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Abstract:  

In this paper it is shown that a vector cone metric space as introduced by us 
bears a metric like topology. Cantor’s intersection like Theorem is proved and as 
an application of the same a useful fixed point Theorem is obtained. 
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¢hj§aÑ p¡l (Bengali version of the Abstract) 

HC f−œ Bjl¡ −c¢M−u¢R −k , −k −iƒl −L¡Z jÉ¡¢VÊL −cn (vector cone metric space) EfÙÛ¡fe 
Ll¡ q−u−R a¡ jÉ¡¢VÊ−Ll ja V−f¡m¢S−L hqe L−l z −L¾V−ll (Cantor) flØfl−μRc£ pcªn Eff¡cÉ−L fËj¡Z 
L−l¢R Hhw Cq¡l fË−u¡N ¢qp¡−h HL¢V Ef−k¡N£ ¢ÙÛl ¢h¾c¥ Eff¡cÉ−L −f−u¢R z  

1.  Introduction   

Huang and Zhang [2] generalized the notion of metric space by replacing the 

set of real numbers by an ordered Banach space and they had defined a cone metric 

space. Huang and Zhang also established some fixed point Theorems for 

contractive type mappings in a normal cone metric space. Subsequently, several 

other authors (see [1], [3], [5]) studied problem of common fixed point of 

mappings satisfying a contractive type condition in a normal cone metric space. 

Sh. Rezapour and R. Haml barani in [5] had extended results of Huang and Zhang 
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in [2]. Ismat Bag, Akbar Azam and Muhammad Mrshad had also extended results 

of Huang and Zhang for a pair of self mappings satisfying a generalized 

contractive type condition. 

In this paper Cantor’s intersection like theorem has been established in a vector 

cone metric space and with its aid some fixed point theorems have been 

established. Our findings may be treated as extension works of Huang and Zhang 

but in a different direction avoiding usual Picard Iterative scheme as followed by 

Huang and Zhang.  
2. 

We recall the following definitions: 
2.1 Definition 

A subset P of a real Banach space E is said to be a cone if and only if 

1 :P P  is closed, nonempty and { }P θ≠  

2 : , , , 0, ,P a b a b x y P ax by P∈ ≥ ∈ ⇒ + ∈\  3 :P x P∈  and x P x θ− ∈ ⇒ =  

2.2 Definition 
For a given cone P E⊆ , we can define a partial ordering ≤  on E with 

respect to P by the rule: 

 x y≤  in E if and only if y x P− ∈ . 

We shall write x y<  to indicate that x y≤  but x y≠ ; and x y<<  will stand 

for y x− ∈ Int P. 

2.3(a) Definition  
A cone P in E is called normal if there is a scalar 0k >  such that for all 

,x y P∈  with x yθ ≤ ≤ , one has x k y≤ . 

2.3(b) Definition 

If further 0k  is the least positive number satisfying 0x k y≤  for all  
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,x y P∈  with x yθ ≤ ≤ , then 0k  is called the normal constant of the normal 

cone P. 

2.4 Definition 
Let M be a nonempty set. Let :d M M E× →  satisfy,  

( )1 : ;d d x yθ ≤  for all ,x y M∈  

and ( ),d x y θ=  if and only if x y=  in M. 

( ) ( )2 : , ,d d x y d y x=  for all ,x y  in M 

( ) ( ) ( )3 : , , ,d d x y d x z d y z≤ +  for all , ,x y z  in M. 

Then d is called a cone metric on M and (M, d) is called a cone metric space. 

2.5 Definition 

In a cone metric space ( ),M d , a member ( )1 2, ... ...nα α α  in E with 0nα >  for 

all n is called a positive member of E. 

Suppose E denotes the collection of all bounded sequence of reals. Then E 

becomes a real Banach space with norm sup n
n

x x= ; as x E∈  where 

( )1 2, ... ...nx x x x= . 

If P denotes the set of all bounded sequences of non-negative reals, then as a 
subset of E, we verify that P forms a cone in E. 
2.1 Example  

Set of all bounded sequences of non-negative real numbers is a normal cone in 

the Banach space l∞  (In fact l E∞ =  as above). 

2.6 Definition  

A positive real number ε  is taken to represent a positive member ( ), , ...ε ε ε  

of E. Let 
0x E∈  and r be a positive member of E. Then set denoted by 

( ) ( ){ }0 0: ,rB x x M d x x r= ∈ < , is called an open ball centered at x0 with radius r in (M, d). 
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2.1 Theorem  
The familyB of all open balls in (M, d) together with empty set form a base for a 

topology dτ  on X. 

Proof 

Take two members ( )
1 1r xB  and ( )

2 2r xB  in B  and ( ) ( )
1 20 1 2r rx x x∈ ∩B B . It 

suffices to find an open ball like ( )0x∈B  to satisfy ( ) ( ) ( )
1 20 1 2r rx x x∈ ⊂ ∩B B B . 

Suppose, ( ) ( ) ( ) ( )( )0 1 1 0 1 2 0 1 0 1, , , , ... , ...nd x x x x x x x xα α α=  and we have ( )0 1 1,n nx x rα <  for 

all n where ( )1 2, ... ,... , 1,2i i i inr r r r i= =  are two positive members of E. 

If ( )( ) ( )( ){ }1 0 1 2 0 20 min , , ,n n n n nr x x r x xε α α< < − −  for 1,2...n =  then 

( )1 2, ... ...nε ε ε ε=  is a positive member of E such that ( ) ( ) ( )
1 20 1 2r rx x xε ⊂ ∩B B B . 

Hence the conclusion follows. 

This topology dτ  is termed as a cone metric topology in (M, d). 

2.2 Example  
Let M be the collection of all real polynomials like ( )

0

j
j

j

p t a t
∞

=

= ∑  where ja ’s 

are real coefficients and 0ja =  eventually in j and let :d M M E× →  be taken as 

( ) ( )0 0 1 1, , ,... ,...r rd p q a b a b a b= − − −  

where ( )
0

j
j

j
p t a t

∞

=

= ∑  and ( )
0

j
j

j
q t b t

∞

=

= ∑  as referred to above. 

2.2 Theorem  

The cone metric topology dτ  in ( ),M d is Hausdorff. 

Proof 
The proof is a routine exercise and is left out. 
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3.  
3.1 Definition  

A sequence { }nx  in ( ),M d  is said to be convergent in ( ),M d  if there is a 

member x M∈  such that if for every c E∈  with cθ <<  there is an index N 

such that for all n N> , ( ),nd x x c<< . If { }nx  converges to x in ( ),M d , we 

write lim nn
x x

→∞
= . 

3.2 Definition  

A sequence { }nx  in ( ),M d  is said to be Cauchy in ( ),M d  if for any c E∈   

with cθ << , there is an index N such that we have ( ),n md x x c<<  for all ,m n N> . 

3.3 Definition  

( ),M d  is said to be a complete cone metric space if every Cauchy sequence in 

( ),M d  is convergent in ( ),M d . 

3.4 (a) Definition 
A subset B of M is called bounded if there is a positive member K in E such 

that ( )1 2,d b b K≤  for all 1 2,b b B∈ . 

3.4 (b) Definition 
Diameter of a bounded set B in M denoted by Diam B is defined as  

( ) ( ) ( )
1 2 1 2 1 2

1 1 2 2 1 2 1 2
, , ,

Diam sup , , sup , ,..., sup , ,...n
b b B b b B b b B

B b b b b b bα α α
∈ ∈ ∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
where ( ) ( )1 2 1 2, , ...d b b Eα α= ∈ ; 

where for each i, ( )
1 2

1 2
,
sup ,i

b b B
b bα

∈
< +∞ , by virtue of B being bounded. Therefore 

Diam (B) of a non-empty bounded set containing more than one member is always 
a positive member of E. 
3.1 Theorem 

A necessary and sufficient condition for a vector cone metric space ( ),M d  to be 

complete is that every nested sequence of nonempty closed subsets { }nG  with Diameter 

( )nG Eθ→ ∈  as n → ∞  has 
1

n
n

G
∞

=
∩  as a singleton. 
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We use the following lemma. Proof of which is easy and left out. 
3.1 Lemma  

If G is a nonempty subset of ( ),M d then Diam Diam ,G G G=  denoting  

dτ -closure of G in ( ),M d . 

Proof of Theorem 

For necessary part, suppose ( ),M d  is complete and take n na G∈ , then for  

1, n p n p np a G G+ +≥ ∈ ⊂ . ( ), Diam n n p nd a a G+ ≤ . 

Then ( ), Diam n n p nd a a k G+ ≤ , where k is a normal constant. This implies  

( ),n n pd a a θ+ →  as n → ∞ . Then { }na  becomes Cauchy in (M, d) and by completeness 

of (M, d) lim nn
a u M

→∞
= ∈ .  Now n p na G+ ∈  and by closure property of Gn, we have 

lim n p nn
a u G+→∞

= ∈ . Therefore 
1

n
n

u G
∞

=

∈∩ . If v is another member of 
1

n
n

G
∞

=
∩ , for all n, we 

have , nu v G∈  and ( ), Diam nd u v G≤ . Hence  ( ), Diam nd u v k G≤ , where k is a 

normal constant. This implies ( ),d u v θ→  as n → ∞ . Therefore u v= . Hence 
1

n
n

G
∞

=
∩  is 

a singleton. 

For sufficiency, let { }nx  be a Cauchy sequence in ( ),M d . Put 

( )1 2, , ,...n n n nH x x x+ += . Then nH  is a decreasing sequence of non empty closed sets in 

( ),M d  such that ( ) ( )Diam Diamn nH H θ= →  as n → ∞ . Then, 
1

n
n

H
∞

=
∩  is a  

singleton (say) {u}; Now ( ) ( ), Diamn nd x u H≤ . Therefore  

( ) ( ), Diamn nd x u k H≤ , where k is a normal constant. This implies  ( ),nd x u θ→  as 

n → ∞ . 

Therefore lim nn
x u M

→∞
= ∈ . So (M, d) is complete. 
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3.2 Theorem  
Let (M, d) be a complete vector cone metric space and :T M M→  be an operator to 

satisfy, ( ) ( )( ) ( )( ) ( )( ) ( ), , , ,d T x T y d x T x d y T y d x yα β υ≤ + +  with 0 , ,α β υ≤  and 

1α β υ+ + <  for all ,x y X∈ . Then T has a unique fixed point in M. 

Proof 

If x0 be an arbitrary point in M and ( )0 , 1,2,...n
nx T x n= =  where ( )0

0 0T x x= , we 

have 

( ) ( ) ( )( )
( ) ( ) ( )

2 1 1 0

1 2 0 1 0 1

, ,

, , ,

d x x d T x T x

d x x d x x d x xα β υ

=

≤ + +
 

or, ( ) ( )2 1 0 1, ,
1

d x x d x xβ υ
α

+
≤

−
 

Similarly, ( ) ( )
2

3 2 0 1, ,
1

d x x d x xβ υ
α

+⎛ ⎞≤ ⎜ ⎟−⎝ ⎠
 and by induction we have  

( ) ( )1 0 1, ,
1

n

n nd x x d x xβ υ
α+

+⎛ ⎞≤ ⎜ ⎟−⎝ ⎠
 

( )( )0 0,nd x T xδ=            (1) 

where 1
1
β υδ

α
+

= <
−

. 

If { }kh  is a decreasing sequence of positive members of E such that lim kk
h θ

→∞
= . 

Put ( )( ){ }: ,k kG x M d x T x h= ∈ ≤ , where ( ), ,...k k kh h h E= ∈ . From (1) it 

follows that for large , kk G φ≠ . Suppose kG φ≠  for all k. Clearly { }kG  forms a 

decreasing chain of non-empty set in M. We show that T maps kG  into itself. If 

kx G∈ , then 

( ) ( )( )( ) ( )( ) ( ) ( )( )( )
( )( )

, , ,

,

d T x T T x d x T x d T x T T x

d x T x

α β

υ

≤ +

+

( ) ( ) ( )( )( ) ( ) ( )( )1 , ,d T x T T x d x T xβ α υ− ≤ +  
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( ) ( )( )( ) ( )( ), ,
1

d T x T T x d x T xα υ
β

+
≤

−
 

( )( ),d x T x<  where 1
1
α υ

β
+

<
−

,  since 1α β υ+ + <  

       kh< . 

Hence : k kT G G→ . 

Next we show that each Gk is closed. 

Let lim jj
x u M= ∈  where j kx G∈ , then 

( )( ) ( ) ( )( ) ( ) ( )( ), , , ,j j j jd u T u d u x d x T x d T x T u≤ + +      

( ) ( )( ) ( )( )
( )( ) ( )

, , ,

, ,

j j j j j

j

d u x d x T x d x T x

d u T u d x u

α

β υ

≤ + +

+ +
 

( ) ( )( ) ( ) ( )1 , , ,j k k jd u T u d u x h h d x uβ α υ− ≤ + + +  

( )( ) ( ) ( )1, 1 ,
1 k jd u T u h d x uα υ

β
+

≤ + +
−

 

Passing on limit j → ∞ , noting that ( )( ),j j kd x T x h≤ , we find  

( )( ) 1,
1 kd u T u hα

β
⎛ ⎞+

≤ ⎜ ⎟−⎝ ⎠
. 

Now 0 , , 1α β υ≤ <  and 1α β υ+ + <  gives 1
1
α υ

β
+

<
−

 and so 

sup 1
1υ

α υ
β

⎧ ⎫+
≤⎨ ⎬

−⎩ ⎭
 or 1 1

1
α

β
+

≤
−

 and hence  ( )( ), kd u T u h≤ . 

Thus ku G∈  and kG  is shown to be closed. 

Finally, we show that each kG  is bounded. 

Take , ku v G∈ . So 
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( ) ( )( ) ( ) ( )( ) ( )( ), , , ,d u v d u T u d T u T v d T v v≤ + +  

( )( ) ( )( ) ( ), , ,k kh h d u T u d v T v d u vα β υ≤ + + + + So, ( ) ( ) ( )1 , 2 kd u v hυ α β− ≤ + +  

implying that 

( ) 2,
1 kd u v hα β

υ
+ +

≤
−

. 

That means Gk is bounded and if , kx y G∈ , we have 

( ) ( )( ) ( ) ( )( ) ( )( ), , , ,d x y d x T x d T x T y d T y y≤ + +  

( )( ) ( )( ) ( )2 , , ,kh d x T x d y T y d x yα β υ≤ + + +    2
1 khα β

υ
+ +

≤
−

. 

So, ( ) 0, .
1 kd x y k hα β υ

υ
+ +

≤
−

, where 0k  is a normal constant. 

Right hand side θ→  as k → ∞ . So ( ),d x y θ→  as k → ∞  so Diam kG θ→  as 

k → ∞ . 

Thus { }kG  is a decreasing chain of nonempty closed set in ( ),M d  with diam  

( )kG θ→  as k → ∞ . 

By the theorem above, 
1

k
k

G
∞

=
∩  is a singleton, say { }u  for some u M∈ . Hence 

( )T u u= . Uniqueness of u is also clear and proof is complete. 

3.1 Corollary  
If T is a contraction mapping from a complete vector cone metric space into 

itself, then T has a unique fixed point in M.  

Taking 0α β= =  and 0 1υ< <  in theorem above, corollary follows. 

3.2 Corollary  
If T is a Kannan like mapping from a complete vector cone metric space into 

itself, then T has a unique fixed point in M. 

Taking α β=  and 0υ =  in 3.2 theorem, corollary follows 
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4. 
4.1 Definition  

Let (M, d) be a vector cone metric space and P M⊆  denote the set of all  

bounded sequences of non-negative reals. A mapping : P Pφ →  is said to be 

upper semi continuous from right if for each j, ( )( ) ( )( )lim limn n
j jn n

φ α φ α≤  where 

( ){ } ( ) ( ) ( )( )1 2
1,2,...

, ,..., ,...n n n n
j j

j
Pα α α α

=
= ∈ , n =1,2… 

4.1 Theorem  
If (M, d) is a complete vector cone metric space and :T M M→  satisfies the 

condition that for all ,x y X∈ , 

( ) ( )( ) ( ) ( )( ) ( )( ){ }, max , , , , ,d T x T y d x y d x T x d y T yφ ⎡ ⎤≤ ⎣ ⎦ where φ  is an upper 

semicontinuous function from right from P to P ( ) ( )( )1 2, ... ... : 0n iP x x x x x i= = > ∀   

such that ( )t tφ ≠  and 
( )0

sup
t

t
t tφ>

< ∞
−

. Then T has a fixed point in M. 

 
The proof rests upon applying the following lemma. 
4.1 Lemma  
If ( ) ( ) ( ) ( )( ) ( )( )1 1 2, , ,..., ,... , 1, 2,...n n n n

n n n jd x x jα α α α+ = = =   

where ( )n
nx T x=  and x X∈ , then ( )lim , 1,2,...n

jn
jα θ

→∞
= = . 

Proof 

Suppose ( )nα θ>  for all n, where ( ) ( ) ( ) ( )( )1 2, ,..., ,...n n n n
nα α α α=  

Then ( ) ( )1,n
n nd x xα +=  

     ( ) ( )( )1,n nd T x T x+=  

     ( )( ) ( )( )( )1 ,n nd T T x T T x−=  

     ( ) ( )( )1 ,n nd T x T x−=  

( ) ( )( ) ( )( ){ }1 1 1max , , , , ,n n n n n nd x x d x T x d x T xφ − − −
⎡ ⎤≤ ⎣ ⎦  
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( ) ( ) ( ){ }1 1 1max , , , , ,n n n n n nd x x d x x d x xφ − − +
⎡ ⎤= ⎣ ⎦  

( ) ( ){ }1 1max , , ,n n n nd x x d x xφ − +
⎡ ⎤= ⎣ ⎦  

Now if max value ( )1,n nd x x += , then one has 

( ) ( )( )n nα φ α≤ , which is untenable. 

Hence max value ( ) ( )1
1, n

n nd x x α −
−= =  

 

So we have ( ) ( ) ( )( )1
1,n n

n nd x xα φ α −
−= ≤            (1) 

      ( 1)nα −<  

That means ( ){ }nα  is a decreasing sequence and let ( )lim n

n
α α

→∞
=  where 

( ), , ,...α α α α= . If 0α > , we have ( )φ α α< . 

Since φ  is an upper semicontinuous function from right we get 

( )( ) ( )( ) ( )lim limn n

n n
φ α φ α φ α α

→∞ →∞
≤ = <  contradicting (1) namely, ( ) ( )( )1n nα φ α −≤ . 

Hence one concludes ( )lim n

n
α θ= . 

Proof of Theorem 

Put ( )( ) 1, ,nG x X d x T x
n

⎧ ⎫= ∈ ≤⎨ ⎬
⎩ ⎭

 

First we show that for large values of n, nG φ≠ . Take x M∈  and consider ( )n
nx T x= . 

Lemma above shows that ( )( ),n nd x T x θ→  as n → ∞ . Clearly nG φ≠  for large values 

of n. 

Let us suppose that nG φ≠  for all n. We verify that T maps nG  into nG . Take x G∈ , 

( ) ( )( )( ) ( )( ) ( )( ){
( ) ( )( )( )}

, max , , , ,

,

d T x T T x d x T x d x T x

d T x T T x

φ ⎡≤ ⎣
⎤
⎥⎦
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( )( ) ( ) ( )( )( ){ }max , , ,d x T x d T x T T xφ ⎡ ⎤= ⎢ ⎥⎣ ⎦
 

Now if max value is ( ) ( )( )2,d T x T x ; then 

( ) ( )( )( ) ( ) ( )( )( ){ }, ,d T x T T x d T x T T xφ≤  

         ( ) ( )( )2,d T x T x<  which is a contradiction. 

Hence max value ( )( ),d x T x= . Therefore  

( ) ( )( )( ) ( )( )( ) ( )( ) 1, , ,d T x T T x d x T x d x T x
n

φ≤ < ≤ . 

That means ( ) nT x G∈ . Hence T maps nG  into itself. 

Now we check that nG  is closed in vector cone metric space. 

Let { }kn nx G∈  satisfy 0lim
knk

x x M
→∞

= ∈ . 

Now ( )( ) ( ) ( )( )0 0 0 0, , ,
k kn nd x T x d x x d x T x≤ +  

      ( ) ( ) ( )( )10 0, ,
k kn nd x x d T x T x

−
≤ +  

( ) ( ) ( ){
( )( )}

1 10 0

0 0

, max , , , ,

,

k k k kn n n nd x x d x x d x x

d x T x

φ
− −

⎡≤ + ⎢⎣
⎤
⎦

 

Since ( ) ( )10 0, , ,
k kn nd x x d x x θ

−
→  as k → ∞  and ( )1

1,
k kn nd x x

n−
≤  

( )( ) ( )( )0 0 0 0
1, max , ,d x T x d x T x
n

φ
⎡ ⎤⎧ ⎫≤ ⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦
 

If ( )( ) ( )( )0 0 0 0
1max , , ,d x T x d x T x
n

⎧ ⎫ =⎨ ⎬
⎩ ⎭

  

then ( )( ) ( )( ){ }0 0 0 0, ,d x T x d x T xφ≤  

    ( )( )0 0,d x T x<  which is untenable. 

So, we conclude that ( )( )0 0
1,d x T x
n

φ ⎛ ⎞≤ ⎜ ⎟
⎝ ⎠
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            1
n

< . 

Thus 0 nx G∈  and Gn is shown to be closed. 

Finally take , nx y G∈ , then ( )( ) 1,d x T x
n

≤  and ( )( ) 1,d y T y
n

≤ . 

Now    ( ) ( )( ) ( )( ) ( ) ( )( ), , , ,d x y d x T x d y T y d T x T y≤ + +  

( ) ( )( ) ( )( ){ }1 1 max , , , , ,d x y d x T x d y T y
n n

φ ⎡ ⎤≤ + + ⎣ ⎦  

  ( )2 1max , ,d x y
n n

φ
⎡ ⎤⎧ ⎫≤ + ⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦
 

 
Now there are two cases to examine. 
Case I 

Suppose ( ) 1,d x y
n

≤  then ( ) 1 1max , ,d x y
n n

⎧ ⎫ ≤⎨ ⎬
⎩ ⎭

 and in this case,  

  ( ) 2 1,d x y
n n

φ ⎛ ⎞≤ + ⎜ ⎟
⎝ ⎠

 

  3
n

< < ∞  and hence ( ) 3Diam nG
n

≤ . 

Case II  

Suppose ( ) 1,d x y
n

> , 

then ( ) ( )1max , , ,d x y d x y
n

⎧ ⎫ =⎨ ⎬
⎩ ⎭

 and in this case we have 

( ) ( )( )2, ,d x y d x y
n

φ≤ +  

( )
( )( )

( )
, 2, 1

,
d x y

d x y
d x y n

φ⎛ ⎞
⎜ ⎟− ≤
⎜ ⎟
⎝ ⎠

 

or, ( ) ( )
( ) ( )( )

,2,
, ,

d x y
d x y

n d x y d x yφ
≤ ⋅

−
 

     
( )0

2 sup
t

t
n t tφ>

≤
−

 

     2R
n

=  where 
( )0

sup
t

t R
t tφ>

= < ∞
−

. 
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This gives ( ) 2
n

RDiam G k
n

≤ , where k is a normal constant. This gives 

( )lim nn
Diam G θ

→∞
= . 

Hence lim nn
G θ

→∞
= . 

Now Cantor’s intersection Theorem as proved before applies to give { }n
n

G w=∩  

say, for some w X∈  and ( )T w w=  is the fixed point of T. 
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