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Abstract:  

 A simple analytical solution extended to certain damped-oscillatory 

nonlinear systems with varying coefficients. The solution obtained for different 

initial conditions for a second order nonlinear system show a good coincidence 

with those obtained by numerical method. The method is illustrated by an example. 
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¢hj§aÑ p¡l (Bengali version of the Abstract) 

f¢lhaÑen£m pqN pq −L¡e Ahj¢¾ca −c¡m−el A-°l¢ML a−¿»l −r−œ HL¢V pqS ¢h−nÔoZ¡aÈL 

pj¡d¡e−L h¢dÑa Ll¡ q−u−Rz ¢h¢iæ fË¡l¢ñL n−aÑl SeÉ ¢àa£u œ²−jl A-°l¢ML a−¿»l ¢e¢ZÑa pj¡d¡e 

−cM¡u −k p¡wMÉ fÜ¢a−a ¢e¢ZÑa Cq¡l pj¡d¡e HLCz HC fÜ¢a¢V−L HL¢V Ec¡ql−Zl p¡q¡−kÉ hÉ¡MÉ Ll¡ 

q−u−Rz 

1. INTRODUCTION 

The Krylov-Bogoliubov-Mitroplshkii (KBM) [1-3] method is a widely used 

technique to obtain approximate solutions of weakly nonlinear systems. Originally, 

the method was developed by Krylov and Bogoliubov [1] for obtaining periodic 

solution of a second order nonlinear differential equation. Letter, the method was 

amplified and justified mathematically by Bogoliubov and Mitropolishkii [2-3]. 

Popov [4] extended the method to a damped oscillatory process in which a strong 

linear damping force acts. Murty, Dekshatulu and Krisna [5] and Shamsul [6-7] 

extended the method to over-damped nonlinear system with constants coefficients 
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in which one of the eigen-values is multiple of the other eigen-value. Recently 

Shamsul [7] has presented a unified method for solving an n-th order differential 

equation (autonomous) characterized by oscillatory, damped oscillatory and non-

oscillatory processes with constant coefficients. The aim of this article is to find an 

approximate solution of over-damped nonlinear differential systems based on the 

extended KBM (by Popov [4]) method in which one of the eigen-values is multiple 

(Ten times; i.e., Decuple) of the other eigen-value. 

2. METERIALS AND METHOD 

  Let us consider the nonlinear differential system   

 ),,,()()(2 2 τετωτ xxfxxkx −=++ tετ =                        (1) 

where the over-dots denote differentiation with respect to t, ε  is a small parameter, 

tετ =  is the slowly varying time, ,0)( ≥τk  f  is a given nonlinear function. )(τω  

is known as frequency. The coefficients in Eq. (1) are slowly varying in that their 

time derivatives are proportional toε . 

Setting 0=ε  and 0ττ = = constant, in Eq.(1), we obtain the unperturbed 

solution of (1) in the form  

tt eaeatx )(
0,2

)(
0,1

0201)0,( τλτλ −− += ,                                                 (2) 

When 0≠ε  we seek a solution in accordance with the KBM method, of the 

form  

( ) ...,),,,(),(),(, 2
21121 ετεττε +++= taautatatx                    (3) 

where 1a  and 2a satisfy the differential equations 

  
...,),,()(

...,),,()(
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212222

2
211111

ετετλ

ετετλ

++−=

++−=

aaAaa

aaAaa
                                                     (4) 

  Confining our attention to the first few term m,,2,1 …  in the series expansion 

of (3) and (4), we evaluate functions ,,,,, 211 …… AAu such that 1a  and 2a  
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appearing in (3) and (4) satisfy (1) with an accuracy of 1+mε . In order to determine 

these unknown functions it was early assumed by Murty et,al [5], Shamsul [7] that 

the functions ,...1u exclude all fundamental terms, since these are included in the 

series expansion (3) at order 0ε . To obtain a special over-damped solution of (1), 

we impose a restriction that 1u   exclude the terms 

),()(, 021221121
21 τλλ kiiiiaa ii +<+  2,1,0, 21 =ii . The assumption assures that 

1u are free from secular type terms tte 1λ− and tte 2λ− (see [7]). 

Differentiating ),( εtx two times with respect to t, substituting for the 

derivatives xx, and x in the original equation (1) and equating the coefficient of ε , 

we obtain  
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where ),,(,, 00
)0(2

2
1

1 τ
τ
λ

λ
τ
λ

λ xxff
d
d

d
d

==′=′ and   ).,(),( 210 ττ tatax +=  

 It is assumed that both )0(f  can be expanded in Taylor’s series [6-7] 

∑
∞

=

=
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21,
)0(

21

21

21
)(

ii

ii
ii aaFf τ ,   ∑
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)(

ii

ii
ii aaUu τ            (6) 

It is assumed that both )0(f and 1u  can be expanded in Taylor’s series (see[7]), 

subject to the condition that 1u  1u   exclude the terms 

)()(, 021221121
21 τλλ kiiiiaa ii +〈+ (already mentioned above). Moreover, we assume 

that 1A  and  2A  respectively contains terms 1a  and 2a . 
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Example:  As example of the above procedure, let us consider differential equation 

with a large linear damping force, xk )(2 τ−  

,)()(2 32 xxxkx ετωτ −=++                                                  (7) 

Here, 3xf =  and non-zero coefficient of )0(f are 13,00,3 == FF  and 

32,11,2 == FF . Therefore (5) becomes 
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The particular solution of (10) is  

)(2
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Now we have to solve (9) for two functions 1A  and 2A . Consider the situation 

that 21 10λλ ≈ . In this case teaa 13
0,2

3
2

λ−→ , so 1A  as well as the equation of 1A  

contain 3
2a , i.e., 1A  satisfies the equation 
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On the contrary, in accordance with unified KBM method 2A   contains the 

term 2
213 aa  (see [7]). Therefore, the equation of 2A  becomes 

2
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The particular solutions of  (12) and (13) are 
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Substituting the functional values of 1A , 2A  from (14) into (4) and rearranging, we 

obtain 
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In general equations (15) have no exact solution. Usually, a numerical 

procedure is used to solve them. In this paper, we have used the Runge-Kutta 

(fourth order) method. Numerically, it is advantageous to solve the transformed 

equation (15) instead of the original equations (7), because a large step size can be 

used in the integration (see [8] for detail). 

Thus for 21 10λλ ≈ , we obtain a first order solution of (7) of the form 

121),( uaatx εε ++= ,                                                                                 (16) 

where 1a  and 2a  are given by (15), and  1u  is given by (11).   

3. RESULTS AND DISCUSSIONS 

  In order to test the accuracy of an approximate solution obtained by a 

certain perturbation method, one compares the approximate solution to the 

numerical solution (considered to be exact). With regard to such a comparison 

concerning the presented KBM method of this article, we refer to the works of 

Murty et,.al [5] (who found an over-damped solution of a second order nonlinear 

system with constant coefficients), and Shamsul [6-7]. In our present paper, for 
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different initial conditions, we have compared the perturbation solutions (16) of 

Duffing’s equations (7) to those obtained by Runge-Kutta Fourth-order procedure. 

First of all, x  is calculated by (16) with initial conditions 028571.1)0([ =x  

542857.−=x ] or ,0000.11 =a  0000.02 =a  for ,5.1 −=λ 52 −=λ , 1.=ε . The 

solutions are various values of t  are presented in the second column of Table 

1.The corresponding numerical solutions is also computed by Runge-Kutta fourth-

order method and are given in the third column of the Table 1. All the results are 

shown in Table 1. Percentage errors have also been calculated and given in the 

fourth column of the Table 1.  

Secondly, we have computed by (16) for another sets of initial conditions (i) 

555844.)0([ =x  799757.1=x ] or ,0000.11 =a  50000.2 −=a  for 

,5.1 −=λ 52 −=λ , 1.=ε  and (ii) 083117.0)0([ =x  149870.4=x ] or 

,0000.11 =a  0000.12 −=a  for ,5.1 −=λ 52 −=λ , 1.=ε . The solutions are 

various values of t  are presented in the second column of Table 2 and Table 3. The 

corresponding numerical solutions are also computed by Runge-Kutta fourth-order 

method and are given in the third column of the Table 2 and Table 3. Percentage 

errors have also been calculated and given in the fourth column of the Table 2 and 

Table 3. 

Finally, we have computed by (16) for another sets of initial conditions (i) 

057143.1)0([ =x  585714.−=x ] or ,0000.11 =a  0000.02 =a  for 

,5.1 −=λ 52 −=λ , 2.=ε  and (ii) 085714.1)0([ =x  628571..−=x ] or 

,0000.11 =a  0000.02 =a  for ,5.1 −=λ 52 −=λ , 3.=ε . The solutions are 

various values of t  are presented in the second column of Table 4 and Table 5. The 

corresponding numerical solutions are also computed by Runge-Kutta fourth-order 

method and are given in the third column of the Table 4 and Table 5. Percentage 

errors have also been calculated and given in the fourth column of the Table 4 and 

Table 5.  
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Table 1 
 

t  
nux  x (%)E  

0.0 1.028571 1.028571 0.00000 
1.0 0.612460 0.312906 0.07282 
2.0 0.368965 0.369302 0.09133 
3.0 0.223239 0.223448 0.09362 
4.0 0.135279 0.135406 0.09388 
5.0 0.082024 0.082101 0.09387 
6.0 0.049744 0.049790 0.09247 
7.0 0.030170 0.030198 0.09280 
8.0 0.018299 0.018316 0.09290 
9.0 0.011.99 0.011109 0.09009 

10.0 0.006732 0.006738 0.08910 
 

Initial conditions 028571.1)0([ =x  542857.−=x ] or ,0000.11 =a  0000.02 =a  

for ,5.1 −=λ 52 −=λ , 1.=ε . 

Table 2 
 

t  
nux  x (%)E  

0.0 0.555844 0.555844 0.00000 
1.0 0.609156 0.609559 0.06615 
2.0 0.368944 0.369248 0.08239 
3.0 0.223239 0.223428 0.08466 
4.0 0.135280 0.135395 0.08500 
5.0 0.082024 0.082094 0.08534 
6.0 0.049744 0.049786 0.08443 
7.0 0.030170 0.030195 0.08286 
8.0 0.018299 0.018314 0.08197 
9.0 0.011099 0.011108 0.08108 

10.0 0.006732 0.006737 0.07427 
 
Initial conditions 555844.)0([ =x  799757.1=x ] or ,0000.11 =a  50000.2 −=a  

for ,5.1 −=λ 52 −=λ , 1.=ε  
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Table 3 
 

t  
nux  x (%)E  

0.0 0.083117 0.083117 0.00000. 
1.0 0.605606 0.605908 0.04986 
2.0 0.368765 0.369001 0.06399 
3.0 0.223145 0.003293 0.06632 
4.0 0.135223 0.135313 0.06655 
5.0 0.081990 0.082044 0.06586 
6.0 0.049723 0.049756 0.06636 
7.0 0.030157 0.030177 0.06631 
8.0 0.018291 0.018303 0.06560 
9.0 0.011094 0.011101 0.06309 
10.0 0.006729 0.006733 0.05944 

 

Initial conditions 083117.0)0([ =x  149870.4=x ] or ,0000.11 =a  0000.12 −=a  
for ,5.1 −=λ 52 −=λ , 1.=ε . 

 

 

Table 4 
t  

nux  x (%)E  

0.0 1.057143 1.057143 0.00000 
1.0 0.617485 0.619281 0.29085 
2.0 0.369390 0.370725 0.36140 
3.0 0.222943 0.223765 0.36870 
4.0 0.134979 0.135477 0.36894 
5.0 0.081815 0.082117 0.37369 
6.0 0.049611 0.049794 0.36886 
7.0 0.030088 0.030199 0.36891 
8.0 0.018249 0.018316 0.36714 
9.0 0.011068 0.011109 0.37043 
10.0 0.006713 0.006738 0.37241 

 
Initial conditions 057143.1)0([ =x  585714.−=x ] or ,0000.11 =a  0000.02 =a  
for ,5.1 −=λ 52 −=λ , 2.=ε  
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Table 5 
t  

nux  x (%)E  

0.0 1.085714 1.085714 0.00000 
1.0 0.621588 0.625656 0.65445 
2.0 0.369175 0.372147 0.80503 
3.0 0.222264 0.224083 0.81839 
4.0 0.134450 0.135548 0.81666 
5.0 0.081468 0.082132 0.81504 
6.0 0.049395 0.049798 0.81587 
7.0 0.029956 0.03020 0.81452 
8.0 0.018168 0.018316 0.814619 
9.0 0.011019 0.011109 0.81677 
10.0 0.006684 0.006738 0.807899 

Initial conditions 085714.1)0([ =x  628571..−=x ] or ,0000.11 =a  0000.02 =a  

for ,5.1 −=λ 52 −=λ , 3.=ε . 

From Table 1, Table 2, Table 3, Table 4 and Table 5 it is clear that percentage 

errors are much smaller than 1% and thus (16) show a good coincidence with the 

numerical solution.  

4. Conclusion:  

A new perturbation solution of a second order over-damped nonlinear system 

with slowly varying coefficients is found. The solution is simpler than classical 

KBM method. The solution gives better result when one of the eigen-value of the 

unperturbed is multiple (Ten times; i.e., Decuple) of the other eigen-values. The 

method can be preceded to higher order nonlinear systems. 
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