1- DISTRIBUTIVE JOIN – SEMI LATTICE

By

¹Shiuly Akhter and ²A.S.A. Noor

¹ Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh.

² Department of Electronics and Communication Engineering, East-West University, 45 Mohakhali, Dhaka-1212, Bangladesh

Abstract

In this paper, we have studied some properties of ideals and filters of a join-semilattice. We have also introduced the notion of dual annihilator. We have discussed 1-distributive join-semilattice and given several characterizations of 1-distributive join-semilattices directed below. Finally we have included a generalization of prime separation theorem in terms of dual annihilators.

Keywords and phrases: ideals, join-semilattice, 1-distributive lattice, dual annihilator

বিষ্যুর্ত সার (Bengali version of the Abstract)

এই পত্রে আমরা যুক্ত - অর্ধ ল্যাটিসের (join-semilattice) আইডিয়েলস্ এবং ফিল্টারের (ideals and filters) র্ধমাবলীকে পুজ্খানুপুজ্খ ভাবে পরীক্ষা করেছি। 1 - বন্টিত যুক্ত - অর্ধ ল্যাটিসের এবং নিম্নাভিমুখী

1 - বন্টিত যুক্ত - অর্ধ ল্যাটিসের প্রদত্ত বিভিন্ন বিশিষ্টায়নগুলিকে আলোচনা করেছি। র্সবশেষে আমরা মুখ্য

বিচ্ছেদ উপপাদ্যের সাধারণীকরণকে দ্বৈত এনিহিলেটর (dual annihilators.) হিসাবে অর্ন্তভুক্ত করেছি।

1. Introduction

Varlet [7] have given the definition of a 1-distributive lattice. Then Balasubramani et al [1] have established some results on this topic. A lattice L with 1 is called a 1-distributive lattice if for all $a,b,c \in L$ with

 $a \lor b = 1 = a \lor c$ impliy $a \lor (b \land c) = 1$. Any distributive lattice with 1 is 1-distributive. In this paper we will study the 1-distributive join-semilattices.

An ordered set $(S_1 \le)$ is said to be a join-semilattice if $\sup\{a,b\}$ exists for all $a,b \in S$, we write $a \lor b$ in place of $\sup\{a,b\}$.

A join-semilattice S is called distributive if $a \le b_1 \lor b_2(a, b_1, b_2 \in S)$ implies the existence of $a_1, a_2 \in S, a_1 \le b_1, a_2 \le b_2$ with $a = a_1 \lor a_2$. For detailed literature on join-semilattices, we refer the reader to consult Talukder et al. [5,6], Noor et al. [3] and Gratzer [2].

A join-semilattice S with 1 is said to be 1-distributive if for any $a_t b_t c \in S$ such that $a \lor b = 1 = a \lor c$ implies $a \lor d = 1$ for some $d \le b_t c$.

Consider the join-semilattices S_1 and S_2 given in the Figure 1.1. It can be easily seen that S_1 is not 1-distributive but S_2 is 1-distributive.

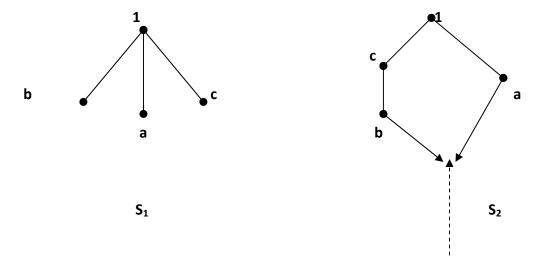


Figure 1.1

Both distributive and modular joinsemilattices have a common property "for all $a,b \in S$ there exists $c \in S$ such that $c \le a,b$ ". This property is known as the directed below property. Hence a join semilattice with this property is known as a directed below semilattice. Observe that in Figure 1.1, S_1 is not directed below, but S_2 is directed below.

A subset I of a join-semilattice S is called an upset if $x \in I$ and $y \in S$ with $x \leq y$ implies $y \in I$.

Let S be a join-semilattice. A non-empty subset F of S is called a filter if

(i)F is an upset,

and(ii) $a,b \in F$ implies there exists $d \le a,b$ such that $d \in F$.

A filter F is called proper filter of a join-semilattice Sif $\mathbb{F} \neq \mathbb{S}$.

A proper filter (upset) F in S is called a prime filter (upset) if $a \lor b \in F$ implies either $a \in F$ or $b \in F$.

For $a \in S_n$ the filter $F = \{x \in S \mid x \ge a\}$ is called the principal filter generated by a. It is denoted by [a). A prime upset (filter) is called a minimal prime upset (filter) if it does not contain any other prime upset (filter).

A subset *I* of *S* is called an ideal if

```
(t) a,b \in I implies a \lor b \in I(tt) a \in S, t \in I with a \le t implies a \in I.
```

An ideal I of a join-semilattice S is called prime ideal if $I \neq S$ and S - I is a prime filter.

A maximal ideal Iof S is a proper ideal which is not contained in any other proper ideal. That is, if there is a proper ideal J such that $I \subseteq J$, then I = J.

Let S be a join-semilattice with 1. For $A \subseteq S$

set $A^{\perp^{a}} = \{x \in S \mid x \lor a = 1 \text{ for all } a \in A\}$. Then $A^{\perp^{a}}$ is called the dual annihilator of A.. This is always an upset but not necessarily a filter.

For $a \in S_c$ we denote $\{a\}^{\perp d} = \{x \in S | x \lor a = 1\}$.

Moreover, $A^{\perp^{d}} = \bigcap_{\alpha \in A} \{\{\alpha\}^{\perp^{d}}\}$

2. Some properties of ideals and filters of a join-semilattice

Lemma 2.1.Let *S* be a join-semilattice with 1. Then every prime upset contains a minimal prime upset.

Proof. Let F be a prime upset of S and let A denote the set of all prime upsets Q contained in F. Then A is non-empty as $F \in A$. Let C be a chain in A and let $M = \bigcap \{X \mid X \in C\}$. We claim that M is a prime upset. M is non-empty as $1 \in M$. Let $G \in M$ and $G \subseteq M$. Then $G \in X$ for all $G \in M$. Hence $G \in M$ for all $G \in M$. Again, let $G \in M$ for some $G \in M$. Then $G \in M$ for all $G \in M$. Again, let $G \in M$ for some $G \in M$. Then $G \in M$ for all $G \in M$. Hence $G \in M$ is a prime upset, so either $G \in M$ this implies either $G \in M$ or $G \in M$. Hence $G \in M$ is a prime upset. Therefore, we can apply to $G \in M$ the dual form of $G \in M$. Lemma to conclude the existence of a minimal member of $G \in M$.

Theorem 2.2. Let S be a directed below join-semilattice. Then the intersection of any two filters of S is also a filter.

Proof. Let F, Q be two filters of a directed below join-semilattice S. Let $\alpha \in F \cap Q$ and $b \in S$ with $b \ge \alpha$. Then $\alpha \in F$ and $\alpha \in Q$. Since both F and Q are filters, so $b \in F$ and $b \in Q$. Hence $b \in F \cap Q$.

Again let $a,b \in F \cap Q$. So $a,b \in F$ and $a,b \in Q$. Since F and Q are both filters, then there exists $f \in F$ and $Q \in Q$ such that $f, Q \subseteq a,b$. Let $c = f \land Q$. Then $c \in F \cap Q$, where $c \subseteq a,b$. Hence $F \cap Q$ is a filter.

Lemma 2.3. Let I be a non-empty proper subset of a join-semilattice S. Then I is an ideal if and only if S - I is a prime upset.

Proof. Let I be an ideal of a join-semilattice S. Now let $X \in S - I$ and $X \subseteq Y$. Then $X \in I$, so $Y \in I$ as I is an ideal. Hence $Y \in S - I$. Thus S - I is an upset. Since I is an ideal, so $S - I \neq S$. Therefore S - I is a proper upset. Let $G_I = S$ with

 $a \lor b \in S - I$, then $a \lor b \in I$. Therefore either $a \in I$ or $b \in I$ as I is an ideal. Hence either $a \in S - I$ or $b \in S - I$. Therefore S - I is a prime upset.

Conversely, let S - I is a prime upset and $x_i y \in I$, then $x_i y \in S - I$. Thus $x \vee y \in S - I$ as S - I is a prime upset. Hence $x \vee y \in I$. Again, let $x \in I$ and $y \leq x$. Then $x \in S - I$. Therefore $y \in S - I$ as S - I is an upset. Hence $y \in I$ and thus I is an ideal.

Thus we have the following result.

Corollary 2.4. Let I be a non-empty subset of a join-semilattice S. Then I is a maximal ideal if and only if S - I is a minimal prime upset.

Theorem 2.5. Every proper ideal of a join-semilattice *S* with 1 is contained in a maximal ideal.

Proof. Let *I* be a proper ideal in *S* with 1. Let *P* be the set of all proper ideals containing *I*. Then *P* is non-empty as $I \in P$. Let *C* be a chain in *P* and let $M = \bigcup \{X | X \in C\}$.

We claim that M is an ideal with $I \subseteq M$. Let $X \in M$ and $Y \subseteq X$. Then $X \in X$ for some $X \in C$. Hence $Y \in X$ as X is an ideal. Therefore $Y \in M$. Again let $X, Y \in M$, then $X \in X$ and $Y \in Y$ for some $X, Y \in C$. Since C is a chain, so either $X \subseteq Y$ or $Y \subseteq X$. Suppose $X \subseteq Y$, so $X, Y \in Y$. Then $X \lor Y \in Y$ as Y is an ideal. Hence $X \lor Y \in M$. Moreover, M contains I, so M is maximal element of C. Then by Zorn's Lemma, P has a maximal element, say Q with $I \subseteq Q$. \square

Now we give a characterization of maximal ideals of a join semilattice.

Theorem 2.6. Let S be a join-semilattice with 1.A proper ideal M in S is maximal if and only if for any element $a \in S - M$ there exists an element $b \in M$ such that $a \lor b = 1$.

Proof. Suppose M is maximal and $a \in M$. Let $a \lor b \neq 1$ for all $b \in M$. Consider $M_1 = \{y \in S \mid y \leq a \lor b, \text{ for some } b \in M\}$. Clearly M_1 is an ideal and is proper as $1 \in M_1$. For every $b \in M$, we have $b \leq a \lor b$ and so $b \in M_1$. Thus

 $M \subseteq M_1$. Also $\alpha \in M$ but $\alpha \in M_1$. So $M \subseteq M_1$ which contradicts the maximality of M. Hence there must exists some $b \in M$ such that $\alpha \vee b = 1$.

Conversely, if the proper ideal M is not maximal, then as $1 \in S$, there exists a maximal ideal N such that $M \subset N$. For any element $\alpha \in N - M$ there exists an element $b \in M$ such that $\alpha \vee b = 1$. Hence $\alpha_i b \in N$ imply $1 = \alpha \vee b \in N$ which is a contradiction. Thus M must be a maximal ideal.

3. Some characterizations of 1-distributive join-semilattices.

In this section ,we prove our main results of this paper.

Theorem 3.1. Every 1-distributive join-semilattice is directed below.

Proof. Let S be a 1-distributive join-semilattice and $b_1 \in S$. Then $1 \lor b = 1 \lor c = 1$ which implies there exists $d \in S$ with $d \subseteq b_1 c$ such that $1 \lor d = 1$. Thus d is lower bound of $b_1 c$. Hence S is directed below.

The converse of the above theorem is not true by S_2 of Figure 1.1.

Theorem 3.2. Let $a_1 a_2 a_3 a_4 a_5 a_6$ be elements of a 1-distributive join-semilattice S such that $a \vee a_1 = a \vee a_2 = \cdots = a \vee a_m = 1$. Then $a \vee b = 1$ for some $b \leq a_1 a_2 a_3 a_4 a_5 a_6$.

Proof. We want to prove this theorem using mathematical induction method. Let $a \vee a_1 = a \vee a_2 = 1$. Since S is 1-distributive so, $a \vee b_1 = 1$ for some $b_1 \leq a_1, a_2$, that is, the statement is true for a_1 and a_2 . Let $a \vee a_1 = a \vee a_2 = \cdots = a \vee a_{k-1} = 1$. Then for the 1-distributivity of $S, a \vee b_2 = 1$ for some $b_2 \leq a_1, a_2, \cdots, a_{k-1}$. Now, suppose $a \vee a_k = 1$. Hence $a \vee b = 1$ for some $b \leq b_2, a_k$ as S is 1-distributive. This implies that $a \vee b = 1$ for some $b \leq a_1, a_2, \cdots, a_k$. Hence by the method of mathematical induction the theorem is true for some $b \leq a_1, a_2, \cdots, a_k$.

Following result gives some nice characterizations of 1-distributive join-semilattices.

Theorem 3.3. For a directed below join-semilattice S with 1, the following conditions are equivalent: (i) S is 1-distributive.(ii) $\{\alpha\}^{\perp d}$ is a filter for all $\alpha \in S$.(iii) $A^{\perp d}$ is a filter for all finite subsets A of S(iv) Every maximal ideal is prime.

Proof.(i) \Leftrightarrow (ii). Let $x \in \{a\}^{\perp^d}$ and $y \geq x$. Since $x \in \{a\}^{\perp^d}$, so we get $a \vee x = 1$ implies $a \vee y = 1$ as $y \geq x$. Hence $y \in \{a\}^{\perp^d}$, and so $\{a\}^{\perp^d}$ is an upset. Again, let $x, y \in \{a\}^{\perp^d}$. Thus $a \vee x = 1 = a \vee y$. By 1-distributivity of S, there exists S with $S \leq X$, S such that $S \leq X$ such t

Conversely let $x, y, z \in S$ with $x \vee y = 1 = x \vee z$. Then $y, z \in \{x\}^{\perp^d}$. Since $\{x\}^{\perp^d}$ is a filter, so there exists $t \leq y, z$ such that $t \in \{x\}^{\perp^d}$, and so $t \vee x = 1$. This implies S is 1-distributive.

$$(ii) \Leftrightarrow (iii)$$
 is trivial by Theorem 2.2 as $A^{\perp^d} = \bigcap_{a \in A} \{a\}^{\perp^d}$.

 $(i) \Rightarrow (iv)$. Let I be a maximal ideal of S. Then by Corollary 2.4, S-I is a minimal prime upset. Now suppose $x, y \in S - I$. Then $x, y \notin I$, and so by the maximality of I, $I \lor (x] = S$, $I \lor (y] = S$. This implies $a \lor x = 1 = b \lor y$ for some $a, b \in I$. Thus $a \lor b \lor x = a \lor b \lor y = 1$. Since S is 1-distributive, there exists $d \le x, y$ such that $a \lor b \lor d = 1$.

Now $a \lor b \in I$ implies $a \lor b \notin S - I$, and S-I is prime implies $d \in S - I$. Therefore S-I is a prime filter and so I is a prime ideal.

 $(iv) \Rightarrow (i)$. Let S be not 1-distributive. Then there are $a, b, c \in S$ such that $a \lor b = a \lor c = 1$ and $a \lor d \ne 1$ for all $a \subseteq b$, c. Now, set $I = \{x \in S \mid x \subseteq a \lor y, y \subseteq b, c\}$. Clearly I is an ideal and it is proper as $1 \notin I$. By

Theorem 2.5, $I \subseteq I$ for some maximal ideal J. Now we claim that either $b \in I$ or $c \in I$. If $b, c \in I$, then $b, c \in S - I$. As J is a prime ideal, then we have S - I is a prime filter and $b, c \in S - I$. Since S - I is a filter, there is $G \subseteq S - I$ such that

• $\leq b$, c. Hence $a \vee e \in S - J$ gives a contradiction. Hence, $b \in J$ or $c \in J$ this implies, either $a \vee b \in J$ or $a \vee c \in J$. Thus, $1 \in J$ which contradicts the maximality of J. Therefore, $a \vee d = 1$ for some $d \subseteq b$, c and hence S is a 1-distributive. \square

Note that in case of a 1-distributive lattice L, For any $A \subseteq L$, $A^{\perp d}$ is a filter. But this is not true in a directed below join-semilattice S with 1, as the intersection of infinite number of filters in S is not necessarily a filter.

Corollary 3.4. In a 1-distributive join-semilattice, every proper ideal is contained in a prime ideal.

Proof. This immediately follows by Theorem 2.5 and Theorem 3.3. □

Theorem 3.5. In a 1-distributive join-semilattice S if $\{1\} \not= A$ is the intersection of all filters of S not equal to $\{1\}$, then $A^{\perp d} = \{x \in S \mid \{x\}^{\perp d} \neq \{1\}\}$.

Proof.Let $x \in A^{\perp^d}$. Then $x \vee \alpha = 1$ for all $\alpha \in A$. Since $A \neq \{1\}$, so $\{x\}^{\perp^d} \neq \{1\}$. Thus $x \in R$. H. S. That is, $A^{\perp^d} \subseteq R$. H. S.

Conversely, let $x \in R$, H, S, so $\{x\}^{\perp^{d}} \neq \{1\}$. Also since S is 1-distributive then $\{x\}^{\perp^{d}}$ is a filter of S. Hence $A \subseteq \{x\}^{\perp^{d}}$ and so $A^{\perp^{d}} \supseteq \{x\}^{\perp^{d}\perp^{d}}$. This implies $x \in A^{\perp^{d}}$, Thus R, H, $S \subseteq A^{\perp^{d}}$ which completes the proof.

Finally we give a necessary and sufficient condition for a join-semilattice *S* with 1, to be 1-distributive which is a generalization of Pawar and et al. [4;Theorem 7].

Theorem 3.6Let S be a join-semilattice with 1. Then S is 1-distributive if and only if for any ideal I disjoint with $\{x\}^{\perp^d} (x \in S)$, there exists a prime ideal containing I and disjoint with $\{x\}^{\perp^d}$.

Proof. Suppose S is 1-distributive join-semilattice. Let P be the set of all ideals containing I, but disjoint from $\{x\}^{\perp L}$. Clearly P is non-empty as $I \in \mathbb{F}$. Let C be a

chain in P and let $M = \bigcup \{X \mid X \in C\}$. First we claim that M is an ideal with $I \subseteq M$ and $M \cap \{x\}^{1^d} - \emptyset$. Let $x \in M$ and $Y \subseteq X$. Then $x \in X$ for some $X \in C$. Hence $y \in X$ as X is an ideal. Thus $y \in M$. Again, let $x, y \in M$. Then $x \in X$ and $y \in Y$ for some $X_{i}Y \in C$. Since C is a chain, so either $X \subseteq Y$ or $Y \subseteq X$. Suppose $X \subseteq Y_{i}$ so $x_t y \in Y$. Then $x \vee y \in Y$ as Y is an ideal. Hence $x \vee y \in M$. Thus M is an ideal. Moreover, M contains I and $M \cap \{x\}^{\perp^d} = \phi$. Then by Zorn's lemma, there exists a maximal element Q in P. Hence by Zorn's lemma as in Theorem 2.5, there exists a maximal ideal P containing I and disjoint from $\{x\}^{\perp^d}$. We claim that $x \in P$. If not, then $P \vee (x]$ is an ideal containing P. By the maximality of $P, (P \vee (x]) \cap \{x\}^{\perp^d} \neq \varphi$. Let $t \in (P \vee (x)) \cap \{x\}^{\perp^d}$. Then $t \leq p \vee x$ for some $p \in P$ and $t \vee x = 1$. This implies $p \lor x = 1$ and so $p \in \{x\}^{\perp^d}$, which is a contradiction. Now suppose $y \notin P$. Then $(P \lor (y)) \cap \{x\}^{\perp^d} \neq \emptyset$ by the maximality of P. Let $s \in (P \lor (y)) \cap \{x\}^{\perp^d}$. Then $s \le p_1 \lor y$ for some $p_1 \in P$ and $s \lor x = 1$. This implies $(p_1 \lor x) \lor y = 1$. Since $p_1 \lor x \in P$, so by Theorem 2.6, P is a maximal ideal of S. Therefore by Theorem 3.3, P is a prime ideal.

Conversely, let $x_i, y_i, z \in S$ such that $x \vee y = 1$, $x \vee z = 1$. Suppose for all $d \leq y_i, z$ we have $x \vee d \neq 1$. Then $d \in \{x\}^{1^d}$. Set $I = \{a \in S \mid a \leq x \vee a_i \text{ for all } a \leq y_i, z\}$. First we claim that I is a proper ideal. Clearly I is non-empty as $x \in I$. Let $p \in I$ and $q \leq p$. Then $p \leq x \vee a_i$ and so $q \leq x \vee a_i$. Thus $p \vee q \leq x \vee a_i$. Hence $p \vee q \in I$. Therefore I is an ideal and I is a proper ideal as $1 \in I$. Again $x \in I$ and $a \in I$ for all $a \leq y_i, z_i$. Then $\{x\}^{1^d} \cap I = \phi$ and hence there is a prime ideal I such that $I \subseteq I$ and $\{x\}^{1^d} \cap I = \phi$. Thus $x \in I$ and $a \in I$ for all $a \leq y_i, z_i$. Now we claim that either $y \in I$ or $z \in I$. If $y_i, z \in I$ then $y_i, z \in S - I$. As I is a prime ideal, then $I \subseteq I$ is a prime filter and I and I is a filter, there is I is a prime ideal, that I is a prime filter and I is a filter, there is I is a filter, there is I is a filter I is implies either I is a contradiction. Hence either I is a filter, there is I is implies either I is I in I is a filter I is a filter. Thus I is a filter I is implies either I is a filter. Thus I is a filter I is implies either I is a filter. Thus I is a filter I is implies either I is I. Thus I is a filter I is implies either I is I in I is a filter.

References

- 1) Balasubramani, P. and Venkatanarasimhan, P. V., Characterizations of the 0-Distributive Lattice, Indian J. pure appl. Math. 32(3) 315-324, (2001).
- 2) Gratzer, G., Lattice Theory, First Concepts and Distributive Lattices, San Francisco W.H. Freeman, (1971).
- 3) Noor, A. S. A. and Talukder, M. R., Isomorphism theorem for standard ideals of a join semilattice directed below, Southeast Asian. Bull. Of Math. 32, 489-495 (2008).
- 4) Pawar, Y.S.andThakare, N. K., 0-Distributive Semilattices, Canad. Math. Bull. Vol. 21(4), 469-475 (1978).
- 5) Talukder, M. R.andNoor, A. S. A., Standard ideals of a joinsemilatticedirected below. Southeast AsianBull. Of Math. 22, 135-139 (1997).
- 6) Talukder, M. R and Noor, A. S. A., Modular ideals of a join semilattice directed below Southeast Asian Bull.of Math. 23, 18-37 (1998).
- 7) Varlet, J. C., Distributive semilattices and Boolean Lattices, Bull. Soc. Roy. Liege, 41, 5-10 (1972).