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Abstract.
In this paper we compare the maximum term of composition of two entire func-
tions with their corresponding left and right factors.
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1. Introduction, Definitions and Notations.
Let r be an entire function defined in the open complex plane . The maximum

term i, f) of Fm 0 g g" on |:| =+ is defined by wi(r, /) = mpx (| @y, |=™). To start
>
our paper we just recall the following definitions.

Definition 1 The order p_and lower order 7, of an entire function £ are defined as

- log™ M (v, f) leg™IM (1. F)
Re = IPEBP logr logr

L1}

and Ay = llminf

where
log¥lx = log(logh=Yy) for k = 1,2,3,.. and logr m .
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If Re 2 then f is of finite order. Also pr = @ means that f is of order zero. In
this connection Liao and Yang [6] gave the following definition.

Definition 2 [6] Let f be an entire function of order zero. Then the quantities péand

7+ of an entire function f are defined as:

: leg™ M (r.f) e leg ™8 (v, f)
Py = 111113;1;;W and fp = Uminf Togll 7

Datta and Biswas [2] gave an alternative definition of zero order and zero lower
order of an entire function in the following way:

Definition 3 [2] Let f be an entire function of order zero. Then the quantities g;" and
r: of f are defined by:

logM (r . log M (v
pE -lin_lsup% and Ay = lipj}gf%.
Sincefor @ = » <« R,
H'“-'.f} 5 Mir, f.} & R—p *‘-‘H.'.f} {Gf. [?]} (:L;'
it is easy to see that
log™uir, £) : log®l(r. £)
R = lhglj;]:.lpTET'J he = lim*i'pflu-—gr
* = limsu —lc-ﬁmy.(?", i he = llmirf—]":'.;"‘E:]"J'T'TF iy
b e loglr ' F7 T logAr !
and
logu(r - logp(r
p - lin_lsup%, fe lipﬂgf%.
Definition 4 The type o and lower type 7- of an entire function f are defined as
lD' HMir ].D' Mir
¢, = lmsup # and g, = lminf #. O=p, = o,

Definition 5 [7] A function g, (=] is called a proximate order of f relative to T (r.f)
if
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Q) P (1) is non-negative and continuous for = = 3, say,
(i) P (v} is differentiable for v = =, except possibly at isolated points at which
o', (r—0) and o (r +0) exist
(L) Wmp,(r) = p, = =,
(1v) lfr; r;;"; (&")].crg-lr =0 and
T )

(v} Hmaup——m—e=1.
3 kLI,

In the Iiné of Definition 5 the following definition can be given.

Definition 6 A function #s(x) is called a proximate order of f relative to ' (r,f) if
(i) #; (=) is non-negative and continuous for = = =, say,

(ii) &s () is differentiable for » = =, except possibly at isolated points at which
He(r=0) and k' (r=+ 0) exist,

(11f) H_m he (7) m he o O,

() Hmrk 'e(r)logr= 0 and

Tnf) _

T 4 '.I..‘ LR

(v] limsup 1.

In this paper we investigate some aspects of the comparative growths of maxi-
mum terms of two entire functions with their corresponding left and right factors. We
do not explain the standard notations and definitions on the theory of entire function
because those are available in [10].

2 Lemmas.
In this section we present some lemmas which will be needed in the sequel.

Lemma 1 [8] Let fand g be two entire functions with g0} = 0. Then for all suffi-
ciently large values of r,

i %

oL Lo
g o @ 2 spulz g - 191

Lemma 2 [1] If f and g are two entire functions then for all sufficiently large values
of =,

:WE%M [:;' 5‘] = |4§[EQ:I|.'.'F;] & MEr-‘q.'f':'g:] L MEME?*'?)"-'F:]'
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Lemma 3 [2] If 7 be any entire function of order zero. Then (i) pr=1 and (ii)
he =L,
Lemma 4 [4] If / be an entire function then for d¢== @) the function ™= s
ultimately an increasing function of .

Lemma 5 [5] Let £ be an entire function. Then for (= € the function v *#=4# i js
ultimately an increasing function of r.

Lemma 6 [3] Let g be an entire function with#; = 1 and assume that
a,(t = LZ..m n = w) are entire functions satisfying T'(r.a,)= o{T(r.g .} If

|
T &(a;g) = Lthen
=)

T(r.gl 1
n'l —— —
r~wlogh(r.g]l =

3. Theorems.

In this section we present the main results of the paper.
Theorem 1 Let f and g be two entire functions with p, = 0 and Q = p, =W Also

let? < 7, =g, « w Thenforanyn = 1
frs OB Feg) G R
ITLELL = ]
e ;.;P logpir, @) @, (4] g

Proof. In view of Lemma 1 we obtain for a sequence of values of + tending to infinity
that

log™lu(r, o g) = loghl %fr(%ff [:E;&‘:laf)l

) e
La, logPla(r.fog) i (o, = E»lcrsngr [;fy,l}-h (L)

Le, logBle(e,fog)
= [:F:'r; - Ej lo-g%-f- EF:',-’ - sj logg [::;, gj -+ Q1. (2)
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Again from the definition of lower type, we obtain from (1) for any # = 1 and
for all sufficiently large values of r that

logt [E ¢) = logh [%,g) +0(1) = (g, -5} [%]a"j +o(L). (37

Therefore from (2) and (3) it follows for a sequence of values of + tending to in-
finity,

logBlp(e, £ o g)

1 . . ¥
= (o, = eJlogz+ (o, —5) (7, - ) (=) ¥ + 010 (4)

where we choose « (= @7 in such away that 0 == & < min %p__,, EPE.
Also for all sufficiently large values of r,

loga(r.g) = logs (r.g) s (o, + 2 }(r)s )
Now from (4) and (5) it follows for a sequence of values of = tending to infinity that

logPlplr.f o g)
logs (r.g)

. ¥

[pf - lr;rg% + [pf - (7, —q) l{%] a0 )
(9, + e)(r)'s | (&)

As g (= @) is arbitrary, we obtain from (6) that

&

leg®ulrfag) TP
A g, g) = g, (4m)'s’

This proves the theorem.
In the line of Theorem 1 the following corollary may be deduced:

Corollary 1 Let f and g be two entire functions with #s = @and @ R, ™ . Also
let @& = =, « o Thenforany = = 1

log™lu(r feg) ., K
legsi(r.g) — (4m)'s’

limsup
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For an entire function f of order zero the following corollary can also proved with the
help of ;" :

Corollary 2 Let j be an entire function of order zero such that 'f.‘;-' = 0 and y be an
entire  function of non-zero finite order with @ «= ¢, < =<. Thenforany = = 1

limey logulr f=g) , i
' logu(rg) - (4n)d
Remark 1 If we take ¢ « A Epg 2 ¢o instead of “non-zero finite order with
Q @ @, %« @"in Corollary 2 and the other conditions remain the same then with the
help of R and Lemma 3 the following holds:

logBlpil(r, £« g)
limeup

s LogRlp(r.g)
Theorem 2 Let f and g be two entire functions with p, =w and 9 = P, =@ Al-

solet@ = &; & w, == Thenforanyn = 1

' lngPlp(r, f o g) | 1900,
ITMEL : — ,
e Loga(r,q) T,

&

Proof. Since for @ = r = E,
I
pr.fog) s M(r.feg) 5 T (R Feg) {c[9],

by Lemma 2 it follows for all sufficiently large values of r that

plro o g) & Mr.f o g) 5 M(M(r, ) F)
L, log™ v, fo gk o log™ M (Ming), F)
Le, log uir,fe g) = (ps—e)log Mir,g) (7)
Therefore from (5) and (7) we have for all sufficiently large values of r,
log® p(r.feg) = (p,—¢) (o, +a}r)s, (8)

Again for any = = 1, we obtain from (1) for all sufficiently large values of

946



J.Mech.Cont.& Math. Sci., Vol.-7, No.-1, July (2012) Pages 941-956

3 - AR
logpe(r,g) = l&g;’rff[E,é;} = (g, - a) E’E] : (9)

Now from (8) and (9) we obtain for all sufficiently large values of r,

logPlutr.f s g) _ (8= 8) (g, % ) ()"

ay

I = a F ¥
log (r.g) (. - o) ( %] é

logPlu(r.fa g)  m¥R:9
L limsup = —
rmze LOEH(r, @) 7
This completes the proof.

The following theorem is a natural consequence of Theorem 1 and Theorem 2.

Theorem 3 Let f and g be two entire functions with ¢ = pp and
9 awp, W Alsolet ¢ = & = o, =@ Thenforanyn = 1

. P log¥ i fog) wWép,Q

g gpLn ;v g g
e i [ITIE U - e,
0 (4n)"F = e # logs (v, @) .2

The proof is omitted.

Now for an entire function of order zero the following theorem can be carried out
in the line of Theorem 1 and Theorem 2.

Theorem 4 Let f be any entire function of order zero such that § = pi" «= 22 and g

be any entire function of non-zero finite order with @ = &, =g, = 2. Then for
any @ = 1

LA logu(r,fo g)  WipSe
g gl ) v g g
e i [T UL . -
0 (4n)"F = e # logp(r.g) A
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Remark 2 If we take ¢ = g B R, =@ instead of “non-zero finite order with

9 % @, =g, =@ in Theorem 4 and the other conditions remain the same then
with the help of g; in terms of maximum term and Lemma 3 it can be carried out that

/3 loglal ]
iﬂlimsup gkl f e o)

B, roe logllp(r.g) ~ Ik,

Theorem 5 Let f and g be two entire functions with 2, = 0 and 0 = Py = Also
letQ = §, =g, = w Thenforanyn = 1
rA " -
plr, e gl b &
— = L ,
ul.fl-a}:p logp(r. gl = o (4n) o

Proof. By Lemma 1 we obtain for all sufficiently large values of = that

log®lulr,f o g) = logh %f{(%p: (t};“ 32 f}l

1 o1 .
be, logPlp(r,fog)m (i - E}losggfr[@sfjh o(1)

s, ].;.:rsm;{ F e 5‘.:’!
= rf r:{tl-:rg— '.f —r}lr:-g;r W gr.'l + QL. (L)

Therefore from (3) and (10) it follows for all sufficiently large values of

log (e, £ v g)
- . - . X o
= (he = s}lo-s§+ (he =¥z, =} ( %] o0, (11)

Combining (5) and (11) we obtain for all sufficiently large values of r

l@-gE:]P;I:-rff-;v 5‘:‘ E he = E}lﬂ'gg'{‘ } *-‘T,:: - g:[ Ea-%] i
logi (r.g) (o, + 2)(r)s

Since ¢ (= @) isarbitrary, it follows from above that
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log plr. fog) k&
limzupn . Li
rese logpir, gl @, (4n)'s
Thus the theorem follows.

Theorem 6 Let f and g be two entire functions with #, = =« and ¢ = Ry = Al-
solet® = & =, <o Thenforanyn = 1

loghle (v, F n'é heg
lminf —= pirfeg), iy
ress loggl(r.g) 7,

Proof. Since for & = v = E,

i foglaMp.fag) s EE_T #lB.fag) {ch[%].

by Lemma 2 and the above inequality it follows for a sequence of values of + tending
to infinity,

#lr.fog) & M(r.fog) 2 M(M(r glf)
Le, logh plr,fe g 5 log@ M (Ming). )
Le, loghl pir,fegl= (is +ellog Mir,g) (12)
Therefore from (5) and (12) we have for a sequence of values of = tending to infinity,
loghl pir, Fo g) = |:r-l +E}|:Cl-'g - e}(?‘)“&*. (L)
Now from (9) and (13) we obtain for a sequence of values of r tending to infinity

log®lulr,f o @) _ (ke +5)(0, + 2)(r)s
logp(r,.g) (7 - E}[‘%l“z

logBlu(r.fog) | mFPR%

logs(r, g) LA

s 1111_1;_1'1?1;11“

This completes the proof.

The following theorem is a natural consequence of Theorem 5 and Theorem 6.
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Theorem 7 Let f and 7 be two entire functions with & = %, < wand ¢ = p_ = .
Alsolet@ « &, m¢, = @ Thenforanyn = 1

Fis O logPlu(r.feg) w'eks o
—L—<— g liminf a2 —
Tg(41)'F = o logp(r, g) %

The proof is omitted.
For an entire function f of order zero the following theorem can also be carried

out in the line of Theorem 5 and Theorem 6.

Theorem 8 Let f be any entire function of order zero such that @ = #¢" == %= and g
be any entire function of non -zero finite order with @ = &, = g, = 2. Then for any
w1

e T L. i} I-I % T
M -ﬂ'E & liminf logp(r.f e g) L AR he C‘SI
[ -
o (4n)'F T o legp (i, g) 7,

Remark 3 If we take ¢ = 7, = R, =@ instead of “non-zero finite order with

0 a2 g, %o, =@’ in Theorem 8 and the other conditions remain the same then
with the help of »; in terms of maximum term and Lemma 3 it can be carried out that

3—5 liminf]"i:'.Eﬂ:::IF::T’fn g) : i
By~ rew logllplr.g) = &
In the line of Theorem 6 the following two corollaries may be deduced:

Corollary 3 Let f and g be two entire functions with ¢ = p. = and
o
bap, mw Alsolet @ = g, =%, Thenforanyn = 1

g (p F
log ermfi'ﬂJﬂﬁam

e
d

Hminft
s lugi ()

Corollary 4 Let f be an entire function of order zero such that i1 « Py e o and g
be any  entire function of non-zero finite order with @ = @, = . Then for any
T o L
loggilr, Fe
11mme

4 'l
== logpl(r.g) P
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Remark 4 If we take @ « by & p, =@ instead of “non -zero finite order with

© < g, = w”in Corollary 4 and the other conditions remain the same then with the
help of ¥ and Lemma 3 the following holds:

loglp(r.f o g)
Umiaf - o
r=w logllu(r, g)

Theorem 9 Let 7 be an entire function of order zero and g be entire such that _ is
finite. Also suppose that there exist entire functions a,{: = 1.3, ..%: 1 = ] satisfy-
A
ing (A) Tira)=e{T(rgl} as r=wand (B) EJ (a,g)=1. Then for
-
]-':' 1.1 = j
liminfM- —pafs
rmen logp(R.g) ~ 7/
Proof. If pe = o, then the result is obvious. So we suppose that Py o 2
Sincefor 0 = r <« R,

ar.feg) € Mir.feg) g E‘: plBFeg) {eh[9],

we obtain by Lemma 2 for ¢ (= &) and for all sufficiently large values of r,

log g, = g} = (5" + &) log Mir,g) (14)
Since limsu.p—x—"” =1, fer gliven # [ = ¢ = 1) we get for all sufficiently large val-
ues of r, i
TEr gl o L -+ Srtet? (LE)
and for a sequence of values of r tending to infinity
Tir gl = {1 —ahrfa'"™, (1&)
Since log M(v.g) = 3T(2r. g) , for a sequence of values of r tending to infinity we
get for any g (= 10 ,
logh(r.g) _ B(L+g)  (2r)'™ 1 ﬁ(:l.-ba}@)i.fn@
f

T':'?‘,.E-[;l |::|__ E:.l ' (ijﬂfﬂﬁ-afﬁﬁ."," ('?‘)ﬂfl;'r'-' |::|. — E::l
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- "'._jm"'.-'

because (77 is ultimately an increasing function of .
Now from above we have for a sequence of values of + tending to infinity,

3'1-1-5,4 AT

Now comblnlng (14) and (17) it follows for a sequence of values of r tending to in-
finity that

log (r.f + ) 5 (o + J{%Ezﬁ“f*}nm. (16)

As M(r, g) = ;;:( R,g) ,itfollows from (18) that

log p(r.fe g) G4 E) e ee] Tl @)
logu( R, g) Ef l{ EE) }lwa-’r-f(n&)'

Since ¢ (= @) and & (= Q) are both arbitrary we get from above that

Tlr,
= 3.p2 2°2, iminf e g)

! e e
liming ¥ ELL 0 ) i

- logp(R, g)
Thus in view of Lemma 6 theorem follows from (19):

Corollary 5 Let f be an entire function of order zero and g be entire such that b, 18
finite. Then forany = = 1
liniinfw
= logu(r.g)
Proof. Putting & = = in the inequality wir, [ = M f) & — wiR, f1 {<f.[9]} and
in view of the inequality T'(r.g) = leghMir.g] we get that

= S.p;‘(zn]"’r.

logplnr, g) + O(1) = logM(r.g) = T(r.g)

. . g
Loe, l-:rg;ci.,'r',g:u"{?QLJET(EfQI). [(Z0)

Since ¢{= @) is arbitrary, we obtain from (14) and (20) for all sufficiently large val-
ues of r

log j(r e g)
log jir, g) = C(1)

(log Ming)
T(= g

liminf % I:pr;' e limin
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log g(r.feg) . . log Mir.g)
L, lminf log klrg) & Py liﬁliﬂfm' (Z1)

Since log M(r,g¢) = 3T(2r,g), in view of (15) and (16) we get for a sequence of
values of r tending to infinity and for any & (= (),

logM (r.g) . (1 + 42 [;2,,.)-1‘;;":? 1
G 1= (e e (D)
T I:'i’i" &?:] ( £) (2rm)%F F I:%:]o-
B p.mE
3(1+ ;} (=) .
(L- (MTJ s Eap—
ﬁ
(Lt g) Cad
: dn)"#
& EL_ ;IE FF;] i
_—
because (229%™ %5 s ultimately an increasing function of .

Since [.:a 0) and d (.:n ) are both arbitrary, we obtain from above that

Hiwdt M

— e 5, (2, (22
iy .l'[::_—#_.l-.!l.'] ] .:l

Thus from (21) and (22) it follows that
logalr. fe g) o R
Unalnf ——— 300720

s 0gH(A, ) P (20
This proves the Corollary.

Using the notion of lower proximate order the following theorem can be proved in
the line of Theorem 9:

Theorem 10 Let f be an entire function of order zero and g be entire with 7, = &
Also  suppose that there exist entire functions @, (! = 1,2, ..u; n = «) satisfying

(A) T(r,) — o{T(r.g)} as v — wand (B) T8(a,.9) = L. Thenfor @ = r = R,
- i
[~

logpir, feo gl
ligtlfclf —— Eﬁpfi‘f
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Corollary 6 Let f be an entire function of order zero and g be entire with 7, = .
Thenforany n = 1
logglr. fe g) -.
Iminf ———— = 3,057 2n)"7.
=i logule.g) P (20)
The proof of Corollary 6 is omitted as it can be carried out in the line of Corollary 5.

Theorem 11 Let f and g be two non constant entire functions such that f is of lower
order zero and ¢ and i, are finite. Then for @ = = = R,

lim#upbgﬁm’fa 2) o T
mece logp(r. g) — 2.8%
Proof. If #z" = @ then the result is obvious. So we suppose that ;" = &> 0. Since for
0= r < R,

sk, F) o8 Mr, £ =

o piB 1y Lef (9]

With the help of the above inequality and Lemma 2 and # ( & = & = min{i;",1}) we
get for all sufficiently large values of r,

| 1L
logi(R.f 5 g) -+ (L) & loght (r.f o g) & logh (SH [;a:f) - lg(@)1.F)

. . . o L . ; N
ju Fi, ]-Q'E,HE.E.’.IF'? E‘a‘ 'I" ':I E.lfl E Elr-f:’ — E:ll‘;"g {E;'Pf EE" gj - |‘§E|¢}fl‘|:l}
o, LogulR,fo g+ 000 & (i = log (5H (7.0)]

. - - o T ' P L
Le, loguiR.fegl+0iLl) =tay — £) log:'rf{%,gj— Ly — s)loga

. - — PO T k' PR
e, logu(R fegl+0(1) = (ki —g)T [@;5‘] -+ GHLL (23]
Since  Mminf ;“" = 1, for glven ¢ (= 07) we get for all sufficiently large values of r,
i g e {1 — el (&)

and for a sequence of values of r tending to infinity
Fir gl = (L +ghr'et?, (25
Now from (23) and (24) we get for & (= ©) and for all sufficiently large values of

logp b f o g) - (1] 2 (ke — s}(1— &) =
(2L hpte=ig
_

Ze
(=3
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Since ()™= g\™ is ultimately an increasing function of + it follows from above for
all sufficiently large values of r that

- 2 e

logu(R, fo g) -+ 0(1) & (47 = el(1=¢) %ﬁ_ (26)

So from (25) and (26) we get for a sequence of values of r tending to infinity that
(L- &) T(rg)
logu(R.f + g) + 0(1 s STt

Since log M(r,g) = 3T(2Zr, g) and wir, f) = Mir, ) = E_i_ wia, 1, we get from
above for a sequence of values of  tending to infinity that

. 1§l—¢) logM(r. g)
; W - )= —
logu(R.f« )+ 00) = (5 = 5 (T r e
1{l-g) ].Crgp:[r, )
3il+tg) {g)leTd
Since z (= ) and J (= Q) are arbitrary it follows from above that
logp(R,Fog)+ 01} 2

limsu P

ek logu(r. g) 5.5

Le, logu(R, fogl+001) = (" =)=

logn(R Feg) &7
b Himaw B
’ S  logu(r.g) 5.8%
Thus the theorem is proved.
In the line of Theorem 11 and Corollary 5 on can easily proof the following corol-
lary.

Corollary 7 Let / and y be two non constant entire functions such that / is of lower
order zero and 4s" and 7, are finite. Then forany =« = 1
logg(r.fog Ae
limsup gp(r.f o g) = —,
i [ ), 3.(8n)

The proof is omitted.
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