1- DISTRIBUTIVE JOIN - SEMI LATTICE

By
${ }^{1}$ Shiuly Akhter and ${ }^{2}$ A.S.A. Noor
${ }^{1}$ Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh.
${ }^{2}$ Department of Electronics and Communication Engineering, East-West University, 45 Mohakhali, Dhaka-1212, Bangladesh

Abstract

In this paper, we have studied some properties of ideals and filters of a joinsemilattice. We have also introduced the notion of dual annihilator. We have discussed 1-distributive join-semilattice and given several characterizations of 1distributive join-semilattices directed below. Finally we have included a generalization of prime separation theorem in terms of dual annihilators.

Keywords and phrases : ideals, join-semilattice, 1-distributive lattice, dual annihilator

\section*{বিমূর্ত সার (Bengali version of the Abstract)}

এই পজ্র আমরা যুক্ত - অর্ধ ল্যাট্টির (join-semilattice) আইডিয়েলস্ এবং ফিন্টারের (ideals 1 - বন্টিত যুক্ত - অর্ধ ল্যাট্সিসের প্রদত্ত বিভিন্ন বিশিষ্টায়নগুলিকে আলোচনা করেছি। র্সবশেষে আমরা মুখ্য বিচ্ছেদ উপপাদ্যের সাধারণীকরণকে দ্বৈত এনিহিলোটর (dual annihilators.) হিসাবে অর্ত্যযুক্ত করেছি ।

1. Introduction

Varlet [7] have given the definition of a 1-distributive lattice.Then Balasubramani et al [1]have established some results on this topic. A lattice L with 1 is called a 1 -distributive lattice if for all $a, b, c \in L$ with
$a V b=1=a V \operatorname{cimpliy} a Y(b \wedge c)=1$. Any distributive lattice with 1 is $1-$ distributive. In this paper we will study the 1-distributive join-semilattices.

An ordered set $\left(\mathcal{S}_{1}\right)$ is said to be a join-semilattice if $\sup \{a, b\}$ exists for all $\boldsymbol{a}_{t} b \in \mathbb{S}$, we write $a \forall b$ in place of $\sup \{a, b\}$.

A join-semilattice S is called distributive if $a \leq b_{1} \vee k_{2}\left(a_{m} k_{1}, b_{2} \in S\right)$ implies the existence of $\alpha_{1} a_{2} \in S, a_{1} a_{1} \delta_{1} a_{2} G_{2} \delta_{2}$ with $\alpha_{2}=a_{1} \vee a_{2}$. For detailed literature on join-semilattices, we refer the reader to consultTalukder et al. [5,6], Noor et al. [3] and Gratzer [2].

A join-semilattice S with 1 is said to be 1-distributive if for any $a_{r} b_{\ell} c \in \mathcal{S}$ such

Consider the join-semilattices S_{1} and S_{2} given in the Figure 1.1. It can be easily seen that S_{1} is not 1-distributive but S_{2} is 1-distributive.
b

Figure 1.1

Both distributive and modular joinsemilatticesshare a common property " for all $a, b \in S$ there exists $c \in S$ such that $c \leq a, b$ ". This property is known as the directed below property. Hence a join semilatticewith this property is known as a directed below semilattice. Observe that in Figure 1.1, S_{1} is not directed below, but S_{2} is directed below.

A subset I of a join-semilattice S is called an upset if $x \in$ and
$y \in S$ wth $x \leqslant y$ implies $y \subseteq L$.
Let S be a join-semilattice. A non-empty subset F of S is called a filter if
(i)F is an upset,
and(ii) $a, b \in F$ implies there exists $d \leq a, b$ such that $d \in F$.
A filter F is called proper filterof a join-semilattice Sif F.
A proper filter (upset) F in S is called a prime filter (upset) if aVbe E imples elther α a F orbe E.

For $a \leq g_{v}$ the filter $F=\{x \in \mathcal{E} \mid x$ 逢 $a\}$ is called the principal filter generated by a. It is denoted by [a).A prime upset (filter) is called a minimal prime upset (filter) if it does not contain any other prime upset (filter).

A subset I ofS is called an ideal if

An ideal I of a join-semilattice S is called prime ideal if I d S and $S-I$ isa prime filter.

A maximal ideal Iof Sis a proper ideal which is not contained in any other proper ideal. That is, if there is a proper ideal J such that $I \Xi_{I}$, then $I=I$.

Let S be a join-semilattice with 1 . For $\boldsymbol{A} \boldsymbol{S}$,
 A.. This is always an upset but not necessarily a filter.

For $a \leq S_{r}$ we denote $\left.\{a\}\right\}^{-i}=\{x \leq S \mid x$ Y $a=1\}$.

2. Some properties of ideals and filters of a join-semilattice

Lemma 2.1.Let S be a join-semilattice with 1 . Then every prime upset contains a minimal prime upset.

Proof.Let F be a prime upset of S and let A denote the set of all prime upsets Q contained in F. Then A is non-empty as $F^{v} \in A$. Let C be a chain in A and let $M=\cap\{X \mid X \in C\}$ We claim that M is a prime upset. M is non-empty as $1 \mathbf{Z} M$. Let $a \in M$ and $a \in \mathbb{G}$. Then $a \in X$ for all $X \leq G$. Hence $b \in X$ for all $X \in C$ as X is an upset. Thus $b \in M$. Again, let $x y y \leq M$ for some $x, y \leq S$. Then $x \vee y \in X$ for all $X \in \mathbb{C}$. Since X is prime upset, so either $x \in X$ or $y \in X$ this implies either $x \in M$ or $y \in M$. Hence M is a prime upset. Therefore, we can apply to A the dual form of Zorn’s Lemma to conclude the existence of a minimal member of A.

Theorem 2.2. Let S be a directed below join-semilattice. Then the intersection of any two filters of S is also a filter.

Proof. Let F, Q be two filters of a directed below join-semilatticeS. Let $a \in F \cap Q$ and $b \in S$ with $b \underline{a} a$. Then $a \in F$ and $a \leq q$. Since both F and Q are filters, so $b \leq F$ and ba Q. Hence $b \in \cap Q$.

Again let $a_{n} b \in F \cap Q$. So $a_{n} b \in F$ and $a_{k} b \leq q$. Since F and Q are both filters, then
 where $\subseteq G_{i} \sigma_{l}$ Hence $E \cap Q$ is a filter.

Lemma 2.3. Let I be a non-empty proper subset of a join-semilatticeS. Then I is an ideal if and only if $S-l$ is a prime upset.

Proof. Let I be an ideal of a join-semilatticeS. Now let $x \leq S-l$ and $x \leq y$, Then $x \leqslant l_{l}$ so $y \in l$ as I is an ideal. Hence $y \leq S-l$. Thus $S-l$ is an upset. Since I is an ideal, so $S-l \neq S$.Therefore $\mathbb{E} \boldsymbol{l}$ is a proper upset. Let $\boldsymbol{\Omega}_{\ell} \boldsymbol{\xi} \boldsymbol{\xi}$ with
 either $a \leq S-l$ on $\leq \mathcal{S}-l$. Therefore $S-I$ is a prime upset.

Conversely, let $S-I$ is a prime upset and $x_{i} y=I$ then $x_{r} y \in \mathbb{s} \boldsymbol{s}$. Thus $x \vee y$ \& $\mathcal{S}-l$ as $S-I$ is a prime upset. Hence $x \vee y \leq l$. Again, let $x \leq l$ and $y \leq x$. Then $x \in S-l$. Therefore $y \in-l$ as $S-l$ is an upset. Hence $y \in I$ and thus I is an ideal.

Thus we have the following result.
Corollary 2.4. Let I be a non-empty subset of a join-semilatticeS. Then I is a maximal ideal if and only if $S-l$ is a minimal prime upset.

Theorem 2.5. Every proper ideal of a join-semilattice S with 1 is contained in a maximal ideal.

Proof. Let I be a proper ideal in S with 1. Let P be the set of all proper ideals containing I.Then P is non-empty as $\boldsymbol{l} \boldsymbol{\varepsilon} \boldsymbol{P}$. LetCbe a chain in P and $\operatorname{let} M=\cup\{X \mid X \in C\}$.
 $x \in\{$ Hence $y \in X$ as X is an ideal. Therefore $y \in M$.Again let $x y, M$ then $x \in X$ and $y \in Y^{\prime}$ for some $X_{\ell} \mathcal{E}^{\prime} \mathbb{C}$. Since C is a chain, soeither $X \boldsymbol{X} Y^{\circ}$ or $Y^{\prime} \boldsymbol{X}$. Suppose $X \Xi Y^{*}$, so $X_{2} y \in Y^{\prime}$ Then $x \vee y \in Y$ as Y is an ideal. Hence $X Y y \in M$. Moreover, M contains I, so M is maximal element of C. Then by Zorn's Lemma, Phas a maximal element, say Q with $I \subseteq \mathbb{Q}$. \square

Now we give a characterization of maximal ideals of a join semilattice.
Theorem 2.6. Let S be a join-semilattice with 1.A proper ideal M in S is maximal if and only if for any element $a \in \mathcal{S}=M$ there exists an element $\mathcal{B} M$ such that $\mathfrak{a y b}=\mathbb{1}$

Proof. Suppose M is maximal and $a \leqslant M$. Let $a \vee b$ क 1 for all $b \subseteq M$.
 proper as $1 \leqslant M_{1}$. For every $b \leq M$, we have $\mathbb{G} a V$ and so $b \in M_{\mathrm{f}}$, Thus
$M \Xi M_{1}$, Also $\Omega\left\{M\right.$ but $a \leq M_{1}$, So $M \leq M_{1}$ which contradicts the maximality of M. Hence there must exists some $b=M$ such that $a \vee b=1$,

Conversely, if the proper ideal Mis not maximal, then as $1 \mathbf{\Omega}$, there exists a maximal ideal N such that $M \subseteq N$. For any element $a \in N-M$ there exists an element $\bar{b} \mathbb{E}$ such that $a v b=1$.Hence $a_{r} b \leq N$ imply $1=a \vee b \in N$ which is a contradiction. Thus M must be a maximal ideal .

3. Some characterizations of 1 -distributive join-semilattices.

In this section ,we prove our main results of this paper.
Theorem 3.1. Every 1-distributive join-semilattice is directed below.
Proof. Let S be a 1-distributive join-semilatticeand $b, c \leq S$. Then $1 \mathrm{~V} b=1 \mathrm{~V} \subset=1$ which implies there exists \mathbb{a} with $d \leq \sqrt{6}, c$ such that $\mathbb{1} Y d=1$. Thus d is lower bound of b, c. Hence S is directed below.

The converse of the above theorem is not true by S_{2} of Figure 1.1.
Theorem 3.2. Let $\alpha_{t} \alpha_{4}, \alpha_{2},{ }^{2} \alpha_{n}$ be elements of a 1-distributive join-semilattice S such that $\AA Y \Omega_{1}=\Omega Y \Omega_{2}=\cdots=\Omega Y \Omega_{n}=\mathbb{1}_{1}$ Then $a Y b=1$ for some $\sigma_{4} \alpha_{y} \alpha_{2}{ }^{\prime \prime}{ }^{\prime} \alpha_{n}$

Proof.We want to prove this theorem using mathematical induction method. Let $a \vee a_{1}=a \vee a_{2}=1$. Since S is 1-distributive so, $a \vee b_{1}=1$ for some $\delta_{1} \leq a_{1} a_{2}$ that is, the statement is true for $a_{1} \operatorname{and} a_{2}$. Let $a \vee a_{1}=a \vee a_{2}=\cdots=a \vee a_{k-2}=1$. Then for the 1-distributivity of $S, a \vee b_{2}=1$ for some $b_{2} \alpha_{4} \Omega_{y} \Omega_{2}{ }^{\prime \prime}{ }_{2} \alpha_{k-1}$. Now, suppose $a \vee a_{k}=1$ Hence $a \vee b=1$ for some $b_{i} b_{2} \sigma_{k}$ as S is 1-distributive.This implies that $a \vee b=1$ for some $\sigma_{1} \alpha_{1}, a_{2},{ }^{\prime}{ }_{z} a_{k}$, Hence by the method of mathematical induction the theorem

Following result gives some nice characterizations of 1-distributive join-semilattices.

Theorem 3.3. For a directed below join-semilatticeS with 1, the following conditions are equivalent: (i)S is 1-distributive.(ii) $\left\{a^{4}\right\}^{4^{4}}$ is a filter for all $a \leq S$.(iii) $A^{L^{4}}$ is a filter for all finite subsets A of S (iv)Every maximal ideal is prime.

Proof.(i) \Leftrightarrow (ii). Let $x \in\{a\}^{d^{i}}$ and y 䇗 x.Since $x \in\{a\}^{4}$, so we get $a \vee x=1$ implies $a Y y=\mathbb{1}$ as y ia x_{1} Hence $y \in\{a\}^{\perp^{d}}$, and so $\{a\}^{\perp^{d}}$ is an upset. Again, let $x_{r} y \leq\{\alpha\}^{\|^{d}}$, Thus $a Y x=\mathbb{1}=a Y y$ By 1-distributivity of S, there exists z with $z \leq x, y$ such that $a \vee z=1$. Therefore $z \in\{a\}^{\perp^{d}}$, and so $\{a\}^{\perp^{d}}$ is a filter.

Conversely let $x, y, z \in S$ with $x \vee y=1=x \vee z$. Then $y, z \in\{x\}^{\perp^{d}}$. Since $\{x\}^{\perp^{d}}$ is a filter, so there exists $t \leq y, z$ such that $t \in\{x\}^{\perp^{d}}$, and so $t \vee x=1$. This implies S is 1 distributive.
(ii) $\Leftrightarrow($ iii $)$ is trivial by Theorem 2.2 as ${A^{\perp^{d}}}^{d}=\bigcap_{a \in A}\{a\}^{\perp^{d}}$.
(i) \Rightarrow (iv).Let I be a maximal ideal of S. Then by Corollary 2.4, S-I is a minimal prime upset. Now suppose $x, y \in S-I$. Then $x, y \notin I$, and so by the maximality of I, $I \vee(x]=S, \quad I \vee(y]=S$. This implies $a \vee x=1=b \vee y$ for some $a, b \in I$. Thus $a \vee b \vee x=a \vee b \vee y=1$. Since S is 1-distributive, there exists $d \leq x, y$ such that $a \vee b \vee d=1$.

Now $a \vee b \in I$ implies $a \vee b \notin S-I$, and S-I is prime implies $d \in S-I$. Therefore SI is a prime filter and so I is a prime ideal.
(iv) $\Rightarrow(i)$. Let S be not 1-distributive. Then there are $a_{i}, b, c \leq S$ such that $a V b=a V z=1$ and $a V d$ n 1 for all $d G_{i} b_{1}$ Now, set

Theorem 2.5, $l \mathbf{\leq}$ for some maximal ideal J. Now we claim that either
 is a prime filter and $\delta_{r} c \in S-J$. Since $S-J$ is a filter, there is $\boldsymbol{\varepsilon} \boldsymbol{s}-J$ such that
 implies, either $a Y b \leq /$ or $a Y \in \subseteq I$. Thus, 1 \& $/$ which contradicts the maximality of J. Therefore, $a V d=1$ for some $d \xi_{i} b_{t} c$ and hence S is a 1-distributive.

Note that in case of a 1-distributive lattice L, For any $A \subseteq L,{A^{\perp^{d}}}^{d}$ is a filter. But this is not true in a directed below join-semilattice S with 1 , as the intersection of infinite number of filters in S is not necessarily a filter.

Corollary 3.4. In a 1-distributive join-semilattice, every proper ideal is contained in a prime ideal.

Proof. This immediately follows by Theorem 2.5 and Theorem 3.3.
Theorem 3.5. In a 1-distributive join-semilatticeS if $\{1\} \neq A$ is the intersection of all filters of S not equal to $\{1\}$, then $\left.\left.A^{\boldsymbol{*}^{d}}=\frac{1}{\{ } \in S \right\rvert\,\{x\}^{d^{4}} \neq\{1\}\right\}$;

Proof.Let $x \in A^{\mathbb{L}^{i}}$. Then $x \vee a=1$ for allasA. Since $A \boldsymbol{A} \boldsymbol{A}\{1\}$,

Conversely, let $x \in R, H, S$, so $\{x\}^{d i} \pm\{1\}$. Also since S is 1-distributive then $\{x\}^{d i}$ is a filter of S. Hence $A \subseteq\{x\}^{-^{\hbar}}$ and so $A^{1^{\hbar}} \boldsymbol{2}\{x\}^{-^{\hbar} 4^{\hbar}}$. This implies $x \in A^{+^{\hbar}}$, Thus R.H.S $\subseteq A^{]^{\text {d }}}$ which completes the proof.

Finally we give a necessary and sufficient condition for a join-semilatticeS with 1, to be 1-distributive which is a generalization of Pawar and et al. [4;Theorem 7].

Theorem 3.6Let S be a join-semilattice with 1 . Then S is 1-distributive if and only if for any ideal I disjoint with $\{x\}^{4^{i}}(x \in S j$, there exists a prime ideal containing I and disjoint with $\{x\}^{-{ }^{d}}$.

Proof.Suppose S is 1-distributive join-semilattice. Let P be the set of all ideals containing I, but disjoint from $\{x\}^{+^{6}}$. Clearly P is non-empty as $l \boldsymbol{A}$. Let C be a
chain in P and let $\quad M=\cup\{X \mid X \subseteq \subset\}$. First we claim that M is an ideal with $I \subseteq M a n d M \cap\{x\}^{d i}-\psi$. Let $x \in M$ and $y \leq x$. Then $x \in X$ for some $X \leq G$. Hence $y \in X$ as X is an ideal. Thus $y \in M$. Again, let $x_{y} y \in M$. Then $x \in X$ and $y \in Y$ for some $X_{V} Y^{*} \mathbb{\in}$. Since C is a chain, so either $X \subseteq Y^{*}$ or $Y \mathbb{Y}$. $x_{i} y \leq Y^{*}$. Then $x \bigvee y \in Y$ as Y is an ideal. Hence $x \forall y \leq M$.Thus M is an ideal. Moreover, M contains Iand $M \cap\{x\}^{\boldsymbol{d}}=\phi$. Then by Zorn's lemma, there exists a maximal element Q in P. Hence by Zorn's lemma as in Theorem 2.5, there exists a maximal ideal P containing I and disjoint from $\{x\}^{\perp^{d}}$. We claim that $x \in P$. If not , then $P \vee(x]$ is an ideal containing P. By the maximality of $\mathrm{P},(P \vee(x]) \cap\{x\}^{d^{d}} \neq \varphi$. Let $t \in(P \vee(x]) \cap\{x\}^{\perp^{d}}$. Then $t \leq p \vee x$ for some $p \in P$ and $t \vee x=1$. This implies $p \vee x=1$ and so $p \in\{x\}^{\perp^{d}}$, which is a contradiction. Now suppose $y \notin P$. Then $(P \vee(y]) \cap\{x\}^{\perp^{d}} \neq \varphi$ by the maximality of P . Let $s \in(P \vee(y]) \cap\{x\}^{\perp^{d}}$.Then $s \leq p_{1} \vee y$ for some $p_{1} \in P$ and $s \vee x=1$. This implies $\left(p_{1} \vee x\right) \vee y=1$. Since $p_{1} \vee x \in P$, so by Theorem 2.6, P is a maximal ideal of S . Therefore by Theorem 3.3, P is a prime ideal.

 we claim that Iis a proper ideal. Clearly I is non-empty as $x \leq l$. Let $p=l$ and $q \in q_{1}$ Then $p \in x \vee \in$ andso $q \leq x \vee \in$. Thus $p \vee q \leq x \vee \in$. Hence $p \vee q \in L$. Therefore Iis
 Then $\{x\}^{-^{d}} \cap I=\phi$ and hence there is a prime ideal J such that $l \mathbf{\Xi} I$ and $\{x\}^{4} \cap y=\hbar$. Thus $x \in I$ and $\boldsymbol{\varepsilon} / f$ for all $\varepsilon y_{i} \boldsymbol{z}$. Now we claim that either $y \in I$
 and $y_{z} \boldsymbol{z} \boldsymbol{\in} \boldsymbol{S}-I$. Since $\mathcal{S}-I$ is a filter, there is $f \subseteq \mathbb{S} \boldsymbol{I}$ such that $f \leq y_{z} \boldsymbol{z}$ which is a contradiction. Hence either $y \in J$ or $\boldsymbol{z} \boldsymbol{Z}$. This implies either $x \vee y \in J$ or $x \vee Z 』 I$ Thus $\mathbb{I} I$ which contradicts the primeness of J. Hence $x \vee d=1$. Thus S is 1-distributive.

References

1) Balasubramani, P. and Venkatanarasimhan, P. V., Characterizations of the 0Distributive Lattice, Indian J. pure appl. Math. 32(3) 315-324, (2001).
2) Gratzer, G., Lattice Theory, First Concepts and Distributive Lattices, San Francisco W.H. Freeman, (1971).
3) Noor, A. S. A. and Talukder, M. R., Isomorphism theorem for standard ideals of a join semilattice directed below, Southeast Asian. Bull. Of Math. 32, 489-495 (2008).
4) Pawar, Y.S.andThakare, N. K., 0-Distributive Semilattices, Canad. Math. Bull. Vol. 21(4), 469-475 (1978).
5) Talukder, M. R.andNoor,A. S. A., Standard ideals of a joinsemilatticedirected below. Southeast AsianBull. Of Math.22, 135-139 (1997).
6) Talukder, M. R and Noor, A. S. A.,Modular ideals of a join semilattice directed below Southeast Asian Bull.of Math. 23, 18-37 (1998).
7) Varlet, J. C., Distributive semilattices and Boolean Lattices, Bull. Soc. Roy. Liege, 41, 5-10 (1972).
