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     Abstract:  
The Soret effect of temperature gradient on separation in generalized 

magnetohydrodynamic (MHD) Couette flow of a binary mixture of incompressible 
conducting viscous fluids between two parallel plates has been investigated analytically in 
the case when one plane is subjected to zero heat flux while the other has prescribed 
temperature. The expressions for velocity, temperature and the concentration are obtained 
analytically and the behaviour of concentration is shown graphically. It is observed that 
the temperature gradient separates the binary mixture components and the lighter 
component gets collected near the moving wall. 
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c¤'¢V −fÔ−Vl j−dÉ ApwejÉ f¢lh¡q£ p¡¾cÊ fËh¡q£ fc¡b−Ñl ¢àfc ¢jnË−el p¡j¡eÉ£L«a 

−Q±ðL£u SmN¢a¢hcÉ¡u (MHD) L¥¢– fËh¡−q (Couette flow) ¢hi¡S−el Efl Eo·a¡ e¢al 

p−lV (Soret) fËi¡h−L ¢h−nÔoZ¡aÆ i¡−h Ae¤på¡e Ll¡ q−u−R Hl©f −r−œ kMe HL¢V 

pja−m−L n§eÉ a¡f A¢ih¡q (zero heat flux) Ad£e Hhw Afl¢V−L ¢e−cÑ¢na Eo·a¡u 

l¡M¡ q−u−R z N¢a−hN, Eo·a¡ Hhw N¡ta¡l SeÉ A¢ihÉ¢š²…¢m ¢h−nÔoZ¡aÆ i¡−h ¢eZÑu Ll¡ 

q−u−R Hhw N¡ta¡l BQlZ−L −mM¢Q−œl p¡q¡−kÉ −cM¡−e¡ q−u−R z HV¡ mrÉ Ll¡ −N−R −k 

Eo·a¡l e¢a ¢àfc ¢jnË−el Ef¡c¡e…¢m−L ¢hi¡¢Sa L−l−R Hhw q¡ó¡ Ef¡c¡e¢V N¢an£m 

fË¡Q£−ll L¡−R S−s¡ q−u−R z 
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Notations: 

         (x,y,z)                         : Cartesian coordinates, 

            d                              : Distance  between the two plates, 

           c1                              : Ratio of mass of  rarer and lighter component to the 

total  

                                              mass of the mixture in given volume, 

          c2  (=1-c1  )                         : Concentration of heavier and more abundant 

component,  

           c0                               : Saturation concentration near the surface of the body  

                                               that dissolves in the fluid by diffusion, 

           V                               : Mass average velocity of the mixture, 

            ρ                               : Density of the mixture , 

           V1, ρ1                        : Velocity and density of the rarer abundant 

components  

                                               respectively, 

            V2, ρ2                       : Velocity and density of more abundant components  

                                               respectively, 

            m 1 , m2                      : Masses of the rarer and more abundant components 

                                                   respectively,       
           p                                 : Pressure of the mixture , 

           U                                : Uniform velocity parallel to x-axis for the plate at 

y=d, 

          T 1                               : Temperature for the plate at y=d, 

             μ                                   : Coefficient of viscosity of the mixture,                             

             B0                                 : Uniform transverse magnetic field , 

             J                                   : Current density vector , 

              B                                  : Magnetic field vector, 

              H                                  : Magnetic intensity vector, 
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              E                                  : Electric field vector, 

              σ                                  : Electric conductivity, 

               μe                                : Magnetic permeability, 

              cp                                 : Specific heat at constant pressure, 

               b                                 : Electrical characteristic of the medium,     

              T                                  : Temperature, 

               κ                                 : Thermal conductivity of the fluid mixture, 

                φ                                : Heat due to viscous dissipation, 

                j2/ σ                            : Heat due to Joulean dissipation, 

                D                                : Diffusion or mass transfer coefficient, 

                kpD                             :  Baro-diffusion coefficient, 

                kTD                             : Thermal-diffusion coefficient, 

                P∞                                : Working pressure of the medium, 

               ST                                 : Soret coefficient, 

               i                                    : Diffusion flux density, 

               n                                   : Unit normal vector at the solid surface directed 

outwards, 

              M2 (=σ B0
2d2/ μ)            : Hartmann number, 

              N (= - (∂p/∂x)d2/(μU))   : Reynolds number, 

              Ec (= U2/(cpT1))              : Eckert number, 

              Pr (= μcp/ κ)                     : Prandtl number, 

              td (=STT1)                        : Thermal diffusion number. 

1. Introduction 

       In recent years a lot of works has been done on the flow of viscous, electrically 

conducting fluids in channels under a uniform magnetic field. The effect of a 

magnetic field on the natural convection in inclined layers was investigated by 

Alchaar et al [1] and Bian et al [2]. A numerical study of hydromagnetic thermal 

convection in a visco-elastic dusty fluid was carried out by Goel and Agrawal [3]. 

Chauhan and Vyas [4] examined convection effects on the magnetohydrodynamic 

Couette flow [5] past a highly porous bed. Yen and Chang [6] discussed the heat 
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transfer for steady laminar flow of an incompressible electrically conducting 

viscous fluid between two parallel straight insulated walls. 

            Now the study of separation of a binary fluid mixture in which one 

component is present in an extremely small portion got its importance due to 

various applications in engineering, e.g., separation of isotopes in its naturally 

occurring mixture, separation of gases in the air by the pressure and temperature 

gradient present in the atmosphere. Zimmermann et al [7] analyzed the flow of a 

binary mixture of liquids of unequal molecular weights through a horizontal 

channel. In the analysis, it is found that the fluid mixture displays Soret effects. 

The effect of temperature gradient and pressure gradient on the separation of a 

binary mixture of incompressible fluids between two parallel plates has been 

considered by Shah [8] when the motion is steady. In a recent paper Sharma and 

Singh [9] generalized the problem of Shah for conducting fluids. 

             In the present paper, we consider the Soret effect in generalized steady 

Couette flow of a binary mixture of conducting fluids through horizontal infinite 

parallel plates. It is found that the effect of the temperature gradient is to separate 

the components of the binary mixture. The lighter component gets collected near 

the moving wall. 

2.  Mass transfer equations 

             Consider the binary mixture of incompressible, thermally and electrically 

conducting viscous fluids of which one of the components is very small, so that the 

density and viscosity of the mixture is independent of the distribution of the 

components. Here 

                                          V= (ρ1 V1+ ρ2 V2 )/ ρ      and  ρ = ρ1 + ρ2 . 

          The constitutive equations for steady motion are 

               ρ (V. ∇ )V = -∇ p + μ ∇ 2V + J ×B ,                                              (1) 

      and 

                                       ∇ .V=0.                                                                    (2) 

The Maxwell equations are  
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                              ∇ ×H = 4πJ,       (3) 

                                   ∇ ×E = 0,       (4) 

                                   ∇ .H = 0,        (5) 

 and Ohm’s law, on neglecting Hall current , is given by  

                     J = σ (E + V×B),                                                                       (6) 

where 

                       B = μ e H.                       (7) 

The energy equation for steady case leads to  

                      ρ cp V . ∇  T = κ ∇ 2 T + φ  + j2 / σ .                     (8) 

The equation for the species conservation of the first component is given by    

      (Landau and Lifshitz [10] )   

                         ρ  (V . ∇  ) c1 = - ∇  . i.                    (9) 

        For binary mixtures of electrically conducting fluids, the diffusion of 

individual species is considered in four ways viz., the concentration gradient, the 

pressure gradient, the temperature gradient and current densities. The diffusion 

flux density  i  is given by  (Landau and Lifshitz [10] ) 

                   i  = b J - ρD(∇ c + kp∇ p +kT ∇T).               (10) 

    The coefficients  kp and  kT  may be determined from the thermodynamic 

properties   alone. Landau and Lifshitz [11] have given the explicit expression for 

kp as        

                       kp = (m2-m1){(c1/m1)+(c2/m2)}c1c2/P∞ .                 (11) 

The expression for  kT is given by (Hurle and Jakeman [12] )  

                               kT = ST c1 c2.                   (12) 

Substituting the expression for i   from equation (10) in (9) and using the result                                       

                                      ∇ . J = 0,                                                                  (13) 

we get  

               (V. ∇ )c1=D{∇ 2c1+∇ .(kp∇ p)+ ∇ .(kT∇T)}.                               (14) 
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3. Boundary conditions 

          The boundary conditions for c1 are different in different cases, but those for 

flow field, temperature field and electromagnetic field are the same as in the usual 

magnetohydrodynamic problems. According to Srivastava [13], the total mass flux 

and the individual species flux normal to the surface vanish at the surface of the 

insoluble body i.e.,               

             ρ c1V.n + i.n  = 0.                                                                      (15) 

Substituting the expression for i  from (10) into (15),  we get  

ρ  c1V.n - ρD (∇ c1.n + kp∇ p.n + kT∇T.n) + b J.n = 0.                         (16) 

     The boundary condition near the surface of the body which dissolves in the 

fluid by diffusion, is given by 

                           c1 = c0.                                                                      (17) 

4. Formulation of the problem 

             Consider the steady flow of a binary mixture of thermally and electrically 

conducting incompressible viscous fluids in presence of a uniform transverse 

magnetic field B0. Also suppose that the fluids are confined between two non-

magnetic parallel plates y=0 and y=d. The plate y=0 subjected to zero heat flux is 

at rest while the plate y=d has the prescribed uniform temperature T1 and it moves 

with uniform velocity U parallel to the x-axis. The concentration c1 of the first 

component of the binary mixture is maintained at constant value c0 at y=0 and the 

plate at y=d is considered to be impervious.   

             Clearly, by equation (2), vy=vz=0 and vx=vx(y), where vx,vy, and vz are 

components of V along the axes. Also p=p(x) from the momentum equations in y 

and z directions. Thus the equation of motion (1) and the energy equation (8) in 

Cartesian coordinates respectively reduce to 
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In deriving the equation (18) it is assumed that the magnetic Reynolds number is 

small so that the induced electric and magnetic fields are taken to be zero.   

  The equation (14) for the species conservation takes the form 
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since                  = 0  and   c1 = c1(y). 

              
The boundary conditions are given by  

0 , 0x
d Tv
d y

= =    at   y = 0                                        (21) 

1,xv U T T= =      at   y = d       (22) 

             The boundary condition for the concentration function c1 at the plate y = d 

can be written from the equation (15) by putting n = y (being normal to the 

surface), and noting that the surface is impermeable, as 

1
1 0T

d c d Tc S
d y d y

+ =    at   y = d                    (23) 

Since the concentration of the binary mixture at the plate y = 0 is constant we 

have, 

       c1 =  c0.                                                             (24) 

    For convenience, we introduce the following non-dimensional quantities: 

u (η) = vx / U,      θ (η) = (T-T1) / T1,      f (η)= c1 / c0,       η= y /d.     (25) 

Substituting these in equations (18), (19) and (20), we get respectively, 
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                         +  td                                                  f   =  0,                        (28) 

while the boundary conditions  (21)-(24) become 

0, 0, 1Du f
D
θ
η

= = =     at  η  =  0           (29) 

1, 0 , 0d
d f du t f
d d

θθ
η η

= = + =    at  η  =  0                    (30) 

5. Solutions 

        The solutions of the equations (26) to (28) subject to the boundary conditions  

(29) and (30) are given by  

              u(η) =  b1{1 - cosh(Mη)} +  b2  sinh(Mη),                                       (31) 

θ (η)=c1 cosh(2Mη)+c2 sinh(2Mη)+c3 cosh(Mη)+c4 sinh(Mη)   

+c5 η2 +c6 η+c7,                                                                                            (32) 

f(η) = exp { td [θ (0) -θ (η)]},                                                                          (33) 

where 

b1 = N/M2,     b2 = {1- b1 + b1 cosh(M)}/ sinh(M),     c1 = -0.25 P (b1
2 + b2

2 ),   

c2 =0.5 P b1b2,      c3=2Pb1
2,      c4 = -2Pb1b2,      c5 = -0.5PM2b1

2,                     

c6 = PMb1b2,   c7 = 0.25P { (b1
2+b2

2) cosh(2M) - 2b1b2 sinh(2M) + 8b1b2 

sinh(M) –8b1
2cosh(M) +2b1

2M2 – 4Mb1b2},  P =  Pr Ec  ,    θ (0) = c1+c3+c7. 

6. Discussions 

             The equation (33) reveals that if we neglect the effect of temperature 

gradient then the species separation ceases to occur. 

             Putting B0 = 0 in equations (26) to (28) and solving them under the 

boundary conditions  (29) and (30) we get  

   f0(η) = exp{td (PrEc/24)[12η2 +(12η2 - 8η3)N + (3η2- 4η3 +2η4)N2]}.      (34) 
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So the equation (33) gives a singular value in absence of magnetic field.                           

        

 
The effects of parameters N, Pr, Ec, td and M on the separation process are 

shown graphically. Figures 1 and 3 show that f(η) increases with the increase 

of the parameters  N and td. But it is observed from figures 2 and 4, f(η)  
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decreases with the increase of parameters Pr.Ec and M. Thus increasing the 

temperature of the moving plate enhances the species separation of the binary 

mixture. Reduction of the intensity of the applied magnetic field can also 

enhance the action of separation of species.  

             Figures 1 to 4 also show that the concentration of the rarer or lighter 

species of the binary mixture is more on the surface of the moving plate. Thus 

the heavier elements are thrown away from the moving plate towards the plate 

at rest and this process decreases with the increase of the intensity of the 

transverse magnetic field. 
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