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Abstract:
In this paper it is shown that a vector cone metric space as introduced by us
bears a metric like topology. Cantor’s intersection like Theorem is proved and as

an application of the same a useful fixed point Theorem is obtained.
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1. Introduction

Huang and Zhang [2] generalized the notion of metric space by replacing the
set of real numbers by an ordered Banach space and they had defined a cone metric
space. Huang and Zhang also established some fixed point Theorems for
contractive type mappings in a normal cone metric space. Subsequently, several
other authors (see [1], [3], [5]) studied problem of common fixed point of
mappings satisfying a contractive type condition in a normal cone metric space.

Sh. Rezapour and R. Haml barani in [5] had extended results of Huang and Zhang
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in [2]. Ismat Bag, Akbar Azam and Muhammad Mrshad had also extended results
of Huang and Zhang for a pair of self mappings satisfying a generalized
contractive type condition.

In this paper Cantor’s intersection like theorem has been established in a vector
cone metric space and with its aid some fixed point theorems have been
established. Our findings may be treated as extension works of Huang and Zhang
but in a different direction avoiding usual Picard Iterative scheme as followed by

Huang and Zhang.

2.
We recall the following definitions:
2.1 Definition
A subset P of a real Banach space E is said to be a cone if and only if

R, : P isclosed, nonempty and P ={6}

PiabeR,ab>0x,yeP=>ax+byeP PR :xeP and -xeP=x=46

2.2 Definition
For a given cone Pc E, we can define a partial ordering < on E with
respect to P by the rule:

x<y inEifandonlyif y—xeP.
We shall write x<y to indicate that x<y but x=y; and x<<y will stand

for y—xe IntP.

2.3(a) Definition
A cone P in E is called normal if there is a scalar k >0 such that for all

x,yeP with #<x<y,onehas |x|<k]|y|.
2.3(b) Definition

If further k, is the least positive number satisfying |x|<k,|y| forall
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X,yeP with §<x<vy, then k, is called the normal constant of the normal

cone P.

2.4 Definition
Let M be a nonempty set. Let d:M xM — E satisfy,

d:o<d(xy) forall x,yeM

and d(x,y)=60 ifandonlyif x=y inM.

d,:d(x,y)=d(y,x) forall x,y inM

d,:d(x,y)<d(x,z)+d(y,z) forall x,y,z inM.

Then d is called a cone metric on M and (M, d) is called a cone metric space.

2.5 Definition

In a cone metric space (M,d), a member (a,a,..a,...) in Ewith «, >0 for

all n is called a positive member of E.
Suppose E denotes the collection of all bounded sequence of reals. Then E

becomes a real Banach space with norm |x|=sup|x|; as xeE where
n

X = (X, Xger Xy )«

If P denotes the set of all bounded sequences of non-negative reals, then as a
subset of E, we verify that P forms a cone in E.
2.1 Example

Set of all bounded sequences of non-negative real numbers is a normal cone in

the Banach space |, (Infact |, =E asabove).

2.6 Definition

A positive real number & is taken to represent a positive member (g,g,g...)
of E. Let x, ce and r be a positive member of E. Then set denoted by

B, (X)={xeM :d(x,x)<r}, is called an open ball centered at X, with radius r in (M, d).
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2.1 Theorem
The family # of all open balls in (M, d) together with empty set form a base for a

topology 7, onX.

Proof

Take two members &

n

(x) and 5 (x,) in £ and xe8 (x)NE, (x). It
suffices to find an open ball like Z.(x,) tosatisfy Z (%)< 2, (x)NZ5,(x,).
SupPOSe, d (%, %) = (e (¥ % )., (X0, %), (X, )...) and we have a, (%, % )<r, for
all nwhere r,=(r,r,..r,..),i=12 are two positive members of E.

If 0<¢g, < min{(rln —ty (%2 %)) T —(an(xo,xz))} for n=12.. then

¢ =(&,&,..¢,..) isapositive member of E such that 2, (x,) < 5, ()N &, (x,).
Hence the conclusion follows.

This topology 7, istermed as a cone metric topology in (M, d).

2.2 Example
Let M be the collection of all real polynomials like p(t)= i at where a;’s

are real coefficientsand a; =0 eventually injand let d:M xM — E be taken as
d (p,a) = (|2 ~bol.[a =y, fa, ~B]...
where p(t)ziajtj and q(t)=ibjt1 as referred to above.
j=0 j=0

2.2 Theorem

The cone metric topology 7z, in (M,d)is Hausdorff.

Proof
The proof is a routine exercise and is left out.
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3.
3.1 Definition

A sequence {x,} in (M,d) is said to be convergent in (M,d) if there is a
member Xxe M such that if for every ce E with <<c there is an index N

such that for all n>N, d(x,,x)<<c. If {x,} converges to x in (M,d), we

n

write limx, = X.

n—o

3.2 Definition
A sequence {x,} in (M,d) issaid to be Cauchyin (M,d) ifforany ceE

with @ <<c, there is an index N such that we have d(x,,x,)<<c forall mn>N.

3.3 Definition

(M,d) is said to be a complete cone metric space if every Cauchy sequence in

(M.,d) isconvergentin (M,d).
3.4 (a) Definition

A subset B of M is called bounded if there is a positive member K in E such
that d(b,b,)<K forall b,b,eB.

3.4 (b) Definition
Diameter of a bounded set B in M denoted by Diam B is defined as

DiamB:(sup a,(by,b,), sup a,(bb,),..., sup an(q,bz),...] where d(b,b,)=(e,@,..)€E

by b, eB by ,b,eB by b, eB

where for each i, sup «;(b,b,) <+, by virtue of B being bounded. Therefore

by ,b,eB

Diam (B) of a non-empty bounded set containing more than one member is always
a positive member of E.
3.1 Theorem

A necessary and sufficient condition for a vector cone metric space (M,d) to be
complete is that every nested sequence of nonempty closed subsets {Gn} with Diameter
(G,)»>60eE as n—w has (G, asasingleton.

n=1
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We use the following lemma. Proof of which is easy and left out.
3.1 Lemma

If G is a nonempty subset of (M,d)then Diam G =Diam G, G denoting

ry-Closure of G in (M,d).
Proof of Theorem

For necessary part, suppose (M,d) is complete and take a, €G,, then for
p>la,,eG,,cG,. d(a,a,,)<DiamG,.
Then “d(an,amp)“sk"Diam G,| . where k is a normal constant. This implies

d(a,a,,)—>0 as n—>owo.Then {a,| becomes Cauchy in (M, d) and by completeness

n!=n+p

of (M, d) lima,=ueM . Now a,,eG, and by closure property of G, we have

n—o0

lima,,, =ueG,. Therefore ue(\G,. If v is another member of (G, , for all n, we

n—
* n=1 n=1

have u,veG, and d(u,v)<DiamG,. Hence |[d(u,v)|<k[DiamG,|, where k is a

normal constant. This implies d(u,v)—»>¢ as n— . Therefore u=v.Hence ﬂGn is
n=1

a singleton.

For sufficiency, let {x,} be a Cauchy sequence in (M,d) . Put

H, = (X0 %10 X ). Then H_n is a decreasing sequence of non empty closed sets in

n? ntlr B2ttt

(M.,d) such that Diam(H_n):Diam(Hn)—>0 as n—o. Then, ﬁﬁn isa

n=1

singleton (say) {u}; Nowd(x,,u) < Diam(H,). Therefore

|d (x,.u)|<k|Diam(H,)|. where k is a normal constant. This implies d(x,,u)—>¢ as

n— o0,

Therefore limx, =ueM . So (M, d) is complete.

nN—o0
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3.2 Theorem
Let (M, d) be a complete vector cone metric space and T:M — M be an operator to

satisfy, d(T(x),T(y))Sad(x,T(x))+ﬁd(y,T(y))+ud(x,y) with 0<g,p0 and

a+pB+v<l forall x,ye X .ThenT hasa unique fixed point in M.

Proof
If X, be an arbitrary point in M and x, =T"(x,),n=12,... where T°(x,)=Xx,, we

have

d(%,%)=d(T (%).T (%))
<ad (X, %, )+ Bd (X, % )+vd (%, %)
pro

<
l-a

or, d(%.x) d(%,%)

2
Similarly, d(x3,x2)s('f+UJ d(x,, %) and by induction we have

-

d (Xn'XnJrl)S(er;)J d (XO‘Xi)

=5"d (%, T (%)) 1)

’B+U<1.
-

where 8=

If {h} isadecreasing sequence of positive members of E such that limh =6.
Put G, ={XE M :d(x,T(x))shk} , where h =(h,h,,..)eE . From (1) it

follows that for large k,G, =¢. Suppose G, =¢ for all k. Clearly {Gk} forms a

decreasing chain of non-empty set in M. We show that T maps G, into itself. If

X € G, , then
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V<1, since a+pro<l

<h,.

Hence T:G, —»G,.

Next we show that each Gy is closed.
Let limx; =ueM where x; €G,, then
J

d(u,T(u))sd(u,xj)+d(xj,T(xj))+d(T(xj),T(u))
<d(u,x )+d(x T(x )) ( T(x ))

+4d(uT (u))+0d (x;,u)
d

(1-B)d (u,T (u))<d(u,x;)+h +ah, +vd(x;,u)

d(u,T(u))<i+—ﬂh +(1+0)d (x;,u)

Passing on limit j — o, noting that d(x;,T(x;))<h,, we find

(ot

<1 and so

Now 0<a,Bu<l and a+p+v<l gives ‘1HU

supd 20l <1 or 11 and hence
. 1= 1

d(u,T(u))<h,.
Thus ueG, and G, isshown to be closed.
Finally, we show that each G, is bounded.

Take u,veG,.So
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d(uv)<d(uT(u))+d(T(u),T(v))+d(T(v)v)
<h +h +ad(uT(u))+Ad(v,T(v))+vd(u,v) So, (1-v)d(uv)<(a+pB+2)h

implying that
a+f+2

d <
(uv)= 1-v

h, .
That means Gy is bounded and if x,y e G, , we have

d(xy)<d(xT(x))+d(T(x),T(y))+d(T(y).y)

<2h +ad (X T(x))+Ad(y.T(y))+vd(xy) < Ofvl“iﬂljz h, .

a+p+v
1-v

So, [d(xy)[<k. [n ], where k, isanormal constant.

Right hand side -6 as k—«. So d(x,y)>6 as k—« S0 DiamG, »6 as

K—>ow.

Thus {G,} isadecreasing chain of nonempty closed setin (M,d) with diam
(Gy)—>0 as k-,

By the theorem above, ﬁGk is a singleton, say {u} for some ueM . Hence
k=1

T(u)=u. Uniqueness of u is also clear and proof is complete.

3.1 Corollary
If T is a contraction mapping from a complete vector cone metric space into
itself, then T has a unique fixed point in M.

Taking a=8=0 and 0<wv<1 intheorem above, corollary follows.

3.2 Corollary
If T is a Kannan like mapping from a complete vector cone metric space into
itself, then T has a unique fixed point in M.

Taking a=p and v=0 in 3.2 theorem, corollary follows
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4.
4.1 Definition
Let (M, d) be a vector cone metric space and PcM denote the set of all

bounded sequences of non-negative reals. A mapping ¢:P — P is said to be
upper semi continuous from right if for each j, Wq)(a}“’)s;é(linma}“)) where

() (o) P N L2,

j i

4.1 Theorem
If (M, d) is a complete vector cone metric space and T:M — M satisfies the

condition that for all x,ye X,
d(T(x),T(y))s¢[max{d(x,y),d(X,T(x)),d(y,T(y))}}Where ¢ is an upper
semicontinuous function from right from P to P (P =(x) = (%, X,...X,...): X, > 0Vi)

such that ¢(t)=t and sup———<oo. Then T has a fixed point in M.

o t—g(t)

The proof rests upon applying the following lemma.
4.1 Lemma

If d(Xn,XM):(al(n),agn) ..... a,(]n),...):(agn)),j:1,2,...
where x,=T"(x) and xeX,then limal"=6,j=12,..

n—oo

Proof

Suppose " >¢ forall n, where o =( f”),ag”),...,a,f”),...)
Then & =d(x,,%,..)
d(T"(x). 7" (x))
d(T(T"‘l(x)),T(T"(x)))
d(T(%0)T (%))

< ¢[max{d (XX )8 (%o T (%)) 0 (%, T (%, ))}J
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=¢[max{d(xnfl,xn),d(anl,xn),d(xn,xm)ﬂ
:¢[max{d(xnfl,xn),d(xn,xm)}J

Now if max value =d(x,,x,,,), then one has

n?! n+l
a < ¢(a(”)) , which is untenable.
Hence max value =d(x,,x,)=a""
Sowe have @ =d(x,,,x,)< ¢(a(”’1)) (1)

< a(n—l)

That means {a(")} is a decreasing sequence and let Ilima"™ = where

n—o

az(a,a,a,...). If «>0,we have ¢(a)<a.
Since ¢ is an upper semicontinuous function from right we get

Wgﬁ(a(”)) < ¢(Iim a(”)) =¢(a)<a contradicting (1) namely, o < ¢(a(n4)) .

n—o n—o

Hence one concludes lima!” =4.
n

Proof of Theorem

PUt G, ={Xe X*d(X*T(X))Sl}

n

First we show that for large values of n, G, #¢. Take xeM and consider x, =T"(x).

Lemma above shows that d(x,,T(x,))—>6 as n—>w.Clearly G, =4 for large values

of n.

Let us suppose that G, # ¢ for all n. We verify that T maps G, into G,.Take xeG,

d (T(x),T (T (x))) gqﬁ[max{d (xT(x)).d(xT (),
(T ()T (T ()]
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:¢|:max{d(x,T(x)),d(T(x),T(T(x)))}}
Now if max value is d (T (x).T*(x)); then
d(T(x).T(T(x)))<6{d (T (x).T(T(x)))]
<d(T(x),T*(x)) which is a contradiction.
Hence max value =d(x,T(x)). Therefore
d(T(x),T(T(x)))s¢(d(x,T(x)))< d(xT(x))<

That means T(x)eG,. Hence T maps G, into itself.

=

Now we check that G, is closed in vector cone metric space.
Let {x,}eG, satisfy limx, =x,eM.
Now (5, T ()< (3%, )+ (x, T (%))
<d (%%, )+d(T(x,,).T(%))
a0, ) o max{d . ox )3 (5,5, ).
d(%.T ()]

Since d (%%, ).d(x,,.%)—>0 as k—>w and d(x,.x, )<

My ?

q (XO,T(Xo))S (r{max{%,d (xO,T(Xo))H

S|

If max{ ,d(xO,T(xo))}zd(xo,T(XO))
then d(xO,T(xo))S¢{d(xo,T(Xo))}

<d(%,T (%)) which is untenable.

So, we conclude that d(x,,T(x,))< ¢(%j
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1
<—.
n

Thus x, G, and G, is shown to be closed.

Finally take x,yeG,, then d(x,T(x))s% and d(y,T(y))<

S|

Now  d(xy)<d(xT(x))+d(y.T(y))+d(T(x).T(y))

<2 by maxfa (1.8 (17 (9) 8 (57 (1))

S%w{max{d (x, y)%H

Now there are two cases to examine.
Case |

Supposed(x,y)s% then max{d(x,y),%}s% and in this case,

d(x,y)s%+¢(£j

n

<3 <% andhence Diam (G,)<
n

S| w

Case Il

Suppose d(x,y)>%,
then max{d (x, y)%} =d(x,y) and in this case we have

d(x, y)£%+¢(d (x.y))

d(x y>{1_—¢<dd(x'y))}§

or, d(xy)<

<Esup;
TN s t—g(t)
_2R where Sup;=R<oo.

n o t—g(t)
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This gives ||Diam(G, )<k

Z—RH where k is a normal constant. This gives
n

lim Diam(G, )=6.

n—o

Hence limG, =6.

n—ow

Now Cantor’s intersection Theorem as proved before applies to give (G, ={w}

say, forsome we X and T(w)=w is the fixed point of T.
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