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Abstract 

In this paper, we have studied some properties of ideals and filters of a join-

semilattice. We have also introduced the notion of dual annihilator.  We have 

discussed 1-distributive  join-semilattice  and given several  characterizations of 1-

distributive join-semilattices directed below. Finally we have included a 

generalization of prime separation theorem in terms of dual annihilators. 
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¢hj§aÑ p¡l (Bengali version of the Abstract) 
HC f−œ Bjl¡ k¤š² - AdÑ mÉ¡¢V−pl ( join-semilattice) BC¢X−umpÚ Hhw ¢gÒV¡−ll (ideals 

and filters) dÑj¡hm£−L f¤´M¡e¤f¤´M i¡−h fl£r¡ L−l¢R z 1 - h¢¾Va  k¤š² - AdÑ mÉ¡¢V−pl Hhw ¢ejÀ¡¢ij¤M£  

1 - h¢¾Va  k¤š² - AdÑ mÉ¡¢V−pl  fËcš ¢h¢iæ ¢h¢nø¡ue…¢m−L B−m¡Qe¡ L−l¢R z pÑh−n−o Bjl¡ j¤MÉ 

¢h−μRc Eff¡−cÉl p¡d¡lZ£LlZ−L °àa H¢e¢q−mVl (dual annihilators.) ¢qp¡−h A¿¹Ñi¥š² L−l¢R z  

1.  Introduction 

Varlet [7] have given the definition of a 1-distributive lattice.Then 
Balasubramani et al [1]have established some results on this topic. A lattice L with 1 
is called a 1-distributive lattice if for all Lc,b,a ∈    with 
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impliy . Any distributive lattice with 1 is 1-
distributive. In this paper we will study the 1-distributive join-semilattices. 

An ordered set ( is said to be a join-semilattice if sup{a,b}exists for all , 
we write  in place of sup{a,b}. 

A join-semilatticeS  is called distributive if implies the 
existence of ,  with  For detailed literature on 
join-semilattices, we refer the reader to consultTalukder et al. [5,6], Noor et al. [3] and 
Gratzer [2]. 

A join-semilattice S  with 1 is said to be 1-distributive if for any such 
that  implies  for some . 

Consider the join-semilattices  and  given in the Figure 1.1. It can be easily seen 
that  is not 1-distributive but  is 1-distributive. 

 

 

  1  1 

  c 
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Figure 1.1 
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Both distributive and modular joinsemilatticesshare a common property “ for all 
Sb,a ∈  there exists Sc∈  such that b,ac ≤ ”. This property is known as the directed 

below property. Hence a join semilatticewith this property is known as a directed 
below semilattice. Observe that in Figure 1.1, 1S  is not directed below, but 2S  is 
directed below. 

A subset I of a join-semilatticeS is called an upset if  and 
implies . 

Let S be a join-semilattice. A non-empty  subset F of S is called a filter if 

(i)F is an upset, 

and(ii) Fb,a ∈  implies there exists b,ad ≤  such that Fd ∈ . 

A filter F is called proper filterof a join-semilatttice Sif  . 

A proper filter (upset)F in S is called a prime filter (upset) if 
 

For is called the principal filter generated by a. It 
is denoted by [a).A prime upset (filter) is called a minimal prime upset (filter) if it 
does not contain any other prime upset (filter). 

A subset I  ofS is called an ideal if                                  

. 

An ideal I of a join-semilattice S is called prime ideal if isa prime 
filter. 

A maximal ideal Iof  Sis a proper ideal which is not contained in any other proper 
ideal. That is, if there is a proper ideal J such that  

Let S  be a join-semilattice with 1. For  

set   Then  is called the dual annihilator of 
A.. This is always an upset but not necessarily a filter. 
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For . 

Moreover,  

2. Some properties of ideals and filters of a join-semilattice 

Lemma 2.1.Let S be a join-semilattice with 1. Then every prime upset contains a 
minimal prime upset. 

Proof.Let F be a prime upset of S and let A denote the set of all prime upsets Q 
contained in F. Then A is non-empty as  Let C be a chain in A and 
let We claim that M is a prime upset. M is non-empty as . 
Let  and  Then  for all . Hence  for all  as X is an 
upset. Thus  Again, let  for some . Then  for all 

. Since X is prime upset, so either  or  this implies either  or 
 Hence M is a prime upset. Therefore, we can apply to A the dual form of 

Zorn’s Lemma to conclude the existence of a minimal member of A.  

Theorem 2.2. Let S be a directed below join-semilattice. Then the intersection of any 
two filters of S is also a filter. 

Proof. Let F, Q be two filters of a directed below join-semilatticeS. Let  and 
with . Then and . Since both F and Q are filters, so and 
.      Hence .  

Again let . So and . Since F and Q are both filters, then 
there exists and   such that  Let  Then  
where  Hence  is a filter.  

Lemma 2.3. Let I be a non-empty proper subset of a join-semilatticeS. Then I is an 
ideal if and only if is a prime upset. 

Proof. Let I be an ideal of a join-semilatticeS. Now let  and  Then 
 so  as I is an ideal. Hence  Thus  is an upset. Since I is an 

ideal, so Therefore  is a proper upset. Let  with 
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then . Therefore either  as I is an ideal. Hence 
either   Therefore  is a prime upset. 

Conversely, let  is a prime upset and  then . Thus 
 as  is a prime upset. Hence  . Again, let and . 

Then . Therefore  as  is an upset. Hence  and thus I is an 
ideal.    

Thus we have the following result. 

Corollary 2.4. Let I be a non-empty subset of a join-semilatticeS. Then I is a maximal 
ideal if and only if  is a minimal prime upset.  

Theorem 2.5.  Every proper ideal of a join-semilatticeS with 1 is contained in a 
maximal ideal. 

Proof.  Let I be a proper ideal in S with 1. Let P be the set of all proper ideals 
containing I.Then P is non-empty as . LetCbe a chain in Pand 
let . 

We claim that M is an ideal with Let and . Then  for some 
 Hence  as X is an ideal. Therefore .Again let  then  

and  for some . Since C is a chain, soeither . Suppose 
 so Then as Y is an ideal. Hence Moreover, M 

contains I, so M is maximal element of C. Then by Zorn’s Lemma, Phas a maximal 
element, say Q with  

Now we give a characterization of maximal ideals of a join semilattice. 

Theorem 2.6. Let S be a join-semilattice with 1.A proper ideal M in S is maximal if 
and only if for any element  there exists an element  such that 

 

Proof. SupposeM is maximal and  Let for all .                              
Consider  ClearlyM 1 is an ideal and is 
proper as . For every  we have  and so  Thus 
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Also  but So  which contradicts the maximality of M. 
Hence there must exists some  such that  

Conversely, if the proper ideal Mis not maximal, then as , there exists a maximal 
ideal N such that . For any element  there exists an element  
such that Hence  imply  which is a contradiction. 
Thus M must be a maximal ideal .  

3. Some characterizations of 1-distributive join-semilattices. 

In this section ,we prove our main results of this paper.   

Theorem 3.1. Every 1-distributive join-semilattice  is directed below. 

Proof. Let S be a 1-distributive join-semilatticeand . Then  
which implies there exists  with  such that  Thus d is lower 
bound of b,c. Hence S is directed below.  

The converse of the above theorem is not true  by 2S  of Figure 1.1. 

Theorem 3.2. Let be elements of a 1-distributive join-semilattice S 
such that  Then  for some 

 

Proof.We want to prove this theorem using mathematical induction method.                              
Let . Since S is 1-distributive so,  for some 

 that is, the statement is true for .Let 
=1. Then for the          1-distributivity of 

S,  for some . Now, suppose Hence 
 for some  as S is 1-distributive.This implies that  for 

some  Hence by the method of mathematical induction the theorem 
is true for some  

Following result gives some nice characterizations of 1-distributive join-semilattices. 
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Theorem 3.3. For a directed below join-semilatticeS with 1, the following conditions 
are equivalent: (i)S is 1-distributive.(ii) is a filter for all .(iii) is a filter 
for all finite subsetsA of S(iv)Every maximal ideal is prime. 

Proof. )ii()i( ⇔ . Let  and Since , so we get  

implies  as Hence { } d
ay ⊥∈ , and  so { } d

a ⊥ is an upset. Again, let 

 Thus  By 1-distributivity of S, there exists  z  

with y,xz ≤ such that 1=∨ za . Therefore { } d
az ⊥∈ , and so { } d

a ⊥ is a filter. 

Conversely let  Sz,y,x ∈  with zxyx ∨==∨ 1 . Then { } d
xz,y ⊥∈ . Since { } d

x ⊥ is a 

filter, so there exists z,yt ≤  such that { } d
xt ⊥∈ , and so 1=∨ xt . This implies S is 1-

distributive. 

)iii()ii( ⇔ is trivial by Theorem 2.2 as { }∩
Aa

dd
aA

∈

⊥⊥ = . 

)iv()i( ⇒ .Let I be a maximal ideal of S. Then by Corollary  2.4, S-I is a minimal 
prime upset. Now suppose ISy,x −∈ . Then Iy,x ∉ , and so by the maximality of I, 

S]y(I,S]x(I =∨=∨ . This implies ybxa ∨==∨ 1  for some Ib,a ∈ . Thus 
1=∨∨=∨∨ ybaxba . Since S is 1-distributive, there exists y,xd ≤  such that 

1=∨∨ dba . 

Now Iba ∈∨ implies ISba −∉∨ , and S-I is prime implies ISd −∈ . Therefore S-
I is a prime filter and so I is a prime ideal. 

)i()iv( ⇒ . Let S  be not 1-distributive. Then there are  such that 

 and  for all  Now, set 

Clearly I is an ideal and it is proper as I∉1 .By  

Theorem 2.5,  for some maximal ideal J. Now we claim that either 

 If  then  As J is a prime ideal, then we have  

is a prime filter and  Since  is a filter, there is  such that 
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. Hence JSea −∈∨  gives a contradiction. Hence,  this 

implies, either  Thus,  which contradicts the maximality of 

J. Therefore,  and hence S is a 1-distributive.  

Note that in case of a 1-distributive lattice L, For any LA ⊆ , 
d

A⊥ is a filter. But this 

is not true in a directed below join-semilattice S with 1, as the intersection of infinite 

number of filters in S is not necessarily a filter. 

Corollary 3.4. In a 1-distributive join-semilattice, every proper ideal is contained in a 
prime ideal. 

Proof. This immediately follows by Theorem 2.5 and Theorem 3.3.  

Theorem 3.5. In a 1-distributive join-semilatticeS if is the intersection of all 

filters of S not equal to {1}, then  

Proof.Let . Then  for all . Since , 

so Thus  That is,  

Conversely, let so . Also since S is 1-distributive then  is 

a filter of S. Hence  and so . This implies  Thus 

which completes the proof.  

Finally we give a necessary and sufficient condition for a join-semilatticeS with 1, to 
be  1-distributive which is a generalization of  Pawar and et al. [4;Theorem 7]. 

Theorem 3.6Let S be a join-semilattice with 1. Then S is 1-distributive if and only if 

for any ideal I disjoint with , there exists a prime ideal containing I and 

disjoint with . 

Proof.Suppose S is 1-distributive join-semilattice. Let P be the set of all ideals 
containing I, but disjoint from . Clearly P is non-empty as . Let C be a 
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chain in P and let                 }. First we claim that M is an ideal with 

Mand . Let  and  Then  for some . Hence 
 as X is an ideal. Thus . Again, let . Then  and  for 

some . Since C is a chain, so either  or Suppose  so 
 Then  as Y is an ideal. Hence Thus M is an ideal. 

Moreover, M contains Iand . Then by Zorn’s lemma, there exists a 
maximal element Q in P. Hence by Zorn’s lemma as in Theorem 2.5, there exists a 

maximal ideal P containing I and disjoint from { } .x
d⊥  We claim that Px∈ . If not , 

then ( ]xP ∨  is an ideal containing P . By the maximality of P, ( ]( ) { } ϕ≠∩∨ ⊥d

xxP . 

Let ( ]( ) { } d
xxPt ⊥∩∨∈ .Then xpt ∨≤  for some Pp∈  and 1=∨ xt .This implies 

1=∨ xp  and so { } d
xp ⊥∈ , which is a contradiction. Now suppose Py∉ . Then 

( ]( ) { } ϕ≠∩∨ ⊥d
xyP  by the maximality of P. Let ( ]( ) { } d

xyPs ⊥∩∨∈ .Then 
yps ∨≤ 1 for some Pp ∈1 and 1=∨ xs . This implies ( ) 11 =∨∨ yxp . Since 
Pxp ∈∨1 , so by Theorem 2.6, P  is a maximal ideal of S. Therefore by Theorem 3.3, 

P is a prime ideal. 

Conversely, let  such that Suppose for all  we 

have  Then Set }. First 
we claim that Iis a proper ideal. Clearly I is non-empty as  Let  and  
Then  andso  Thus  Hence  Therefore Iis 
an ideal and I is a proper ideal as  Again  and  for all  

Then  and hence there is a prime ideal J such that  and 

 Thus  and  for all  Now we claim that either  
or  If  then As J is a prime ideal, then  is a prime filter 
and  Since  is a filter, there is  such that  which is a 
contradiction. Hence either or . This implies either  or 

Thus  which contradicts the primeness of J. Hence  Thus S is 
1-distributive.   
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