SOME CHARACTERIZATIONS OF N-DISTRIBUTIVE LATTICES

By
${ }^{1}$ M. Ayub Ali , ${ }^{2}$ R. M. HafiZur Rahaman, ${ }^{3}$ A. S. A. Noor and ${ }^{4}$ Jahanara Begum
${ }^{1}$ Department of Mathematics, Jagannath University Dhaka, Bangladesh.
${ }^{2}$ Department of Mathematics, Begum Rokeya University, Rangpur, Bangladesh.
${ }^{3}$ Department of ECE, East West University, Dhaka, Bangladesh.
${ }^{4}$ Department of Mathematics, Primesia University, Dhaka, Bangladesh.

Abstract

. In this paper, we have included several characterizations of n-distributive lattices. Also we have generalized the prime Separation Theorem for an n-annihilator $I=J^{\perp_{n}}$ (where J is a non-empty finite subset of L) and characterized the n-distributive lattices.

Keywords and phrases : distributive lattices, annihilator, prime Separation Theorem

বিমূর্ত সার (Bengali version of the Abstract)

এই পজ্র আমরা n-বন্টিত ল্যাট্টিসে (n-distributive lattices) বহবিষ বৈশিষ্ট্যকে অর্তযুক্ত করেরি । n - এनিহিলেটারের (n-annihilator) $I=J^{\perp_{n}}$ (যেখানে J, L - এর একটি অশূন্য সসীম ৬পসেট্) জন্য মুখ্য বিচ্ছেদ উপপাদ্যের সাধারণীকরণ এবং n - বন্টিত ল্যাট্সিসের বিশিষ্টায়ন করেছি।

1) Introduction:

J.C Varlet [7] introduced the notion of 0-distributives lattices to generalize the notion of pseudocomplemented lattices. A lattice L with 0 is called 0 -distributive if for all $a, b, c \in L, a \wedge b=0=a \wedge c$ imply $a \wedge(b \vee c)=0$. Of course every distributive lattice is a 0 -distributive lattice. Moreover, L is 0 -distributive if and only if for each
$a \in L$ the set of all elements disjoint with element a forms an ideal. Since a pseudo complemented lattice is characterized by the fact that for each element a, the set of elements disjoint with a is a principal ideal, so every pseudo complemented lattice is 0 -distributive. Similarly, if $1 \in L$, then one can describe 1 -distributive lattice. For detailed literature on 0 -distributive lattices we refer the readers to consult [7], [1] and [6]. Recently [5] have generalized the whole concept and introduced the notion of n-distributive lattice for any neutral element $n \in L$. For an element n of a lattice L, a convex sublattice of L containing n is called an n-ideal of L. An element $n \in L$ is called a standard element if for $a, b \in L, a \wedge(b \vee n)=(a \wedge b) \vee(a \wedge n)$, while n is called a neutral element if (i) it is standard and (ii) $n \wedge(a \vee b)=(n \wedge a) \vee(n \wedge b)$ for all $a, b \in L$. Set of all n-ideals of a lattice L is denoted by $I_{n}(L)$ which is an algebraic lattice; where $\{n\}$ and L are the smallest and the largest elements. For two n-ideals I and J, $I \cap J$ is the infimum and $I \vee J=\left\{x \in L / i_{1} \wedge j_{1} \leq x \leq i_{2} \vee j_{2}\right.$, for some $i_{1}, i_{2} \in I$ and $\left.j_{1}, j_{2} \in J\right\}$. The n-ideal generated by a finite numbers of elements $a_{1}, a_{2}, \ldots, a_{m}$ is called a finitely generated n-ideal denoted by $\left\langle a_{1}, a_{2}, \ldots, a_{m}\right\rangle_{n}$. Moreover, $\left\langle a_{1}, a_{2}, \ldots, a_{m}\right\rangle_{n}=$ $\left\{x \in L / a_{1} \wedge a_{2} \wedge \ldots \wedge a_{m} \wedge n \leq x \leq a_{1} \vee a_{2} \vee \ldots \vee a_{m} \vee n\right\}$ $=\left[a_{1} \wedge a_{2} \wedge \ldots \ldots . . \wedge a_{m} \wedge n, a_{1} \vee a_{2} \vee \ldots \ldots . . . \vee a_{m} \vee n\right]$

Thus, every finitely generated n-ideal is an interval containing n. n-ideal generated by a single element $a \in L$ is called a principal n-ideal denoted by $\langle a\rangle_{n}$ and $\langle a\rangle_{n}=[a \wedge n, a \vee n]$. Moreover $[a, b] \cap[c, d]=[a \vee c, b \wedge d] \quad$ and $[a, b] \vee[c, d]=[a \wedge c, b \vee d]$. If $n \quad$ is a neutral element, then by [3], $\langle a\rangle_{n} \cap\langle b\rangle_{n}=\langle m(a, n, b)\rangle_{n}$, where $m(x, y, z)=(x \wedge y) \vee(x \wedge z) \vee(y \wedge z)$. Set of all finitely generated n-ideals of L is denoted by $F_{n}(L)$, while the set of principal
n-ideals is denoted by $P_{n}(L)$. Thus $F_{n}(L)$ is a lattice but $P_{n}(L)$ is a semilattice when n is neutral element.

For a neutral element $n \in L, L$ is called n-distributive if for all $a, b, c \in L$, $\langle a\rangle_{n} \cap\langle b\rangle_{n}=\{n\}=\langle a\rangle_{n} \cap\langle c\rangle_{n}$ imply $\langle a\rangle_{n} \cap\left(\langle b\rangle_{n} \vee\langle c\rangle_{n}\right)=\{n\}$. Equivalently, L is n-distributive if for all $a, b, c \in L, a \wedge b \leq n \leq a \vee b$ and $a \wedge c \leq n \leq a \vee c$ imply $a \wedge(b \vee c) \leq n \leq a \vee(b \wedge c)$.[5] have shown that for a neutral element $n \in L, L$ is n-distributive if and only if for $a \in L,\{a\}^{\perp_{n}}=\{x \in L / m(a, n, x)=n\}$ is an n-ideal. In this paper we will include some more characterizations of n-distributive lattices. Then we extend the separation Theorem for n-ideals given in [5] with the help of annihilator n-ideals. Throughout the paper we will consider n as a neutral element.

Theorem 1: Let $n \in L$ be neutral. L is n-distributive if and only if $(n]$ is 1-distributive and $[n)$ is 0 -distributive.

Proof: Suppose L is n-distributive. Let $p, q, r \in(n]$ and $p \vee q=n=p \vee r$. Then $p \wedge q \leq n=p \vee q \quad$ and $\quad p \wedge r \leq n=p \vee r \quad$ imply $p \wedge(q \vee r) \leq n \leq p \vee(q \wedge r) \leq(p \vee q) \wedge(p \vee r)=n \quad$ as $\quad L \quad$ is $\quad n$-distributive. This implies $p \vee(q \wedge r)=n$, and so $(n]$ is 1-distrivutive. Dually we can show that $[n)$ is 0 -distributive. Conversely, suppose $(n]$ is 1-distributive and $[n)$ is 0 -distributive. Let $\quad a, b, c \in L \quad$ with $\quad a \wedge b \leq n \leq a \vee b \quad$ and $\quad a \wedge c \leq n \leq a \vee c \quad$. Then $(a \vee n) \wedge(b \vee n)=(a \wedge b) \vee n=n$ as n is neutral. Similarly $(a \vee n) \wedge(c \vee n)=n$. Thus $(a \vee n) \wedge(b \vee c \vee n)=n$ as $[n)$ is 0-distributive. This implies $a \wedge(b \vee c) \leq n$. Similarly using the 1-distributive property of $(n]$ we see that $n \leq a \vee(b \wedge c)$ as n is neutral. Therefore, $a \wedge(b \vee c) \leq n \leq a \vee(b \wedge c)$, and so L is n-distributive.

A non-empty subset I of a lattice L is called a down set if for $a \in I$ and $x \leq a$ $(x \in L)$ imply $x \in I . I$ is called an ideal if it is a down set and for all $a, b \in I$,
$a \vee b \in I$. Dually, a non-empty subset F of L is called an up set if for all $a \in F$ and $x \geq a(x \in L)$ imply $x \in F . F$ is called a filter of L if it is an up set and for $a, b \in F, \quad a \wedge b \in F$. A subset T of L is called convex if for $a \leq x \leq b$ with $a, b \in T$ imply $x \in T$. Of course all the ideals and filters of a lattice are convex sublattices. Moreover, for every convex sublattice C of $L, C=(C] \cap[C)$. A proper filter F of L is called a maximal filter if for any filter $M \supseteq F$ implies $M=F$ or $M=L$. A proper filter F is called a prime filter if for any $f, g \in L$, $f \vee g \in F$ implies either $f \in F$ or $g \in F$. Similarly, a down set I of L is prime if $a \wedge b \in I \quad(a, b \in L)$ implies either $a \in I$ or $b \in I$. In a lattice L with 0 , a prime down (up set) set P is minimal if it does not contain any other prime down set (up set). It is very easy to show that F is a maximal filter if and only if $L-F$ is a minimal prime down set. Similarly, I is a maximal ideal if and only if $L-I$ is a minimal prime up set. Moreover, F is a prime filter if and only if $L-F$ is a prime ideal. A convex sublattice P is called a prime convex sublattice if for any $p \in P$, $m(x, p, y) \in P$ implies either $x \in P$ or $y \in P$. By [4] P is a prime convex sublattice if and only if P is either a prime ideal or a prime filter. Thus we have:

Lemma 2: Let F be a non-empty subset of L not containing n. Then F is a filter (ideal) if and only if $L-F$ is a prime down set(up set) containing n.

Lemma 3: Let F be a non-empty subset of L not containing n. Then F is a maximal filter (ideal) if and only if $L-F$ is a minimal prime down set (up set) containing n.

Let n be neutral in L. For $a \in L$, we define $\{a\}^{\perp_{n}}=\{x \in L / m(x, n, a)=n\}$, known as $\quad n$-annihilator of a. For $A \subseteq L, A^{\perp_{n}}=\{x \in L / m(x, n, a)=n\}$ for all $a \in A$. In an n-distributive lattice, [5] have shown that $\{a\}^{\perp_{n}}$ and $A^{\perp_{n}}$ are n-ideals. Moreover,
$A^{\perp_{n}}=\bigcap_{a \in A}\left\{\{a\}^{\perp_{n}}\right\}$. If A is an n-ideal, then in a n-distributive lattice $A^{\perp_{n}}$ is the annihilator n-ideal and so it is the pseudo complement of A in $I_{n}(L)$. Thus in a n-distributive lattice $L, I_{n}(L)$ is pseudo complemented.

Lemma 4: For an element $a \neq n_{\text {in }} L,\{a\}^{\perp_{n}}$ is a convex subset containing n but not containing ${ }^{a}$.

Proof: Let $x, y \in\{a\}^{\perp_{n}}$ and $x \leq t \leq y$. Then $x \wedge a \leq n \leq x \vee a$ and $y \wedge a \leq n \leq y \vee a$ imply $t \wedge a \leq y \wedge a \leq n \leq x \vee a \leq t \vee a$, and so $t \in\{a\}^{\perp_{n}}$. Thus $\{a\}^{\perp_{n}}$ is a convex subset. Since $m(n, n, a)=n$ so $n \in\{a\}^{\perp_{n}}$. Also $m(a, n, a)=a \neq n$ implies $a \notin\{a\}^{\perp_{n}}$. Hence $\{a\}^{\perp_{n}}$ is a convex subset containing n but not containing a.

Corollary 5: If $A \subseteq L$ and $n \notin A$, then $A^{\perp_{n}}$ is a convex subset containing n but disjoint from A.

Proof: It is trivial by Lemma 4 and $A^{\perp_{n}}=\bigcap_{a \in A}\{a\}^{\perp_{n}}$.
Theorem 6: Let n be a neutral element of a lattice L and A be a nonempty subset of $L_{\text {not containing }} n$. Then $A^{\perp_{n}}$ is the intersection of all the minimal prime convex subsets containing n but not containing A.

Proof: Let $X=\cap\left(P / A_{\subsetneq} P, P\right.$ is a minimal prime convex set containing $\left.{ }^{n}\right)$. Let $x \in A^{\perp_{n}}$. Then $m(x, n, a)=n$ for all $a \in A$. This implies for each P, there exists $z \in A-P$ such that $m(x, n, z)=n$. Since P is prime, so $x \in P$ and so $x \in X$. Conversely, let $x \in X$. If $x \notin A^{\perp_{n}}$ then $m(x, n, a) \neq n$ for some $a \in A$. Then by [5, Lemma 5] either $x \vee n \notin\{a \vee n\}^{\perp} \quad$ or $\quad x \wedge n \notin\{a \wedge n\}^{1^{d}}$. Suppose $x \vee n \notin\{a \vee n\}^{\perp}$. Then $(x \vee n) \wedge(a \vee n) \neq n$ which implies $(x \wedge a) \vee n>n$, and so $x \wedge a_{\supsetneqq} n$. Let $D=[x \wedge a)$. Then D is a proper filter as $n \notin D$. So by [5, Lemma 2], there exists a maximal filter $M \supseteq D$, and not containing n. Hence by Lemma 3,
$L-M$ is a minimal prime down set containing n. Now $x \in D$ implies $x \in M$ and so $x \notin L-M$. Moreover $A \subsetneq L-M$ as $a \in M$ implies $a \notin L-M$ which is a contradiction to $x \in X$. Similarly if $x \wedge n \notin\{a \wedge n\}^{{\perp^{d}}^{\prime}}$, Then $(x \wedge n) \vee(a \wedge n) \neq n$. Implies $(x \vee a) \wedge n<n$ and so $x \vee a_{\supsetneqq} n$. Consider $I=(x \vee a]$. Clearly $n \notin I$. So there exists a maximal ideal Q containing I. but not containing n. Then by same argument as above $L-Q$ is a minimal prime up-set containing n. But $A \subsetneq L-Q$. Also $\quad x \notin L-Q$, which is again a contradiction to $\quad x \in X$. Therefore $x \in A^{\perp_{n}}$.

Following characterization of n-distributive lattice is given in [5].
Theorem 7: For a neutral element $n_{\text {of }}$ a lattice L, the following conditions are equivalent.
(i) L is n-distributive.
(ii) For every $a \in L, \quad\{a\}^{\perp_{n}}$ is an n-ideal.
(iii) For any $A \subseteq L, \quad A^{\perp_{n}}$ is an n-ideal.
(iv) $I_{n}(L)$ is pseudo complemented.
(v) $I_{n}(L)$ is 0-distributive.
(vi) Every maximal convex sublattice of L not containing n is prime.

Now we give the following characterization:
Theorem 8: For a neutral element n of a lattice L, the following conditions are equivalent.
(i) L is n-distributive.
(ii) Every maximal convex sublattice not containing n is prime.
(iii) Every minimal prime down set of L containing n and every minimal prime up set of
L containing n is a minimal prime ideal (filter), and so a minimal prime n-ideal.
(iv) Every filter (ideal) not containing n is disjoint from a minimal prime n-ideal.
(v) For each $a \neq n$, there is a minimal prime n-ideal not containing a.
(vi) Each $a \neq n$ is contained in a prime convex sublattice not containing n.

Proof: (i) \Leftrightarrow (ii) holds by Theorem 7.
(ii) implies (iii). Let A be a minimal prime down set (up set) of L containing ${ }^{n}$. Then
$L-A$ is a maximal filter (ideal) not containing n. Hence by (ii) it is a prime filter (ideal). Hence A is a minimal prime ideal (filter). Since $n \in A$, so it is a minimal prime n-ideal.
(iii) implies (ii). Let F be a maximal convex sublattice of L not containing ${ }^{n}$. Since $F=(F] \cap[F)$, so either $n \notin(F]$ or $n \notin[F)$. Without loss of generality suppose $n \notin[F)$. Then by the maximality of $F, F=[F)$. Thus F is a filter and so $L-F$ is a minimal prime down set containing ${ }^{n}$, and so by (iii), it is a minimal prime ideal. Hence F is a prime filter, and so is a prime convex sublattice.
implies (iv). Let F be a filter not containing ${ }^{n}$. Then by [5, Corollary 7], there is a prime (maximal) filter $Q \supseteq F$ not containing n. Thus $L-Q$ is a minimal prime ideal (n-ideal), which is disjoint from F. Similarly, if I is an ideal not containing ${ }^{n}$, then it is also disjoint from a minimal prime n-ideal.
(iv) implies (v). Let $a \in L$ and $a \neq n$. Then $[a) \cap\{n\}=\varphi$ or $\quad(a] \cap\{n\}=\phi$. Without loss of generality suppose $[a) \cap\{n\}=\varphi$. Then by (iv), there is a minimal prime ideal P containing n such that $P \cap[a)=\varphi$. Then P is in fact, an n-ideal and $a \notin P$.
(v) implies (vi). Let $a \in L$ and $a \neq n$. Then by (v) there exists a minimal prime n-ideal P such that $a \notin P$. But we know that the prime n-ideals are either prime
ideals or prime filters, so without loss of generality suppose P is a prime ideal. This implies $a \in L-P$, which is a prime filter not containing ${ }^{n}$. That is, $L-P$ is the prime convex sublattice containing a, but not containing n.
(vi) implies (i). Let L be not n-distributive. Then there exist $a, b, c \in L$ such that $\langle a\rangle_{n} \cap\langle b\rangle_{n}=\{n\} \quad$ and $\quad\langle a\rangle_{n} \cap\langle c\rangle_{n}=\{n\} \quad$ but $\langle a\rangle_{n} \cap\left(\langle b\rangle_{n} \vee\langle c\rangle_{n}\right) \neq\{n\}$. Then $a \wedge b \leq n \leq a \vee b \quad a \wedge$ and Now $\langle a\rangle_{n} \cap\left(\langle b\rangle_{n} \vee\langle c\rangle_{n}\right)=[(a \vee(b \wedge c)) \wedge n,(a \wedge(b \vee c)) \vee n] \neq\{n\}_{\text {implies either }} a \wedge(b \vee c)$ $\nsupseteq n \quad$ or $a \vee(b \wedge c)_{¥} n$. Without loss of generality, suppose $a \wedge(b \vee c)_{\ngtr} n$. Then by (vi), $a \wedge(b \vee c) \in Q$, where Q is a prime convex sublattice not containing n. Then Q is either an ideal or a filter. Since $a \wedge(b \vee c)_{\S} n$, so Q can not be considered as an ideal. For if $a \wedge(b \vee c)_{>} n$, then it would imply $n \in Q$. Therefore Q must be a filter. Now, $a \in Q$ and $b \vee c \in Q$ implies either $a \wedge b \in Q$ or $a \wedge c \in Q$ as Q is prime. In either case, $n \in Q$ as $a \wedge b, a \wedge c \leq n$, which is a contradiction. Similarly by considering $a \vee(b \wedge c)_{\supsetneqq} n \quad$ we will get another contradiction. Therefore, L is n-distributive.

Theorem 9: Let L be n-distributive and $\quad x \in L$. Then a prime ideal P containing $\{x\}^{\perp_{n}}$ is a minimal prime ideal containing $\{x\}^{\perp_{n}}$ if and only if for all $p \in P$ there is a $q \in L-P$ such that $m(p, n, q) \in\{x\}^{\perp_{n}}$.

Proof. Let P be a prime ideal containing $\{x\}^{\perp_{n}}$ such that the given condition holds. Let K be a prime ideal containing $\{x\}^{\perp_{n}}$ such that $K \subseteq P$. Let $p \in P$. Then there exists $\quad q \in L-P$ such that $m(p, n, q) \in\{x\}^{\perp_{n}}$. Hence $m(p, n, q) \in K$. Since K is prime and $q \notin K$, so $p \in K$. This implies $P \subseteq K$ and so $K=P$. Therefore, P is minimal.

Conversely, let P be a minimal prime ideal containing $\{x\}^{\perp_{n}}$. Let $p \in P$. Suppose for all $q \in L-P, m(p, n, q) \notin\{x\}^{\perp_{n}}$. Set $D=(L-P) \vee[p)$. We claim that
$\{x\}^{\perp_{n}} \cap D=\varphi$. If not, let $y \in\{x\}^{\perp_{n}} \cap D$. Then $y \geq r \wedge p$ for some $r \in L-P$. Then $n \leq m(p, n, r \vee n)=(p \wedge r) \vee n \leq y \vee n \quad$ implies $m(p, n, r \vee n) \in\{x\}^{\perp_{n}}$, by convexity of $\{x\}^{\perp_{n}}$. This gives a condition to the assumption, as $r \vee n \in L-P$. Then by [5, Theorem9], there exists a maximal (prime) filter $Q \supseteq D$ and disjoint from $\{x\}^{\perp_{n}}$. By the same proof of [5, Theorem 9], $\quad x \in Q$. Let $\quad M=L-Q$. Then M is a prime n-ideal. Since $x \in Q$, so $x \notin M$. Let $t \in\{x\}^{\perp_{n}}$. Then $m(t, n, x)=n$ implies $t \in M \quad$ as $\quad \mathrm{M}$ is prime. Thus $\{x\}^{\perp_{n}} \subseteq M$. Now $M \cap D=\varphi$. Therefore $M \cap(L-P)=\varphi$, and hence $M \subseteq P$. Also $M \neq P$, because $p \in D$ implies $p \notin M$, but $p \in P$. Hence M is a prime n-ideal containing $\{x\}^{\perp_{n}}$, which is properly contained in P. This gives a contradiction to the minimal property of P. Therefore, the given condition holds.

To generalize the separation Theorem for n-ideals in a distributive lattice given in [2], [5, Theorem9] have given such a separation property in a n-distributive lattice with respect to $\{x\}^{\perp_{n}}$ for any $x \in L$. We now improve this result for an n-annihilator $I=J^{\perp_{n}}$ for some finite subset J of L.

Theorem 10: (The Separation Theorem). Let n be a neutral element of L. Then L is n-distributive if and only if for a filter F and an n-annihilator $I=J^{\perp_{n}}$ (where J is a non-empty finite subset of L) with $F \cap I=\varphi$, there exists a prime filter Q containing F such that $Q \cap I=\varphi$.

Proof. Suppose L is n-distributive and $I=J^{\perp_{n}}$ for some non-empty finite subset J of L. Let F be the set of all filters containing F and disjoint from I. Then using Zorn's Lemma, there exists a maximal filter Q containing F and disjoint from I. Now $J \neq\{n\}$, as then $J^{\perp_{n}}=L \supset F$.Suppose $j_{1}, j_{2}, \ldots, j_{k}$ are the elements in J which are different from n. We claim that at least one of $j_{i} \in Q, i=1,2, \ldots, k$. If not, then for each $i,\left(Q \vee\left[j_{i}\right)\right) \cap I \neq \varphi$ by the maximality of Q. Let $t_{i} \in\left(Q \vee\left[j_{i}\right)\right) \cap I$. Then $t_{i} \geq q_{i} \wedge j_{i}$ for some $q_{i} \in Q$ and $t_{i} \in I$ implies
$m\left(t_{i}, n, x\right)=n$ for all $x \in J$. Thus in particular, $m\left(t_{i}, n, j_{i}\right)=n$. This implies $t_{i} \wedge j_{i} \leq n$ and so, $q_{i} \wedge j_{i} \leq t_{i} \wedge j_{i} \leq n$. Then $\left(q_{i} \vee n\right) \wedge j_{i}=\left(q_{i} \wedge j_{i}\right) \vee\left(n \wedge j_{i}\right) \leq n$ implies $m\left(q_{i} \vee n, n, j_{i}\right)=n$ for each $i=1,2, \ldots, k$. Thus we obtain the elements $q_{1} \vee n, q_{2} \vee n, \ldots, q_{k} \vee n \quad$ in $\quad Q$ $q=\left(q_{1} \vee n\right) \wedge\left(q_{2} \vee n\right) \wedge \ldots \wedge\left(q_{k} \vee n\right)=\left(q_{1} \wedge q_{2} \wedge \ldots \wedge q_{k}\right) \vee n \in Q$

Choose Then $q \wedge j_{i} \leq q_{i} \wedge j_{i} \leq n$ and $q \wedge n=n_{\text {imply }} m\left(q, n, j_{i}\right)=n$ for each i and so $q \in I$, which contradicts that $Q \cap I=\varphi$. Therefore $j_{i} \in Q$ for some $i=1,2, \ldots ., k$. Now let $z \notin Q$. Then by the maximality of $Q,(Q \vee[z)) \cap I \neq \varphi$. Let $t \in(Q \vee[z)) \cap I$. Then $t \geq q \wedge z \quad$ for some $q \in Q$ and $m(t, n, j)=n \quad$ for all $j \in J$. So, $m\left(t, n, j_{i}\right)=n$. Then $t \wedge j_{i} \leq n \leq t \vee j_{i}$ and so $q \wedge j_{i} \wedge z \leq t \wedge j_{i} \leq n \quad$ which implies $m\left(z, n,\left(q \wedge j_{i}\right) \vee n\right)=n$. Then by [5, Lemma3] Q is a maximal filter not containing n. Hence Q is prime as L is n-distributive.
Conversely, let $\langle x\rangle_{n} \cap\langle y\rangle_{n}=\{n\}$ and $\langle x\rangle_{n} \cap\langle z\rangle_{n}=\{n\}$. We need to prove that $\langle x\rangle_{n} \cap\left(\langle y\rangle_{n} \vee\langle z\rangle_{n}\right)=\{n\}$. That is $x \wedge(y \vee z) \leq n \leq x \vee(y \wedge z)$. If not, let $x \wedge(y \vee z) \nless n$. Then $[y \vee z) \cap\{x\}^{\perp_{n}}=\varphi$. For otherwise $t \in[y \vee z) \cap\{x\}^{\perp_{n}}$, implies $t \wedge x \leq n \leq t \vee x \quad$ and $\quad t \geq y \vee z$, which implies $x \wedge(y \vee z) \leq t \wedge x \leq n$, a contradiction. So, there exists a prime filter Q containing $[y \vee z)$ disjoint from $\{x\}^{\perp_{n}}$. As $y, z \in\{x\}^{\perp_{n}}$, so $y, z \notin Q$. Thus $y \vee z \notin Q$, as Q is prime. This implies $[y \vee z) \not \subset Q$, a contradiction. Dually by taking $x \vee(y \wedge z) \ngtr n$, we would have another contradiction. Therefore, $x \wedge(y \vee z) \leq n \leq x \vee(y \wedge z)$, and so L is n-distributive.

References

1) Balasubramani P. and Venkatanarasimhan P. V., Characterizations of the 0 Distributive Lattices, Indian J. pure appl. Math. 32(3) 315-324, (2001).
2) Latif M . A. and Noor A. S. A., A generalization of Stone's representation theorem . The Rajshahi University studies. (part B) 31(2003) 83-87.
3) Noor A. S. A. and Latif M. A., Finitely generated n-ideals of a lattice, SEA Bull .Math. 22(1998)72-79.
4) Noor A. S. A. and Hafizur Rahman M., On largest congruence containing a convex sublattice as a class, The Rajshahi University studies. (part B) 26(1998)89-93.
5) Ayub Ali M., Noor A. S. A. and Podder S. R. n-distributive lattices, Submitted, Journal of Physical Sciences, Bidyasagar University, West Bengal, India.
6) Powar Y.S.and Thakare N. K., 0-Distributive semilattices, Canad. Math. Bull. Vol.21(4) (1978), 469-475.
7) Varlet J. C., A generalization of the notion of pseudo-complementedness, Bull. Soc. Sci. Liege, 37(1968), 149-158.
