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Abstract:  
The object of this paper is to obtain all the stress resultants of an anisotropic 

(2n+1) layers plywood shell. The deferential equations of equilibrium of (2n+1) layers 
plywood shell under three simultaneous loads are obtained. The solution of the deferential 
equations for anisotropic (2n+1) layers plywood shell in case of two way compressions is 
obtained here. The stable region for a plywood shell in this case is obtained. Buckling 
diagram for five layers plywood shell and seven layers plywood shell are shown 
graphically as special cases. 
Keywords and phrases : an anisotropic  layers, plywood shell, two way compressions, 
buckling diagram 

¢hj§aÑ p¡l (Bengali version of the Abstract) 

Apj°c¢nL  (2n+1)  Ù¹−ll fÔ¡CEXÚ −n−ml pLm m¢ì f£sZ…¢ml ¢eZÑu Ll¡C q−μR HC 

f−œl E−ŸnÉ z  k¤Nfv ¢ae¢V i¡−ll Ad£e (2n+1) Ù¹−ll fÔ¡CEXÚ −n−ml p¡jÉ¡hÙÛ¡l A¿¹lLme 

pj£LlZ¢V ¢eZÑu Ll¡ q−u−R z Apj°c¢nL (2n+1) Ù¹−ll fÔ¡CEXÚ −n−ml ¢àj¤M£ pwf£s−Zl −r−œl SeÉ 

A¿¹lLme pj£Ll−Zl pj¡d¡e ¢eZÑu Ll¡ q−u−R z HC −r−œ fÔ¡CEXÚ −n−ml SeÉ ¢ÙÛl A’m−L ¢eZÑu Ll¡ 

q−u−R z  fÔ¡CEXÚ −n−ml f¡yQ¢V Hhw p¡a¢V Ù¹−ll SeÉ Buae - BL¡l eLÚn¡−L ¢h−no −rœ ¢qp¡−h 

−mM¢Q−œl p¡q¡−kÉ −cM¡−e¡ q−u−R z 

1. Introduction: 

Woods are anisotropic in nature. Woods display much more rigidity in the 

direction of the grain than across. So along the cross grain direction the rigidity of 

the wood is very less. There for to satisfy the need of such wooden material which 

has approximately same rigidity in both direction, the concept of plywood is 

introduced. 

Shells are used for roof structures and large columnless areas and for 

storage tanks. A large number of air craft hangers, factory and car sheds, covered 
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markets, planetarium and rail-road terminals etc. have been created with shell 

constructions. A detailed study of the shell of arbitrary shape is necessary for 

consideration of variety, economy and architectural showmanship in building 

construction. 

The solution of buckling of cylindrical shells in case of isotropic material is 

known from the literature on shells, e.g. Flugge [5]. Singer and Fersh-Scher [9] 

solved the buckling of the orthotropic conical shells under external pressure. 

Singer [10] solved the buckling of orthotropic and stiffened conical shells. 

Buckling problem of anisotropic cylindrical shells has occupied the interest of 

many researchers such as Tasi [11], Cheng and Kuenzi [2], Hess [6], Thieleman, 

Schnell and Fischer [13], Cheng and Ho [1]. De [3] solved the buckling problem of 

3-layer plywood shells under two way compressions. 

Anisotropic plywood shell of ( )2 1n +  layers is under consideration of this 

work. The object of this work is to obtain elastic laws of buckling of ( )2 1n +  

layers plywood shell. The solution of the differential equations of the equilibrium 

for anisotropic plywood shells in case of two way compressions is obtained here. 

The stable region for a five layer plywood shell and seven layers plywood shell are 

shown graphically.  

2. Theory:  

Here we consider a circular cylindrical shell with coordinates x, φ and z. x 

is the distance of any point from a datum plane, φ is the angular distance of the 

point from a datum generator and z is the distance from the middle surface. u, v 

and w are the components of velocity. 

Symmetric ( )2 1n +  layers plywood shells are considered here. Wood 

displays much more rigidity in the direction of the grain than across, so Hooke’s 

law is not symmetric with respect to x  and ϕ  here. For the inner layer it takes the 

form (Flugge [5]), 
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Here ϕϕ τσσ x  , ,x  are stresses and xε , ϕε , xϕγ  are strains and the four moduli 1E , 

2E , Eν , G  are all independent of each other. If the outer symmetric layers are 

made of the same kind of wood and this we shall assume then their elastic laws are 

the same except that the moduli 1E  and 2E  change places. 

To explain the elastic behavior of plywood, we consider the figure of the 7 

layers plywood material. 

 

Figure 1 : a 7-layers plywood material. 

In the above figure, it has been assumed that the grain of the inner layer is 

running in the x  direction. 1E  is the common modulus of elasticity of wood i.e., 

the one for stresses in the direction of the grain, while 2E  is the much smaller cross 

grain modulus. When in a shell the grain runs circumferentially in the middle layer 

and lengthwise in the adjacent two layers to the middle layer then for two layers 

adjacent to the middle layer we must identify 2E with common modulus and 1E  

with the cross grain modulus. Similarly for the next two adjacent layers the 

common modulus of elasticity 1E  and 2E  will be the cross grain modulus and so 

on. 

The strains in this case are given by (Flugge [5]), 
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where ( ) ( ) ( ) ( )/ ,a
x ϕ

•∂ ∂
= =

∂ ∂
 respectively and a is the radius of the shell. 

The stress resultants for any anisotropic shell are defined by (Flugge [5]), 
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But when we introduce elastic law, we must use it in the form (1) for 

middle layer and exchange 1E  and 2E  while integrating over the outer middle 

layer and again the same for the next outer layers and so on. This leads to the 

definition of following rigidities. 

(i) Extensional  rigidities: when n is even 

( ) ( )
( ) ( )

1 1 3 5 1 2 2 4 6

2 1 3 5 1 1 2 4 6

2 2 .... 2 2 ....

2 2 .... 2 2 .... (4 )
x n n

n n
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D E t t t t E t t t t a

D E t
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ν ν
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= + + + + + + + + + ⎬
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and when n is odd 
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(ii) Shear rigidity: 

(4 )xD Gt cϕ =  

(iii)Bending rigidity: when n is even 
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when n is odd 
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(iv) Twisting rigidity : 
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31 (4 )
12xK Gt fϕ =

 

where 
 

1 2 3 12 2 ... 2 .nt t t t t += + + + +  

where, t is the total thickness of the plate and t1 is the thickness of the 

middle most layer, t2 is the thickness of two adjacent layers of the middle most 

layer, t3 is the thickness of the next two layers and so on.  

Substituting the values of , ,x xϕ ϕσ σ τ  from (1) in (3) and using (2), after 

simplifications we get the elastic laws for the ( )2 1n +  layers plywood shell in the 

following form, 
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. . . . .

.. .. .
. .

x x
x

x x x x
x x

x
x

x x
x x

D KD D D KN v w u w w N u v w u
a a a a a a
D K D K

N u v v w N u v u w
a a a a

K K K KM w w w M w u w v
a a a a
K K

M w u v M
a

ϕ ϕν ν
ϕ

ϕ ϕ ϕ ϕ
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′ ′ ′′= + + + + = + + −
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Thus we got all the stress resultants and the rigidities for ( )2 1n +  layers 

plywood shell. These are the most general form of rigidities for arbitrary number 

of layers. Also these formulae contain the formulae for isotropic shell as a special 

case. We only need to replace in (1) the module 1E  and 2E  by  2(1 )
E

ν−  and Eν  

by 2(1 )
Eν

ν−  and G  by 2(1 )
E

ν+  and  0n = , 1t t=  and make the necessary 

changes in the definition of the rigidities. 
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3. The basic equations:  

We consider a ( )2 1n +  layers plywood shell shaped as a circular cylinder 

of length l (Figure 2) and subjected simultaneously to three simple loads: 

(1) A uniform normal pressure on its wall, Pr= p, 

(2) An axial compression applied at its edge, the force per unit circumference 

being  P, 

(3) A shear load applied at the edges so as to produce a torque in the cylinder, 

the shearing force is T. 

 

Figure 2: a cylindrical shell 

The equation of equilibrium of buckling of circular cylindrical shell 

(Flugge [5]) are given by, 

( )
( ) ( )
( ) ( )

2 0,

v 2 v 0 (6)

v 2 v 0

. .. .
. . .. . .
.. . . .. .

x x

x x

x x

aN aN pa u w Pu Tu

aN aN M M pa w Pv T w

M M M aN pa u w Pw T w

ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

⎫′ ′ ′′ ′+ − − − − =
⎪⎪′ ′ ′′ ′ ′+ − − − + − − + = ⎬
⎪

′ ′′ ′ ′′ ′ ′+ + + + − + + − − = ⎪⎭
Substituting (5) in (6), the differential equations for the buckling problem of a 

( )2 1n +  layers plywood shell under three different loads appear in the following 

form after proper simplification: 
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where, 

( )

( )

1 2 3 4

5 6 7 8

9 10 11 12

1 1 2 32

, , , ,

3
, , , ,

(8)
2

, , , ,

, , , .

x x x

x x x x

x xx x x x

x x

x x xx

x x x

x

x x x x

D D D KDA A A A
D D D K

D K KD D D D K
A A A A

D D D K D K

D K KD D KDA A A A
D D D K D K
K pa P Tk q q q

a D D D D

ϕ ν ϕ ϕν

ν ϕν ϕ ϕ ϕ

ϕ ϕ ϕ ν

ν ϕϕ ϕ

ϕ ϕ ϕ

+ ⎫
= = = = ⎪
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⎪++ ⎪= = = =
⎪⎪
⎬

+ ⎪
= = = = ⎪
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Equations (7) describe the buckling of a cylindrical shell under the most 

general homogeneous stress action in the anisotropic case. It is easy to observe that 

the parameters defined by equations (8) are small quantities.  For 1k  it is obvious, 

since we are interested in thin shells where t a<< . The three load parameters 1q , 

2q  and 3q  are approximately the elastic strains, in the limiting case, caused by the 

corresponding basic loads. Since all our theory is based on the assumption that 

such strains are small as compared with unity,  we shall neglect the squares and 

higher order terms of 1q , 2q  and 3q  whenever possible. 

4. Solution for shell under two way compressions (without shear load): 

We consider that the shell is under two way compressions and there is no 

shear load. Therefore (T = 0, hence 3 0q = ) the equations (7) admit a solution of 

the form 
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cos cos ,

sin sin , (9)

cos sin ,

xu A m
a
xv B m

a
xw C m

a

λϕ

λϕ

λϕ

⎫= ⎪
⎪
⎪= ⎬
⎪
⎪= ⎪⎭

 

where (10) ,s a
l
πλ =  l is the length of the shell and s  is an 

integer. 

The solution (9) describes a buckling mode with s  half waves along the 

length of the cylinder and 2m half waves around its circumference. Although this is 

far from being the most general solution, it is the one which fulfils reasonable 

boundary conditions.  

It is evident that the solution (9) satisfies the boundary conditions 

 0v w= =  at x = 0 and x = 1  also 0x xN M= =  at x = 0 and x = 1. 

This shows that the solution (9) represents the buckling of a shell whose 

edges are supported in tangential and radial directions, but are neither restricted in 

the axial direction nor clamped. 

 Substituting the solution (9) into the differential equation (7) ( 3 0q = ), the 

trigonometric functions drop out entirely and we are left with the following 

equations: 

[ ] [ ]
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0)(

)(

2
2

2
19

22
12

22
11

4
91

91
2

8191
2

7
3

9110

91
2

81
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⎪
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⎪
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⎪
⎪
⎪
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qmqAmAmAAkC

AqmAkmBAqmAAkAA

AqmAkmC
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qmAkAC

mABqmqmAkAA

, 

The equations (11) are three linear equations with buckling amplitudes A, 

B, C as unknowns and with the brackets as coefficients. Since the equations are 

homogeneous, they admit, in general, only the solution A = B = C = 0, which 
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shows that the shell is not in neutral equilibrium. The non-vanishing solution A, B, 

C is possible if and only if the determinant of the nine coefficients of the equations 

(11) is equal to zero. Thus the vanishing of this determinant is the buckling 

condition of the shell. Whenever the buckling condition is fulfilled, any two of the 

three equations (11) determine the ratios A
C

  and B
C

 and thus the buckling mode 

according to (9). As in all cases of neutral equilibrium, the magnitude of the 

possible deformation remains arbitrary.  

The buckling condition contains four unknowns: the dimensionless loads 

1q and 2q and the modal parameters m and λ . Also we know that m must be an 

integer (0, 1, 2, 3, 4, ...) and λ  must be an integer multiple of  

( )1, 2,3, 4.....a l sπ = . Thus we can write the buckling condition separately for 

every pair m, λ  fulfilling these requirements, and consider it as a relation between 

1q and 2q which describes those conditions of the two loads for which the shell is in 

neutral equilibrium. 

The coefficients of the equations (11) are linear functions of 1k , 1q  and 2q  . 

The expanded determinant is, therefore, a polynomial of the third degree in these 

parameters. Since they are very small quantities it is sufficient to keep only the 

linear terms and to write the buckling condition in the following form: 

1 2 1 3 1 4 2 (12)C C k C q C q+ = +  

The equation (l2) describes a straight line in the 1 2q q  -plane and the limit of 

the stable domain is a polygon consisting of the sections of straight lines for 

various pairs of m, λ . 

The coefficients 1 2 3, ,C C C   and 4C  of the equation (12) can be found by 

expanding the determinant and putting it equal to zero. Thus we have, 
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1
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C m A A m A A A A m

m A A A A A A A A A m c
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λ λ

λ

λ λ λ
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and 13 1 6 2 51 . (14)A A A A A= + −  

From the formulas (12), (13) and (14) the stability curve may easily be 

constructed when  l  and 1k are given. 

5. Numerical calculations: 

 From the formulae (12) and (13) the stability curve in case of two way 

compression may easily be drawn when n, l  and 1k  are given. We consider the 

shell to be made of the same material as that of Gaboon (Okoume), so that 
6 6

1 2
6 6

1.28 10 , 0.11 10

0.014 10 , 0.085 10

E psi E psi

E psi G psiν

= × = ×

= × = ×
 

vide Timoshenko and Woinowsky-Krieger [14] and 6
1 10−=k . 

 

 

Figure 1: buckling diagram for a 5-layers cylindrical shell λ=20. 
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Figure 2: buckling diagram of a 5-layers cylindrical shell for λ=30. 

 

 

Figure 3: buckling diagram for a 7-layers cylindrical shell λ=30. 

6. Conclusions: 

When a load is applied, the corresponding diagram point moves along some 

path, as shown by the bold line in the Figure 1, Figure 2 and Figure 3. As long as it 

does not meet any of the curves, the shell is in stable equilibrium. But as soon as 

one of the curves is reached, equilibrium becomes neutral, with the buckling mode 

defined by the parameters m, λ  of each curve. The stable domain in the 1 2,  q q   
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plane is therefore, bounded by the envelope of all the curves which is shown in 

Figure 1, Figure 2 and Figure 3. The stable and unstable domain for 20λ =  and 

30λ =  is shown for 5-layers plywood shell and unstable domain for 30λ =  is 
shown for 7-layers plywood shell. Stable and unstable domain can be drown from 

equation (12) along with (13) and (14) for any number of layers.   
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