SOME CHARACTERIZATIONS OF N-DISTRIBUTIVE LATTICES

By

¹M. Ayub Ali , ²R. M. HafiZur Rahaman, ³A. S. A. Noor and ⁴Jahanara Begum

¹Department of Mathematics, Jagannath University Dhaka, Bangladesh.
²Department of Mathematics, Begum Rokeya University, Rangpur, Bangladesh.

³Department of ECE, East West University, Dhaka, Bangladesh.

⁴Department of Mathematics, Primesia University, Dhaka, Bangladesh.

Abstract.

In this paper, we have included several characterizations of n-distributive lattices. Also we have generalized the prime Separation Theorem for an n-annihilator $I=J^{\perp_n}$ (where J is a non-empty finite subset of L) and characterized the n-distributive lattices.

Keywords and phrases: distributive lattices, annihilator, prime Separation Theorem

বিমূর্ত সার (Bengali version of the Abstract)

এই পত্রে আমরা n-বন্টিত ল্যাটিসের (n-distributive lattices) বহুবিধ বৈশিষ্ট্যকে অর্ভভুক্ত করেছি । n - এনিহিলেটারের (n-annihilator) $I=J^{\perp_n}$ (যেখানে J,L - এর একটি অশুন্য সসীম উপসেট) জন্য মুখ্য বিচ্ছেদ উপপাদ্যের সাধারণীকরণ এবং n - বন্টিত ল্যাটিসের বিশিষ্টায়ন করেছি ।

1) Introduction:

J.C Varlet [7] introduced the notion of 0-distributives lattices to generalize the notion of pseudocomplemented lattices. A lattice L with 0 is called 0-distributive if for all $a,b,c\in L$, $a\wedge b=0=a\wedge c$ imply $a\wedge (b\vee c)=0$. Of course every distributive lattice is a 0-distributive lattice. Moreover, L is 0-distributive if and only if for each

 $a \in L$ the set of all elements disjoint with element a forms an ideal. Since apseudo complemented lattice is characterized by the fact that for each element a, the set of elements disjoint with a is a principal ideal, so every pseudo complemented lattice is 0-distributive. Similarly, if $1 \in L$, then one can describe 1-distributive lattice. For detailed literature on 0-distributive lattices we refer the readers to consult [7], [1] and [6]. Recently [5] have generalized the whole concept and introduced the notion of n-distributive lattice for any neutral element $n \in L$. For an element n of a lattice L, a convex sublattice of L containing n is called an n-ideal of L. An element $n \in L$ is called a *standard* element if for $a,b \in L, a \land (b \lor n) = (a \land b) \lor (a \land n)$, while n is called a *neutra*l element if (i) it is standard and (ii) $n \wedge (a \vee b) = (n \wedge a) \vee (n \wedge b)$ for all $a,b \in L$. Set of all n-ideals of a lattice L is denoted by $I_n(L)$ which is an algebraic lattice; where $\{n\}$ and L are the smallest and the largest elements. For I and J , $I \cap J$ is the infimum $I \vee J = \{x \in L/i_1 \land j_1 \le x \le i_2 \lor j_2, for some i_1, i_2 \in I \text{ and } j_1, j_2 \in J\}$. The n-ideal generated by a finite numbers of elements $a_1, a_2, ..., a_m$ is called a *finitely generated* by $\langle a_1, a_2, ..., a_m \rangle_n$. Moreover, $\langle a_1, a_2, ..., a_m \rangle_n =$ n-ideal $\left\{x \in L/a_1 \wedge a_2 \wedge \dots \wedge a_m \wedge n \leq x \leq a_1 \vee a_2 \vee \dots \vee a_m \vee n\right\}$ $= [a_1 \wedge a_2 \wedge \dots \wedge a_m \wedge n, a_1 \vee a_2 \vee \dots \vee a_m \vee n]$

Thus, every finitely generated n-ideal is an interval containing n. n-ideal generated by a single element $a \in L$ is called a *principal n-ideal* denoted by $\langle a \rangle_n$ and $\langle a \rangle_n = [a \wedge n, a \vee n]$. Moreover $[a,b] \cap [c,d] = [a \vee c,b \wedge d]$ and $[a,b] \vee [c,d] = [a \wedge c,b \vee d]$. If n is a neutral element, then by $[3], \langle a \rangle_n \cap \langle b \rangle_n = \langle m(a,n,b) \rangle_n$, where $m(x,y,z) = (x \wedge y) \vee (x \wedge z) \vee (y \wedge z)$. Set of all finitely generated n-ideals of L is denoted by $F_n(L)$, while the set of principal

n-ideals is denoted by $P_n(L)$. Thus $F_n(L)$ is a lattice but $P_n(L)$ is a semilattice when n is neutral element.

For a neutral element $n \in L$, L is called n-distributive if for all $a,b,c \in L$, $\langle a \rangle_n \cap \langle b \rangle_n = \{n\} = \langle a \rangle_n \cap \langle c \rangle_n$ imply $\langle a \rangle_n \cap (\langle b \rangle_n \vee \langle c \rangle_n) = \{n\}$. Equivalently, L is n-distributive if for all $a,b,c \in L$, $a \wedge b \leq n \leq a \vee b$ and $a \wedge c \leq n \leq a \vee c$ imply $a \wedge (b \vee c) \leq n \leq a \vee (b \wedge c)$.[5] have shown that for a neutral element $n \in L$, L is n-distributive if and only if for $a \in L$, $\{a\}^{\perp_n} = \{x \in L/m(a,n,x) = n\}$ is an n-ideal. In this paper we will include some more characterizations of n-distributive lattices. Then we extend the separation Theorem for n-ideals given in [5] with the help of annihilator n-ideals. Throughout the paper we will consider n as a neutral element.

Theorem 1: Let $n \in L$ be neutral. L is n-distributive if and only if $\binom{n}{}$ is 1-distributive and $\binom{n}{}$ is 0-distributive.

Proof: Suppose L is n-distributive. Let $p,q,r\in [n]$ and $p\vee q=n=p\vee r$. Then $p\wedge q\leq n=p\vee q$ and $p\wedge r\leq n=p\vee r$ imply $p\wedge (q\vee r)\leq n\leq p\vee (q\wedge r)\leq (p\vee q)\wedge (p\vee r)=n$ as L is n-distributive. This implies $p\vee (q\wedge r)=n$, and so n=1 is 1-distributive. Dually we can show that n=1 is 0-distributive. Conversely, suppose n=1 is 1-distributive and n=1 is 0-distributive. Let n=1 is n=1 is n=1 is n=1 is neutral. Similarly n=1 implies n=1 is neutral. Similarly n=1 implies n=1 is neutral. Similarly n=1 implies n=1 is neutral. Similarly n=1 is neutral. Similarly n=1 is neutral. Similarly n=1 is neutral. Similarly n=1 is neutral. Therefore, n=1 implies n=1 is neutral. Therefore, n=1 is neutral. Therefore, n=1 is neutral. Therefore, n=1 is neutral. Therefore, n=1 implies n=1 is neutral. Therefore, n=1 is neutral. Therefore, n=1 implies n=1 impl

A non-empty subset I of a lattice L is called a *down set* if for $a \in I$ and $x \le a$ $(x \in L)$ imply $x \in I$. I is called an *ideal* if it is a down set and for all $a, b \in I$,

 $a \lor b \in I$. Dually, a non-empty subset F of L is called an up set if for all $a \in F$ and $x \ge a$ ($x \in L$) imply $x \in F$. F is called a *filter* of L if it is an up set and for $a,b \in F$, $a \land b \in F$. A subset T of L is called *convex* if for $a \le x \le b$ with $a,b \in T$ imply $x \in T$. Of course all the ideals and filters of a lattice are convex sublattices. Moreover, for every convex sublattice C of L, $C = (C) \cap [C)$. A proper filter F of L is called a maximal filter if for any filter $M \supseteq F$ implies M = F or M = L. A proper filter F is called a *prime filter* if for any $f, g \in L$, $f \lor g \in F$ implies either $f \in F$ or $g \in F$. Similarly, a down set I of L is prime if $a \wedge b \in I$ $(a, b \in L)$ implies either $a \in I$ or $b \in I$. In a lattice L with 0, a prime down (up set) set P is minimal if it does not contain any other prime down set (up set). It is very easy to show that F is a maximal filter if and only if L-F is a minimal prime down set. Similarly, I is a maximal ideal if and only if L-I is a minimal prime up set. Moreover, F is a prime filter if and only if L-F is a prime ideal. A convex sublattice P is called a prime convex sublattice if for any $p \in P$, $m(x, p, y) \in P$ implies either $x \in P$ or $y \in P$. By [4] P is a prime convex sublattice if and only if P is either a prime ideal or a prime filter. Thus we have:

Lemma 2: Let F be a non-empty subset of L not containing n. Then F is a filter (ideal) if and only if L-F is a prime down set(up set) containing n.

Lemma 3: Let F be a non-empty subset of L not containing n. Then F is a maximal filter (ideal) if and only if L-F is a minimal prime down set (up set) containing n.

Let n be neutral in L. For $a \in L$, we define $\{a\}^{\perp_n} = \{x \in L/m(x,n,a) = n\}$, known as n-annihilator of a. For $A \subseteq L$, $A^{\perp_n} = \{x \in L/m(x,n,a) = n\}$ for all $a \in A$. In an n-distributive lattice, [5] have shown that $\{a\}^{\perp_n}$ and A^{\perp_n} are n-ideals. Moreover,

 $A^{\perp_n} = \bigcap_{a \in A} \left\{\!\!\left\{a\right\}^{\perp_n}\right\}.$ If A is an n-ideal, then in a n-distributive lattice A^{\perp_n} is the annihilator n-ideal and so it is the pseudo complement of A in $I_n(L)$. Thus in a n-distributive lattice L, $I_n(L)$ is pseudo complemented.

Lemma 4: For an element $a \neq n$ in L, $\{a\}^{\perp_n}$ is a convex subset containing n but not containing a.

Proof: Let $x, y \in \{a\}^{\perp_n}$ and $x \le t \le y$. Then $x \land a \le n \le x \lor a$ and $y \land a \le n \le y \lor a$ imply $t \land a \le y \land a \le n \le x \lor a \le t \lor a$, and so $t \in \{a\}^{\perp_n}$. Thus $\{a\}^{\perp_n}$ is a convex subset. Since m(n,n,a) = n so $n \in \{a\}^{\perp_n}$. Also $m(a,n,a) = a \ne n$ implies $a \notin \{a\}^{\perp_n}$. Hence $\{a\}^{\perp_n}$ is a convex subset containing n but not containing a.

Corollary 5: If $A \subseteq L$ and $n \notin A$, then A^{\perp_n} is a convex subset containing n but disjoint from A.

Proof: It is trivial by Lemma 4 and $A^{\perp_n} = \bigcap_{a \in A} \{a\}^{\perp_n}$.

Theorem 6: Let n be a neutral element of a lattice L and A be a nonempty subset of L not containing n . Then $^{A^{\perp_n}}$ is the intersection of all the minimal prime convex subsets containing n but not containing A .

Proof: Let $X = \cap (P/A \subsetneq P, P)$ is a minimal prime convex set containing n). Let $x \in A^{\perp_n}$. Then m(x,n,a) = n for all $a \in A$. This implies for each P, there exists $z \in A - P$ such that m(x,n,z) = n. Since P is prime, so $x \in P$ and so $x \in X$. Conversely, let $x \in X$. If $x \notin A^{\perp_n}$ then $m(x,n,a) \neq n$ for some $a \in A$. Then by [5, Lemma 5] either $x \vee n \notin \{a \vee n\}^{\perp}$ or $x \wedge n \notin \{a \wedge n\}^{\perp^d}$. Suppose $x \vee n \notin \{a \vee n\}^{\perp}$. Then $(x \vee n) \wedge (a \vee n) \neq n$ which implies $(x \wedge a) \vee n > n$, and so $x \wedge a \not\subseteq n$. Let $D = [x \wedge a)$. Then D is a proper filter as $n \notin D$. So by [5, Lemma 2], there exists a maximal filter $M \supseteq D$, and not containing n. Hence by Lemma 3,

L-M is a minimal prime down set containing n. Now $x \in D$ implies $x \in M$ and so $x \notin L-M$. Moreover $A \subsetneq L-M$ as $a \in M$ implies $a \notin L-M$ which is a contradiction to $x \in X$. Similarly if $x \land n \notin \{a \land n\}^{\perp^d}$, Then $(x \land n) \lor (a \land n) \ne n$. Implies $(x \lor a) \land n < n$ and so $x \lor a \ngeq n$. Consider $I = (x \lor a]$. Clearly $n \notin I$. So there exists a maximal ideal Q containing I. but not containing I. Then by same argument as above I = Q is a minimal prime up-set containing $I \in X$. Therefore $I \in X$ and $I \in X$ is a minimal prime up-set containing $I \in X$. Therefore $I \in X$ is a minimal prime up-set containing $I \in X$. Therefore $I \in X$ is a minimal prime up-set containing $I \in X$. Therefore $I \in X$ is a minimal prime up-set containing $I \in X$.

Following characterization of n-distributive lattice is given in [5].

Theorem 7: For a neutral element n of a lattice L , the following conditions are equivalent.

- (i) L is n-distributive.
- (ii) For every $a \in L$, $\{a\}^{\perp_n}$ is an n-ideal.
- (iii) For any $A \subseteq L$, A^{\perp_n} is an n-ideal.
- (iv) $I_n(L)$ is pseudo complemented.
- (v) $I_n(L)$ is 0-distributive.
- (vi) Every maximal convex sublattice of L not containing n is prime.

Now we give the following characterization:

Theorem 8: For a neutral element n of a lattice L , the following conditions are equivalent.

- (i) L is n-distributive.
- (ii) Every maximal convex sublattice not containing n is prime.
- (iii) Every minimal $prime\ down\ set\ of\ L$ containing n and every minimal $prime\ up\ set\ of$

L containing n is a minimal prime ideal (filter), and so a minimal prime n-ideal.

- (iv) Every filter (ideal) not containing n is disjoint from a minimal prime n-ideal.
- (v) For each $a \neq n$, there is a minimal prime n-ideal not containing a.
- (vi) Each $a \neq n$ is contained in a prime convex sublattice not containing n.

Proof: (i) \Leftrightarrow (ii) holds by Theorem 7.

(ii) implies (iii). Let A be a minimal prime down set (up set) of L containing n. Then

L-A is a maximal filter (ideal) not containing n. Hence by (ii) it is a prime filter (ideal). Hence A is a minimal prime ideal (filter). Since $n \in A$, so it is a minimal prime n-ideal.

- (iii) implies (ii). Let F be a maximal convex sublattice of L not containing n. Since $F = (F) \cap [F)$, so either $n \notin (F)$ or $n \notin [F)$. Without loss of generality suppose $n \notin [F)$. Then by the maximality of F, F = [F). Thus F is a filter and so L F is a minimal prime down set containing n, and so by (iii), it is a minimal prime ideal. Hence F is a prime filter, and so is a prime convex sublattice.
- (i) implies (iv). Let F be a filter not containing n. Then by [5, Corollary 7], there is a prime (maximal) filter $Q \supseteq F$ not containing n. Thus L Q is a minimal prime ideal (n-ideal), which is disjoint from F. Similarly, if I is an ideal not containing n, then it is also disjoint from a minimal prime n-ideal.
 - (iv) implies (v). Let $a \in L$ and $a \neq n$. Then $[a) \cap \{n\} = \varphi$ or $(a] \cap \{n\} = \varphi$. Without loss of generality suppose $[a) \cap \{n\} = \varphi$. Then by (iv), there is a minimal prime ideal P containing n such that $P \cap [a] = \varphi$. Then P is in fact, an n-ideal and $a \notin P$.
 - (v) implies (vi). Let $a \in L$ and $a \neq n$. Then by (v) there exists a minimal prime n-ideal P such that $a \notin P$. But we know that the prime n-ideals are either prime

ideals or prime filters, so without loss of generality suppose P is a prime ideal. This implies $a \in L-P$, which is a prime filter not containing n. That is, L-P is the prime convex sublattice containing a, but not containing n.

Theorem 9: Let L be n-distributive and $x \in L$. Then a prime ideal P containing $\{x\}^{\perp_n}$ is a minimal prime ideal containing $\{x\}^{\perp_n}$ if and only if for all $p \in P$ there is $a \ q \in L - P$ such that $m(p, n, q) \in \{x\}^{\perp_n}$.

Proof. Let P be a prime ideal containing $\{x\}^{\perp_n}$ such that the given condition holds. Let K be a prime ideal containing $\{x\}^{\perp_n}$ such that $K \subseteq P$. Let $P \in P$. Then there exists $q \in L - P$ such that $m(p,n,q) \in \{x\}^{\perp_n}$. Hence $m(p,n,q) \in K$. Since K is prime and $q \notin K$, so $p \in K$. This implies $P \subseteq K$ and so K = P. Therefore, P is minimal.

Conversely, let P be a minimal prime ideal containing $\{x\}^{\perp_n}$. Let $p \in P$. Suppose for all $q \in L - P$, $m(p, n, q) \notin \{x\}^{\perp_n}$. Set $D = (L - P) \vee [p]$. We claim that

 $\{x\}^{\perp_n} \cap D = \varphi \text{ . If not, let } y \in \{x\}^{\perp_n} \cap D \text{ . Then } y \geq r \wedge p \text{ for some } r \in L-P \text{ .}$ Then $n \leq m(p,n,r\vee n) = (p\wedge r)\vee n \leq y\vee n \text{ implies } m(p,n,r\vee n) \in \{x\}^{\perp_n} \text{ , by convexity of } \{x\}^{\perp_n} \text{ . This gives a condition to the assumption, as } r\vee n \in L-P \text{ . Then by } [5, \text{ Theorem9}], \text{ there exists a maximal (prime) filter } Q \supseteq D \text{ and disjoint from } \{x\}^{\perp_n} \text{ . By the same proof of } [5, \text{ Theorem 9}], \quad x \in Q \text{ . Let } M = L-Q \text{ . Then } M \text{ is a prime n-ideal. Since } x \in Q \text{ , so } x \notin M \text{ . Let } t \in \{x\}^{\perp_n} \text{ . Then } m(t,n,x) = n \text{ implies } t \in M \text{ as } M \text{ is prime. Thus } \{x\}^{\perp_n} \subseteq M \text{ . Now } M \cap D = \varphi \text{ . Therefore } M \cap (L-P) = \varphi \text{ , and hence } M \subseteq P \text{ . Also } M \neq P \text{ , because } P \in D \text{ implies } P \notin M \text{ , but } P \in P \text{ . Hence } M \text{ is a prime n-ideal containing } \{x\}^{\perp_n} \text{ , which is properly contained in } P \text{ . This gives a contradiction to the minimal property of } P \text{ . Therefore, the given condition holds.}$

To generalize the separation Theorem for n-ideals in a distributive lattice given in [2], [5, Theorem9] have given such a separation property in a n-distributive lattice with respect to $\{x\}^{\perp_n}$ for any $x \in L$. We now improve this result for an n-annihilator $I = J^{\perp_n}$ for some finite subset J of L.

Theorem 10: (The Separation Theorem). Let n be a neutral element of L. Then L is n-distributive if and only if for a filter F and an n-annihilator $I = J^{\perp_n}$ (where J is a non-empty finite subset of L) with $F \cap I = \varphi$, there exists a prime filter Q containing F such that $Q \cap I = \varphi$.

Proof. Suppose L is n-distributive and $I=J^{\perp_n}$ for some non-empty finite subset J of L. Let $\mathcal F$ be the set of all filters containing F and disjoint from I. Then using Zorn's Lemma, there exists a maximal filter Q containing F and disjoint from I. Now $J \neq \{n\}$, as then $J^{\perp_n} = L \supset F$. Suppose $j_1, j_2, ..., j_k$ are the elements in J which are different from I. We claim that at least one of I in I which are different from I in I which are different from I implies I implies

Conversely, let $\langle x \rangle_n \cap \langle y \rangle_n = \{n\}$ and $\langle x \rangle_n \cap \langle z \rangle_n = \{n\}$. We need to prove that $\langle x \rangle_n \cap (\langle y \rangle_n \vee \langle z \rangle_n) = \{n\}$. That is $x \wedge (y \vee z) \leq n \leq x \vee (y \wedge z)$. If not, let $x \wedge (y \vee z) \leqslant n$. Then $[y \vee z) \cap \{x\}^{\perp_n} = \varphi$. For otherwise $t \in [y \vee z) \cap \{x\}^{\perp_n}$, implies $t \wedge x \leq n \leq t \vee x$ and $t \geq y \vee z$, which implies $x \wedge (y \vee z) \leq t \wedge x \leq n$, a contradiction. So, there exists a prime filter Q containing $[y \vee z)$ disjoint from $\{x\}^{\perp_n}$. As $y,z \in \{x\}^{\perp_n}$, so $y,z \notin Q$. Thus $y \vee z \notin Q$, as Q is prime. This implies $[y \vee z) \not\subset Q$, a contradiction. Dually by taking $x \vee (y \wedge z) \not \geq n$, we would have another contradiction. Therefore, $x \wedge (y \vee z) \leq n \leq x \vee (y \wedge z)$, and so L is n-distributive.

References

- 1) Balasubramani P. and Venkatanarasimhan P. V., *Characterizations of the 0-Distributive Lattices*, Indian J. pure appl. Math. 32(3) 315-324, (2001).
- 2) Latif M. A. and Noor A. S. A., *A generalization of Stone's representation theorem*. The Rajshahi University studies. (part B) 31(2003) 83-87.
- 3) Noor A. S. A. and Latif M. A., *Finitely generated n-ideals of a lattice*, SEA Bull .Math. 22(1998)72-79.
- 4) Noor A. S. A. and Hafizur Rahman M., *On largest congruence containing a convex sublattice as a class*, The Rajshahi University studies. (part B) 26(1998)89-93.
- 5) Ayub Ali M., Noor A. S. A. and Podder S. R. *n-distributive lattices*, Submitted, Journal of Physical Sciences, Bidyasagar University, West Bengal, India.
- 6) Powar Y.S.and Thakare N. K., *0-Distributive semilattices*, Canad. Math. Bull. Vol.21(4) (1978), 469-475.
- 7) Varlet J. C., A generalization of the notion of pseudo-complementedness, Bull. Soc. Sci. Liege, 37(1968), 149-158.