translation, nextposition of centre of gravity, required time, energy consumptions for 
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the motion of the box. In table III we have compared the results of BBO-NSGA II and 

NSGA II and found that BBO-NSGAII gives better optimization for requiredtime and 

consumed energy. 

A summary of the results for ARENA2 is presented in table IV and table V and 

the compared results are given in table VI.  

TABLE-1FOR ARENA1 
 

TURNING FORCES AND ANGLE OBTAINED IN BBO-NSGAII 
 

Step F1r F2r α xi yi 

1 6.086127 19.881029 -0.165768 85.132693 30.000000 

2 5.100903 14.156248 -0.503272 103.317528 140.444849 

3 1.298498 31.535676 0.829523 152.410879 238.722542 

4 6.086127 19.881029 -0.165768 85.132693 30.000000 

TABLE-2FOR ARENA1 
 

 

FORCES FOR TRANSLATION, NEXT CENTRE OF GRAVITY POSITION, TIMEAND 
ENERGY CONSUMPTION 

Step  F1T  Xc Yc Time Energy 

1  2.051166  108.333239 139.605707 52.454930 493.840212 

2  3.316401  173.953148 221.689258 40.686218 804.120242 

3  1.533589  173.361907 281.005647 37.781158 173.874330 

4  2.051166  108.333239 139.605707 52.454930 493.840212 

 
TABLE-3FOR ARENA1 
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COMPARISON BETWEEN CURRENT AND PREVIOUS WORK 
 
 

Method used Total Time Total Energy 

BBO-NSGA II 130.922306 1471.834784 

NSGA II 170.184352 1698.317755 

TABLE-4 FOR ARENA2 
 
 

TURNING FORCES AND ANGLE OBTAINED IN BBO-NSGA II 
 

Step F1r F2r α xi yi 

1 42.418473 13.436211 0.153859 216.072142 308.0000 

2 14.365552 48.334855 0.167977 202.059193 175.462524 

3 1.266601 59.841370 1.286237 210.7697 112.098426 

4 36.173891 8.883624 1.04288 307.988367 176.040632 

5 59.343749 12.197916 -0.006447 328.527211 203.840576 

6 35.914730 21.294524 -0.011449 340.152857 223.404154 

7 37.796076 20.787651 0.001463 344.730793 243.813752 

8 59.228602 5.912156 -0.027469 363.39229 256.354302 

9 0.829737 58.993003 -1.101164 415.846034 248.545959 

10 7.621267 53.757188 -1.145045 459.5831 246.207835 

11 37.637947 6.865995 -0.003819 512.692990 179.098199 

 
TABLE-5 FOR ARENA2 
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FORCES FOR TRANSLATION, NEXT CENTRE OF GRAVITY POSITION, TIME 
AND ENERGY CONSUMPTION 

 
Step F1T Xc Yc Time Energy 

1 1.58306 215.232992 177.505572 64.006596 440.851599 

2 6.125331 234.704148 120.078836 22.825549 440.320356 

3 4.995232 309.292051 141.082992 34.120373 584.752027 

4 3.703075 354.938309 189.731481 23.209369 342.535399 

5 3.994147 365.678029 209.556059 16.964976 182.298378 

6 6.006211 375.271957 226.788897 13.003685 242.596087 

7 6.1863 385.010327 244.344984 12.764322 247.920433 

8 3.256636 394.852086 260.975109 17.692334 133.215907 

9 5.724099 461.138324 270.133974 22.336556 321.760559 

10 18.025634 510.948578 178.439921 15.951547 1613.777044 

11 2.488391 520.496553 152.990165 23.403304 136.263191 

 
TABLE-6 FOR ARENA2 

 
COMPARISON BETWEEN CURRENT AND PREVIOUS WORK 

Method used Total Time(sec) Total energy(KJ) 
BBO-NSGA II 266.278610 4686.290980 

NSGA II 542.046899 6188.945924 
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ENERGY COMPARISON GRAPH FOR ARENA1 TIME COMPARISON GRAPH FOR ARENA1 

  
 

ENERGY COMPARISON GRAPH FOR ARENA2 TIME COMPARISON GRAPH FOR ARENA2 
 

  
 
 

VI. Conclusion: 
 

We have successfully implimented the combination of BBO NSGAII to find 
optional solution to solve box pushing problem by two robots. It revealed that 
combination of BBO-NSGAII gives lutter optimization for required time and 
consumed energy in case of box pushing problem than that of NSGA-II alone. 
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