
 
 
 
 

J.Mech.Cont.& Math. Sci., Vol.-7, No.-1, July (2012) Pages 957-973 

 
 

957

UNCHARGED PARTICLE TUNNELING FROM NON-
ACCELERATING AND ROTATING BLACKHOLES WITH 

ELECTRIC AND MAGNETIC CHARGES 
By 

1M. Abdullah Ansary and  2Md. Ismail Hossain 
1, 2 Department of Mathematics, University of Rajshahi, Rajshahi, Bangladesh. 

 

Abstract 

By applying Parikh-Wilczek’s semi-classical tunneling method we obtain the 

emission rate of massless uncharged particle at the event horizon of non-accelerating 

and rotating blackhole with electric and magnetic charges. We consider the 

spacetime background dynamical and incorporate the self-gravitation effect of the 

emitted particles when energy conservation and angular momentum conservation are 

taken into account. We find that the emission rate at the event horizon is equal to the 

difference of Bekenstein-Hawking entropy before and after emission. We also find the 

Hawking temperature . 
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1.  Introduction:  

  The classical ‘no hair’ theorem stated that all the information about the collapsing 

body was lost except three conserved quantity: the mass, the angular momentum and 

the electric charge. So the only solutions of Einstein-Maxwell equations in four 

dimensions is the stationary and rotating Kerr-Newman blackhole solutions. In 

classical theory , the loss of information is not a serious problem since it could be 

thought that the information is preserved inside the blackhole but just not very 

accessible. Even , once Hawking thought that the loss of information never recovered. 

But recently he change his opinion about information loss paradox. However , taking 

quantum effect into consideration , the situation is changed due to Hawking discovery 

that blackholes radiates thermally[1] 

Due to the emission of thermal radiation blackhole could loss energy, shrink 

and eventually evaporate away completely. Since the radiation with  a precisely 

thermal spectrum carries no information , so the information carried by a physical 

system falling toward blackhole singularity has no away to be recovered after a 

blackhole has disappeared  completely. This is known as so called “ information loss 

paradox”[2] which means that pure quantum states ( the original matter that forms the 

blackhole ) can evolve into mixed states (the thermal spectrum at infinity ). This type 

of evolution violates the fundamental principle of quantum theory, as these prescribe a 

unitary time evolution of basis states[3]. 

The information loss paradox can perhaps be attributed to the semi-classical nature of 

the investigations of Hawking radiation. However, researches in string theory indeed 

support the idea that Hawking radiation can be described within a manifestly unitary 

theory, but it still remains a mystery  how information is recovered. Although a 

complete resolution of the information loss paradox might be within a unitary theory 
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of quantum gravity or string/ M-theory , it is argued that the information could come 

out if the outgoing radiation were not exactly thermal but had subtle corrections[2]. 

There is some degree of  mystery  remains in the mechanism of blackhole radiation. In 

the original derivation of blackhole evaporations, Hawking described the thermal 

radiation as a quantum tunneling process created by vacuum fluctuation near the event 

horizon [4]. In this process , the radiation is like electron-positron pair creation in a 

constant electric field. The energy of a particle can change its sign after crossing the 

event horizon. So a pair created by vacuum fluctuations just inside or outside the 

horizon can materialize with zero total energy, after one member of the pair has 

tunneled to the opposite side. But in [1] Hawking did not proceed in this way. He 

considered the creation of a blackhole in the cotext of a collapse geometry, calculating 

the Bogoliubov transformations between the initial and final states of incoming and 

outgoing radiation. However , there were two difficulties to overcome this problem. 

The first was to find a well – behaved coordinate system at the event horizon. The 

second was where is the barrier. 

Recently , a method to describe Hawking radiation as tunneling process was 

developed by Krause and Wilczek [5]  and elaborated by Parikh and Wilczek[6,7,8,9]. 

This method involves calculating the imaginary part of the action for the (classically 

forbidden) process of s-wave emission across the horizon, which in turns is related to 

the Boltzmann factor for emission at the Hawking temperature. Using the ( Wentzel- 

Kramers –Brillouin ) WKB approximation1  the tunneling probability for the 

classically forbidden trajectory of the s-wave coming from inside to outside the 

horizon is given by  

)Im2exp( S−∞Γ             (1)  

where S is the classical action of the trajectory to leading order in (set equal to 

unity). Expanding the action in terms of the particle energy , the Hawking temperature 

is recovered at linear order. In other words for  

 



 
 
 
 

J.Mech.Cont.& Math. Sci., Vol.-7, No.-1, July (2012) Pages 957-973 

 
 

960

 

)(02 2EES += β  this gives 

)exp()2exp(~ ES β−≅−Γ          (2)  

 

which is the  regular Boltzmann factor for a particle of energy E  and β  is the inverse 

temperature of the horizon. Besides treating the Hawking radiation as a tunneling 

process Krause-Parikh-Wilczek also took the tunneling particles back reaction into 

account. They obtained the corresponding modified spectrum. The most interesting 

result was that they found this modified spectrum was implicitly consistent with the 

unitary theory and could support the conservation of information[5,6,7,8]. Following 

this tunneling method , there have been many generalizations , such as its application 

to other spacetimes. The Hawking radiation as tunneling from various spherically 

symmetric blackholes were found in [10,11,12,13,14,15,16,17,18,19,20,21,22,23]. 

Also , there are some attempts to extend this method to the case of stationary 

axisymmetric blackholes [24,25,26,27,28,29,30,31,32]. Recently, some people 

investigated the massive charged particles tunneling from the static spherically 

symmetric as well as stationary axisymmetric blackholes [33,34,35,36,37,38,39]. They  

all  found a satisfying result. 

[ 1  For large values of the quantum  numbers or of the masses of the particles 

in the system the quantum mechanics gives results closely similar to classical 

mechanics. For intermediate cases it is found that the old quantum theory often gives 

good results. It is therefore pleasing that there has been obtained an approximation 

method of solution of the wave equation based on an expansion the first term of 

which leads to the classical result , the second term to the old-quantum theory result , 

and the higher terms to corrections which bring in the effects characteristic of the new 

mechanics. This method is usually called the Wentzel-Kramers-Brillouin method       

( precisely the WKB approximation method)] 
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In this paper we follow the Krause-Parikh -Wilczek  method to obtain the 

tunneling rate of the massless particles at the event horizon of a non accelerating and 

rotating blackholes with electric and magnetic charges. Our paper is organized as 

follows: 

  In section-2 we give the metric of non-accelerating and rotating blackhole with 

electric and magnetic charges. The horizon area and Bekenstein-Hawking entropy 

formula are also given in this section. In section-3 we introduce the dragging 

coordinate system in order to  infinite red shift surface coincide with the event horizon 

surface , so that the geometrical optical limit can be applied. In  section-4 we 

transform  the metric in general Painleve-like transformation and obtain the equation 

of null geodesics. In section-5 we discuss the tunneling rate and a concluding remarks 

is given in section-6.      

2 . Non-accelerating and rotating blachkholes with electric and magnetic charge:  

The Plebanski-Demianski [34,35,36] metric covers a large family of 

spacetimes which include, among others, the well known blackhole solutions like 

Schwartzschild, Reissner-Nordstr
..
0 m , Kerr, Kerr-Newman, Kerr-NUT, Kerr-

Newman-NUT and many others. Here we study a special case of this family – 

blackholes with rotation but non-accelerating with electric and magnetic charges. The 

metric of this such kind of blackhole is given by [37] 

φ
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where      θρ 22222222 cos,2 arMrgear +=−+++=Δ . Here M is 

the mass of the blackhole, e and g are the electric and magnetic charges respectively, 

a is the angular momentum per unit mass. The event horizon equations are given by   
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0=Δ  which gives 2222 geaMMr −−−±=±        (4) 

The event horizon area of this blackhole is given by  

)(4 22 arA += +π              (5)  

and Bekenstein-Hawking entropy 

]22[)(
4

222222222 gegeaMMMarASBH −−−−−+=+== + ππ          (6) 

3. Dragging coordinate system and infinite red- shift surface:    

  The infinite red shift surface is given by 000 =g    which gives 

22222 cos geaMMr −−−±=± θ        (7) 

Obviously the infinite red shift surface does not coincide with the event horizon 

surface , which means that there is an energy layer exists between them. So the 

geometrical optical limit cannot be applied. Also  there exist a frame dragging effect in 

the stationary rotating spacetime, the matter field in the ergosphere  near the horizon 

must be dragged by the gravitational field also, so a reasonable physical picture should 

be depicted in the dragging coordinate system. This hints that we must transform the 

metric (3) into a dragging coordinate system.  

Let  
00

03

g
g

dt
d

−==Ω
φ

    (8)  

where Ω is the angular velocity. 
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For the metric (3) we have,  
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From (8),        θ
φ

22222

22

sin)(
])[(

Δ−+
Δ−+

==Ω
aar

ara
dt
d

         (9) 

At the horizon the angular velocity becomes,  

22 ar
a

h +
=Ω

+
                   (10) 

The line element (3) in the dragging coordinate system becomes, 

2
22

2
11

2
^

00
2 θdgdrgdtgds ++=             (11)  

where ]sin)[( 22222

2

33

2
03

00

^

00 θ
ρ

Δ−+
Δ−

=−=
aarg

g
gg   .  

The line element (11) represents a 3-dimensional hypersurface of  4-dimensional 

spacetime. The infinite red-shift surface now coincide with the event horizon surface 

in the dragging coordinate system. So the geometrical optical limit can be applied 

now. 

4.  Painleve-like coordinate transformation and null geodesics: 

To investigate the Hawking radiation as tunneling process it is necessary to eliminate 

coorditanate singularity at the event horizon. In the expression (11) , there still exists 

coordinate singularity at the event horizon in the dragging coordinate system. So we 

continue performing a general Painleve coordinate transformation[38]. This  

transformation can be done by  
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 θθθ drGdrrFdtdt ),(),( ++→             (12) 

where ),( θrF  and ),( θrG are two determined functions of r and θ  , and satisfy the 

integrability condition  , 

r
rGrF
δ
θδ

δθ
θδ ),(),(

=              (13) 

Thus from (11) we obtain, 
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We demand that constant time- slices are flat Euclidean space in radial. So we set, 
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From equation (13) ,   ∫ += )(),(),( θ
δθ

θδθ CdrrFrG                (16) 

where )(θC  is an arbitrary analytic  function of θ  .  

Substituting the value of ),( θrF  into equation (14) we get, 

dtdrggdtdrGg
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The positive sign )(+  denotes the spacetime line element of the outgoing particle and 

the minus sign )(− denotes the spacetime line element of the ingoing particles at the 

horizon. 
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According to Landau’s theory of the coordinate clock synchronization[45] in a 

spacetime decomposed in 3+1 dimension, the difference of coordinate times of two 

events taking place simultaneously in different place is 

)3,2,1(
00

0 =−=Δ ∫ idx
g
g

T ii
            (18) 

If the simultaneity of coordinate clocks can be transmitted from one place to another 

and has nothing to do with the integration path, components of the metric should 

satisfy[46] 

)3,2,1,(,)()(
00

0

00

0 =−=− ji
g
g

xg
g

x
j

i
i

j δ
δ

δ
δ

        (19) 

Now the metric (17) in the new coordinate system , has a number of attractive features 

: (1) the metric is well-behaved at the event horizon; (2) the time coordinate t  

represents the local proper time for radially free-falling observers; (3) the 

hypersurfaces of constant time-slices are just flat Euclidean space in the oblate 

spheroidal coordinates; (4) by substituting the components of the metric (17) into 

equation (19), we see that the metric satisfy the Landau’s condition of the coordinate 

clock synchronization 
r
rGrF
δ

θδ
δθ

θδ ),(),(
=  ; (5) the infinite red-shift surface coincide 

with the event horizon surface so that the WKB approximation can be used. These 

attractive features are very advantageous for us to discuss Hawking radiation as 

tunneling and to do an explicit computation of the tunneling probability at the event 

horizon. 

Now in order to investigate the tunneling process we evaluated the radial null 

geodesics described by equation (17) . Since the tunneling processes take place near 

the event horizon, so we may consider a particle tunneling from the event horizon as 

an ellipsoid shell . To conserve the symmetry of the spacetime , we think the particle 

should be still an ellipsoid shell during the tunneling process i.e. the particle does not 
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have motion in θ -direction[41]. Under these condition we obtain the radial null 

geodesics from equation (17) )0( 22 θdds ==  as 

θ

ρρρ
22222

222.

sin)(

])([

Δ−+

Δ−−±
=

aar
r                (20) 

where a dot denotes differentiation with respect to t  and the positive sign 

)(+ represents an outgoing geodesics and the negative sign )(− represents an  ingoing 

geodesics. 

 

5. Tunneling process:  

We adopt the picture of a pair of virtual particles spontaneously created just 

inside the horizon. The positive energy virtual particle can tunnel out and materialize 

as a real particle escaping classically to infinity. The negative energy particle is 

absorbed by the blackhole resulting in a decrease in the mass and the angular 

momentum of the blackhole. We consider the particle as an ellipsoid shell of energy 

ω  and angular momentum aω . When  the particle’s self-gravitation is taken into 

account, then equation (17) and (20) should be modified. To ensure the conservation 

of energy and angular momentum, we fix the total mass and angular momentum of the 

blackhole and allow the hole mass and angular momentum to fluctuate. When particle 

tunnels out , the blackhole mass and angular momentum will become ω−M  and 

)( ω−Ma  respectively.  

The shell of energy will move along the modified null geodesic in the radial direction 
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where  

2222 )(2 geaMr +++−−=Δ
−

ω  is the horizon equation after the emission of 

the particle with energy ω  .  

Now the coordinate φ  does not appear in  the dragged Painleve-Gullstrand metric (17) 

So φ  is an ignorable coordinate in the Lagrangian function .L . To eliminate this 

degree of freedom completely, the action should be written as  

∫ −=
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t

t

dtPLL )(
.
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So the imaginary part of the action is 
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where rP and φP are two canonical momentum conjugate to r  and φ  respectively.  

2222 geaMMrin −−−+= and 2222)()( geaMMrout −−−−+−= ωω  

are the locations of the event horizon before and after a particle tunnels out, they are 

just inside and outside the barrier through which the particle tunnels. 

We now eliminate the momentum in favor of energy by using Hamilton’s equations 
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where )(),;( ωφ −Ω=Ω=
−−

MdadJdH
rPr represents the energy change of the 

blackhole because of the loss of the angular momentum when a particle tunnels out 

[42] , and the dragging angular velocity is given by  

θ22222

22

sin)(

])[(
−

−
−
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Δ−+
=Ω

aar

ara
          (26) 

Substituting equations (20), (24) (25) and (26) into equation (23) and noting that we 

must choose the positive sign in equation (21) as the particle is propagating from 

inside to outside the horizon, then we have 
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We multiply and divide the integrand with )( 222 Δ′−+ ρρρ   to obtain 
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We see that /
+= rr  is a pole of order one. The integral can be evaluated by deforming 

the contour around the pole, so as to ensure that the positive energy solution decay in 
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time. Note that all real parts , divergent or not , can be discarded since they only 

contribute a phase. Doing the r integral first we obtain, 

 ∫
−

′−
−−−′−

−−−′−′−+++−′−
−=

ω

ω
ω

ωωω
π

M

M
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Finishing the integral we have 

])()()[(Im 2222222222 geaMMgeaMMMMS −−−−−−−−−+−−−= ωωωπ   (30)     

The tunneling rate is therefore 

])()()[(2Im2
222222222222

~ geaMMgeaMMMMS ee −−−−−−−−−+−−− =Γ ωωωπ              (31) 

Using Bekenstein-Hawking entropy formula )( 22 arSBH += +π ,  

 we have     
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where BHSΔ  is the difference of entropies of the blackhole before and after the 

emission. From equation (31) we have 

BHSeΔΓ ~                 (32) 

The result is obviously consists with an underlying unitary theory. Following the 

reference [10] , expanding BHSΔ  in )( 0ωω −  and neglecting the higher order terms 

we have  
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  where Ω= ωω a0  and β  is the inverse Hawking  temperature given by 

[ ]
2222

2
2222221

geaM

geaMM
TH −−−

−−−+
===

π
κ
πβ .  

Also in equation (31) we see that the first term gives the thermal Boltzmann factors 
)( 0ωωβ −−e  for the emanating radiation. The second term represents correction from 

the responds of the background geometry to the emission of a quantum. Furthermore  

equation (32) indicates that when the energy conservation and the angular momentum 

conservation as well as the particle’s self-gravitation are taken into account , the 

tunneling rate is related to the change of blackhole  entropy during the process of the 

particle’s emission and the radiant spectrum is not precisely thermal. 

 

6.  Concluding remarks: 

In this paper,  we have presented the Hawking radiation as tunneling from non-

accelerating and rotating with electric and magnetic charged blackhole by applying 

Krause-Parikh-Wilczek’s semi-classical quantum tunneling method[5,6,7,8]. We find 

that the emission rate at the event horizon is equal to the difference of Bekenstein-

Hawking entropy before and after the emission of a particle. The Hawking 

temperature of this type of blackhole recovered by expanding BHSΔ  in )( 0ωω − and 

neglecting the higher order terms. 

In special case , if we put 0=== gea  then the result reduces for the Schwarzschild  

blackhole and if 0, == goa  then the result reduces to the Reissner-Nordstrom 

blackhole and supports the Parikh-Wilczek’s result[6]. Also if we assume the 

equivalent charge 222 geQ +=  then the result is similar for the tunneling of 

uncharged particle from Kerr-Newman blackhole[41]. 
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