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Abstract.  

In this paper, we have included several characterizations of n-distributive 
lattices. Also we have generalized the prime Separation Theorem for an n-annihilator 

nJI ⊥=  (where J is a non-empty finite subset of L) and characterized the  
n-distributive lattices.  
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¢hj§aÑ p¡l (Bengali version of the Abstract) 
       HC f−œ Bjl¡  n-h¢¾Va mÉ¡¢V−pl ( n-distributive lattices) hý¢hd °h¢nøÉ−L A¿¹Ñi¥š² L−l¢R z         

n - H¢e¢q−mV¡−ll  (n-annihilator) nJI ⊥=   (−kM¡−e J, L - Hl HL¢V An§eÉ pp£j Ef−pV) SeÉ j¤MÉ 
¢h−μRc Eff¡−cÉl p¡d¡lZ£LlZ Hhw n - h¢¾Va mÉ¡¢V−pl ¢h¢nø¡ue L−l¢R z   

1)  Introduction:  

J.C Varlet [7] introduced the notion of 0-distributives lattices to generalize the 

notion of pseudocomplemented lattices. A lattice L  with 0 is called 0-distributive if 

for all Lcba ∈,, , caba ∧==∧ 0 imply ( ) 0=∨∧ cba . Of course every distributive 

lattice is a 0-distributive lattice. Moreover, L  is 0-distributive  if and only if for each 
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La∈  the set of all elements disjoint with element a  forms an ideal. Since a  

pseudo complemented  lattice is characterized by the fact that for each element a , the 

set of elements disjoint with a  is a principal ideal, so every pseudo complemented 

lattice is 0-distributive. Similarly, if L∈1 , then one can describe 1-distributive lattice. 

For detailed literature on 0-distributive  lattices we refer the readers to consult [7], [1] 

and [6]. Recently [5] have generalized the whole concept and introduced the notion of  

n-distributive lattice for any neutral element Ln∈ . For an element n  of a lattice L , 

a convex sublattice of L containing n  is called an n-ideal of L . An element Ln∈  

is called a standard element if for ( ) ( ) ( )nabanbaLba ∧∨∧=∨∧∈ ,, , while n  is 

called a neutral element if (i) it is standard and (ii) ( ) ( ) ( )bnanban ∧∨∧=∨∧  for 

all Lba ∈, . Set of all n-ideals of a lattice L  is denoted by ( )LI n  which is an 

algebraic lattice; where  { }n  and L  are the smallest and the largest elements. For 

two n-ideals I  and J , JI ∩  is the infimum and 

{ }JjjandIiisomeforjixjiLxJI ∈∈∨≤≤∧∈=∨ 21212211 ,,,/ . The n-ideal 

generated by a finite numbers of elements maaa ,...,, 21  is called a finitely generated 

n-ideal denoted by nmaaa 〉〈 ,...,, 21 . Moreover, =
nmaaa ,...,, 21  

{ }naaaxnaaaLx mm ∨∨∨∨≤≤∧∧∧∧∈ ....../ 2121

[ ]naaanaaa mm ∨∨∨∨∧∧∧∧= .........,........ 2121  

Thus, every finitely generated n-ideal is an interval containing n . n-ideal generated 

by a single element La∈  is called a principal n-ideal denoted by n
a  and 

[ ]nanaa
n

∨∧= , . Moreover [ ] [ ] [ ]dbcadcba ∧∨=∩ ,,,  and 
[ ] [ ] [ ]dbcadcba ∨∧=∨ ,,, . If n  is a neutral element, then by 

[3], ( )
nnn

bnamba ,,=∩ , where ( ) ( ) ( ) ( )zyzxyxzyxm ∧∨∧∨∧=,, . Set of all 

finitely generated n-ideals of L  is denoted by ( )LFn , while the set of principal 
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n-ideals is denoted by ( )LPn . Thus ( )LFn  is a lattice but ( )LPn  is a semilattice when 
n  is neutral element. 

For a  neutral element Ln∈ , L  is called n-distributive if for all  Lcba ∈,, , 

{ }
nnnn

canba ∩==∩ imply ( ) { }ncba
nnn
=∨∩ . Equivalently, L  is             

n-distributive if for all Lcba ∈,, , banba ∨≤≤∧ and canca ∨≤≤∧ imply 

( ) ( )cbancba ∧∨≤≤∨∧ .[5] have shown that for a neutral element Ln∈ , L  is           

n-distributive if and only if for La∈ , { } ( ){ }nxnamLxa n =∈=⊥ ,,/  is an n-ideal. In 

this paper we will include some more characterizations of n-distributive lattices. Then 

we extend the separation Theorem for n-ideals given in [5] with the help of annihilator         

n-ideals. Throughout the paper we will consider n  as a neutral element. 

Theorem 1: Let Ln∈ be neutral. L is n-distributive if and only if ( ]n  is 1-distributive 

and [ )n  is 0-distributive. 

Proof: Suppose L  is n-distributive. Let ( ]nrqp ∈,,  and rpnqp ∨==∨ . Then 
qpnqp ∨=≤∧  and rpnrp ∨=≤∧ imply 

( ) ( ) ( ) ( ) nrpqprqpnrqp =∨∧∨≤∧∨≤≤∨∧  as L  is n-distributive. This 

implies ( ) nrqp =∧∨ , and so ( ]n  is 1-distrivutive. Dually we can show that [ )n  is 

0-distributive. Conversely, suppose ( ]n  is 1-distributive and  [ )n  is 0-distributive.  

Let Lcba ∈,,  with banba ∨≤≤∧  and canca ∨≤≤∧ . Then  
( ) ( ) ( ) nnbanbna =∨∧=∨∧∨  as n  is neutral. Similarly ( ) ( ) nncna =∨∧∨ . 

Thus ( ) ( ) nncbna =∨∨∧∨  as [ )n  is 0-distributive. This implies ( ) ncba ≤∨∧ . 

Similarly using the 1-distributive property of ( ]n  we see that ( )cban ∧∨≤  as n  is 

neutral. Therefore, ( ) ( )cbancba ∧∨≤≤∨∧ , and so L  is n-distributive. 

A non-empty subset I  of a lattice L  is called a down set if for Ia∈  and ax ≤  

( )Lx∈  imply Ix∈ . I  is called an ideal if it is a down set and for all Iba ∈, , 
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Iba ∈∨ .  Dually, a non-empty subset F of L  is called an up set  if  for all Fa∈  

and ax ≥ ( Lx∈ ) imply Fx∈ . F  is called a filter of L  if it is an up set and for 

Fba ∈, , Fba ∈∧ . A subset T  of L is called convex if for bxa ≤≤  with 

Tba ∈,  imply Tx∈ . Of course all the ideals and filters of a lattice are convex 

sublattices. Moreover, for every convex sublattice C  of L , ( ] [ )CCC ∩= . A proper 

filter F of L  is called a maximal filter if for any filter FM ⊇ implies FM = or 

LM = . A proper filter F  is called a prime filter if for any Lgf ∈, , 

Fgf ∈∨ implies either Ff ∈ or Fg ∈ . Similarly, a down set I   of L is  prime if 

Iba ∈∧   ( )Lba ∈,  implies either Ia∈ or Ib∈ . In a lattice L   with 0, a prime 

down (up set) set P  is  minimal if it does not contain any other prime down set (up 

set). It is very easy to show that F  is a maximal filter if and only if FL − is a 

minimal prime down set.  Similarly, I  is a maximal ideal if and only if IL −  is a 

minimal prime up set. Moreover, F  is a prime filter if and only if FL −  is a prime 

ideal. A convex sublattice P  is called a prime convex sublattice  if for any Pp∈ , 

( ) Pypxm ∈,,  implies either Px∈  or Py∈ . By [4] P  is a prime convex 

sublattice if and only if P  is either a prime ideal or a prime filter. Thus we have: 

Lemma 2: Let F  be a non-empty subset of L  not containing n . Then F  is a filter 
(ideal) if and only if FL −  is a prime down set(up set) containing n . 

Lemma 3: Let F  be a non-empty subset of L  not containing n . Then F  is a 
maximal filter (ideal) if and only if FL −  is a minimal prime down set (up set) 
containing n .  

Let n  be neutral in L . For La∈ , we define { } ( ){ }nanxmLxa n =∈=⊥ ,,/ , known 

as    n-annihilator of a . For LA ⊆ , ( ){ }nanxmLxA n =∈=⊥ ,,/  for all Aa∈ . In 

an n-distributive lattice, [5] have shown that { } na ⊥

 and nA⊥ are n-ideals. Moreover,  
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{ }{ }nn aA
Aa

⊥

∈

⊥ = ∩
. If A  is an n-ideal, then in a n-distributive lattice nA⊥  is the 

annihilator n-ideal and so it is the pseudo complement of A  in ( )LI n . Thus in a 

n-distributive lattice L , ( )LI n  is pseudo complemented.  

Lemma 4: For an element na ≠ in L , { } na ⊥

 is a convex subset containing n but not 
containing a . 

Proof: Let { } nayx ⊥∈,  and ytx ≤≤ . Then axnax ∨≤≤∧  and 
aynay ∨≤≤∧  imply ataxnayat ∨≤∨≤≤∧≤∧ , and so { } nat ⊥∈ . Thus 

{ } na ⊥

 is a convex subset. Since nannm =),,(  so { } nan ⊥∈ . Also ( ) naanam ≠=,,  

implies { } naa ⊥∉ . Hence { } na ⊥

 is a convex subset containing n  but not containing 
a .  

Corollary 5: If LA ⊆ and An∉ , then nA⊥  is a convex subset containing n  but 
disjoint from A. 

Proof: It is trivial by Lemma 4 and 
{ } nn aA

Aa

⊥

∈

⊥ = ∩
.     

Theorem 6: Let n  be a neutral element of a lattice L  and A be a nonempty subset of  
L not containing n . Then nA⊥  is the intersection of all the minimal prime convex 
subsets containing n but not containing A . 

Proof: Let APX /(∩= ⊊ P , P  is a minimal prime convex set containing n ). Let 
nAx ⊥∈ . Then ( ) nanxm =,,  for all Aa∈ . This implies for each P , there exists 
PAz −∈  such that ( ) nznxm =,, . Since P  is prime, so Px∈  and so Xx∈ . 

Conversely, let Xx∈ . If  nAx ⊥∉  then ( ) nanxm ≠,,  for some Aa∈ . Then by 

[5, Lemma 5] either { }⊥∨∉∨ nanx  or { } d

nanx ⊥∧∉∧ . Suppose 
{ }⊥∨∉∨ nanx . Then ( ) ( ) nnanx ≠∨∧∨ which implies ( ) nnax >∨∧ , and so 

ax ∧ ≨ n . Let [ )axD ∧= . Then D  is a proper filter as Dn∉ . So by [5, Lemma 

2], there exists a maximal filter DM ⊇ , and not containing n . Hence by Lemma 3, 
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ML −  is a minimal prime down set containing n . Now Dx∈  implies Mx∈ and 
so MLx −∉ . Moreover A ⊊ ML − as  Ma∈  implies MLa −∉ which is a 

contradiction to Xx∈ . Similarly if { } d

nanx ⊥∧∉∧ , Then ( ) nnanx ≠∧∨∧ )( . 

Implies ( ) nnax <∧∨  and so ax ∨ ≩ n . Consider ( ]axI ∨= . Clearly In∉ . So 

there exists a maximal ideal Q  containing I .  but not containing n . Then by same 

argument as above QL −  is a minimal prime up-set containing n. But A ⊊ QL − . 

Also QLx −∉ , which is again a contradiction to Xx∈ . Therefore nAx ⊥∈ . 

Following characterization of n-distributive lattice is given in [5]. 

Theorem 7: For a neutral element n of a lattice L , the following conditions are 
equivalent. 

(i) L  is n-distributive. 

(ii) For every La∈ , { } na ⊥

is an n-ideal. 

(iii) For any LA ⊆ , nA⊥ is an n-ideal. 

(iv) ( )LI n  is pseudo complemented . 

(v) ( )LI n  is 0-distributive. 

(vi) Every maximal convex sublattice of L  not containing n  is prime. 

Now we give the following characterization:  

Theorem 8: For a neutral element n  of a lattice L , the following conditions are 
equivalent.  

(i) L  is n-distributive. 

(ii) Every maximal  convex sublattice not containing n  is prime. 

(iii) Every minimal  prime down set of L  containing n  and every minimal prime 
up set of   
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      L  containing n  is a minimal prime ideal (filter), and so a minimal prime 
n-ideal. 

(iv) Every filter (ideal) not containing n  is disjoint from a minimal prime n-ideal. 

(v) For each na ≠ , there is a minimal prime n-ideal not containing a . 

(vi) Each na ≠  is contained in a prime convex sublattice not containing n . 

Proof:  (i) ⇔ (ii) holds by Theorem 7.  

(ii) implies (iii). Let A  be a minimal prime down set (up set) of L  containing n . 
Then  

AL −  is a maximal filter (ideal) not containing n . Hence by (ii) it is a prime filter 
(ideal). Hence A  is a minimal prime ideal (filter). Since An∈ , so it is a minimal 
prime n-ideal. 

 (iii) implies (ii). Let F  be a maximal convex sublattice of L  not containing n . 

Since )[]( FFF ∩= , so either ](Fn∉  or )[Fn∉ . Without loss of generality 

suppose )[Fn∉ . Then by the maximality of F , )[FF = . Thus F  is a filter and 
so FL −  is a minimal prime down set containing n , and so by (iii), it is a minimal 
prime ideal. Hence F  is a prime filter, and so is a prime convex sublattice.  

(i) implies (iv). Let F  be a filter not containing n . Then by [5, Corollary 7],         

there is  a prime (maximal) filter FQ ⊇ not containing n . Thus QL −  is a       
minimal prime ideal (n-ideal), which is disjoint from F . Similarly, if I is an 
ideal not containing n , then it is also disjoint from a minimal prime n-ideal. 

 (iv) implies (v). Let La∈  and na ≠ . Then [ ) { } ϕ=∩ na  or { } φ=∩ na]( . 

Without loss of generality suppose [ ) { } ϕ=∩ na . Then by (iv), there is a minimal 

prime ideal P  containing n  such that [ ) ϕ=∩ aP . Then P  is in fact, an n-ideal 
and Pa∉ . 

 (v) implies (vi). Let  La∈  and na ≠ . Then by (v) there exists a minimal prime 
n-ideal P  such that Pa∉ . But we know that the prime n-ideals are either prime 
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ideals or prime filters, so without loss of generality suppose P  is a prime ideal. This 
implies PLa −∈ , which is a prime filter not containing n . That is, PL −  is the 
prime convex sublattice containing a , but not containing n . 

 (vi) implies (i). Let L  be not n-distributive. Then there exist Lcba ∈,,  such that 
{ }nba

nn
=∩  and { }nca

nn
=∩  but ( ) { }ncba

nnn
≠∨∩ . Then 

banba ∨≤≤∧  and canca ∨≤≤∧ . Now 
( ) ( )( ) ( )( )[ ] { }nncbancbacba

nnn
≠∨∨∧∧∧∨=∨∩ , implies either ( )cba ∨∧

≨ n   or ( )cba ∧∨ ≩ n . Without loss of generality, suppose ( )cba ∨∧ ≨ n . Then 

by (vi), ( ) Qcba ∈∨∧ , where Q  is a prime convex sublattice not containing n . 

Then Q  is either an ideal or a filter. Since  ( )cba ∨∧ ≨ n , so Q  can not be 

considered as an ideal. For if ( )cba ∨∧ > n , then it would imply Qn∈ . Therefore 
Q  must be a filter. Now,  Qa∈  and Qcb ∈∨  implies either Qba ∈∧  or 

Qca ∈∧  as Q  is prime. In either case, Qn∈  as ncaba ≤∧∧ , , which is a 

contradiction. Similarly by considering ( )cba ∧∨ ≩ n   we will get another 
contradiction. Therefore, L  is n-distributive.  

Theorem 9: Let L  be n-distributive and  Lx∈ . Then a prime ideal P  containing 
{ } nx ⊥

 is a minimal prime ideal containing { } nx ⊥

 if and only if for all Pp∈  there is 

a PLq −∈  such that ( ) { } nxqnpm ⊥∈,, . 

Proof. Let P  be a prime ideal containing { } nx ⊥

 such that the given condition holds. 

Let K  be a prime ideal containing { } nx ⊥

 such that PK ⊆ . Let Pp∈ . Then there 

exists  PLq −∈  such that ( ) { } nxqnpm ⊥∈,, . Hence ( ) Kqnpm ∈,, . Since K  is 

prime and Kq∉ , so Kp∈ . This implies KP ⊆  and so PK = . Therefore, P  is 
minimal. 

Conversely, let P  be a minimal prime ideal containing  { } nx ⊥

. Let Pp∈ . Suppose 

for all PLq −∈ , ( ) { } nxqnpm ⊥∉,, . Set ( ) [ )pPLD ∨−= . We claim that 
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{ } ϕ=∩⊥ Dx n

. If  not, let { } Dxy n ∩∈ ⊥

. Then pry ∧≥  for some PLr −∈ . 

Then ( ) ( ) nynrpnrnpmn ∨≤∨∧=∨≤ ,,  implies ( ) { } nxnrnpm ⊥∈∨,, , by 

convexity of { } nx ⊥

. This gives a condition to the assumption, as PLnr −∈∨ . Then 

by [5, Theorem9], there exists a maximal (prime) filter DQ ⊇  and disjoint from 
{ } nx ⊥

. By the same proof of [5, Theorem 9], Qx∈ . Let  QLM −= . Then M  is a 

prime n-ideal. Since Qx∈ , so Mx∉ . Let { } nxt ⊥∈ . Then ( ) nxntm =,,  implies 

Mt ∈  as M is prime. Thus { } Mx n ⊆⊥

. Now ϕ=∩ DM . Therefore 
( ) ϕ=−∩ PLM , and hence PM ⊆ . Also PM ≠ , because Dp∈  implies 

Mp∉ , but Pp∈ . Hence M  is a prime n-ideal containing { } nx ⊥

, which is 
properly contained in P . This gives a contradiction to the minimal property of P . 
Therefore, the given condition holds. 

To generalize the separation Theorem for n-ideals in a distributive lattice given in [2],   
[5, Theorem9] have given such  a separation property in a n-distributive lattice with 

respect to { } nx ⊥

 for any Lx∈ . We now improve this result for an n-annihilator 
nJI ⊥=  for some finite subset J of L .  

Theorem 10: (The Separation Theorem). Let n be a neutral element of L . Then L  

is n-distributive if and only if for a filter F  and an n-annihilator nJI ⊥=  (where 
J  is a non-empty finite subset of L ) with ϕ=∩ IF , there exists a prime filter Q  

containing F  such that ϕ=∩ IQ . 

Proof. Suppose L  is n-distributive and nJI ⊥=  for some non-empty finite subset 
J of L . Let F  be the set of all filters containing F  and disjoint from I . Then 

using Zorn’s Lemma, there exists a maximal filter Q  containing F  and disjoint 

from I . Now { }nJ ≠ , as then FLJ n ⊃=⊥
.Suppose kjjj ,...,, 21  are the elements 

in J  which are different from n. We claim that at least one of Qji ∈ , ki ....,,2,1= . 

If not, then for each i , [ )( ) ϕ≠∩∨ IjQ i  by the maximality of Q . Let 
[ )( ) IjQt ii ∩∨∈ . Then iii jqt ∧≥ for some Qqi ∈  and Iti ∈  implies 



 

J.Mech.Cont. & Math. Sci., Vol.‐7, No.‐2, Januaryy (2013) Pages 1045‐10455 

1054 

 

( ) nxntm i =,, for all Jx∈ . Thus in particular, ( ) njntm ii =,, . This implies  
njt ii ≤∧  and so, njtjq iiii ≤∧≤∧ . Then njnjqjnq iiiii ≤∧∨∧=∧∨ )()()(  

implies  ( ) njnnqm ii =∨ ,,  for each ki ....,,2,1= . Thus we obtain the elements 
nqnqnq k ∨∨∨ ,...,, 21  in Q . Choose 

( ) ( ) ( ) ( ) Qnqqqnqnqnqq kk ∈∨∧∧∧=∨∧∧∨∧∨= ...... 2121 . Then 
njqjq iii ≤∧≤∧  and nnq =∧ imply ( ) njnqm i =,,  for each i  and so Iq∈ , 

which contradicts that ϕ=∩ IQ . Therefore Qji ∈  for some ki ....,,2,1= . Now 

let Qz∉ . Then by the maximality of Q , [ )( ) ϕ≠∩∨ IzQ . Let [ )( ) IzQt ∩∨∈ . 

Then zqt ∧≥  for some Qq∈  and ( ) njntm =,,  for all Jj∈ . So, 
( ) njntm i =,, . Then ii jtnjt ∨≤≤∧  and so njtzjq ii ≤∧≤∧∧   which 

implies ( )( ) nnjqnzm i =∨∧,, . Then by [5, Lemma3] Q  is a maximal filter not 

containing n . Hence Q  is prime as L  is n-distributive. 

Conversely, let { }nyx
nn
=∩   and { }nzx

nn
=∩ . We need to prove that 

( ) { }nzyx
nnn
=∨∩ . That is ( ) ( )zyxnzyx ∧∨≤≤∨∧ . If not, let 

( )zyx ∨∧ ≰ n . Then [ ) { } ϕ=∩∨ ⊥nxzy . For otherwise [ ) { } nxzyt ⊥∩∨∈ , implies 

xtnxt ∨≤≤∧  and zyt ∨≥ , which implies ( ) nxtzyx ≤∧≤∨∧ , a 

contradiction. So, there exists a prime filter Q  containing [ )zy ∨  disjoint from 
{ } nx ⊥

. As { } nxzy ⊥∈, , so Qzy ∉, . Thus Qzy ∉∨ , as Q  is prime. This implies 
[ ) Qzy ⊄∨ , a contradiction. Dually by taking  ( )zyx ∧∨ ≱ n , we would have 

another contradiction. Therefore, ( ) ( )zyxnzyx ∧∨≤≤∨∧ , and so L  is 
n-distributive.    
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