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Abstract 

The necessary and sufficient conditions for a point ),( 21 μμ  in the 
−μμ 21 plane to be constituted of the first and second moment of a probability 

distribution have been established in the present paper.  The main results are reported 
in Theorem 1 and Theorem 2. 
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¢hj§aÑ p¡l (Bengali version of the Abstract) 

 ),( 21 μμ  ¢h¾c¥l SeÉ  −μμ 21  pja−m pñ¡hÉa¡ h¾V−el fËbj Hhw ¢àa£u ï¡jL N¢Wa 

qJu¡l SeÉ fË−u¡Se£u J k−bø naÑ¡hm£−L HC f−œ fË¢a¢ùa Ll¡ q−u−R z Eff¡cÉ -1 Hhw 

Eff¡cÉ - 2 -H j§m gm¡gm…¢ml ¢hhlZ −fn Ll¡ q−u−R z 

1. INTRODUCTION 
A problem concerning moments of a probability distribution will be 

investigated here.  As the initial findings of this investigation were being written 
down, the authors came across a monograph titled “The problem of moments”, by 
Shohat and Tamarkin [1] containing a description of the classical works of Heine, 
Tchebycheff, Markoff, Stieltjes, Hamburger, Nevanlina, Riesz, Carleman, Hausdorff 
and others, on the problem of moments.  These, authors have investigated the problem 
exhaustively and in great generality, and that perhaps is the reason for the paucity of 
references to their work in the modern literature.  The discovery of this monograph 
allows the present authors no scope for claiming originality for their results, and has 
dampened their motivation for further investigations.  The results obtained by them 
(proved originally be Hausdorff) however are still worth reporting because of the 
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original and elementary nature of the methods used, their geometrical flavour and the 
possibilities of generalization inherent in them. 

2. MATHEMATICAL ANALYSIS 
 A continuous non-negative real valued function φ  defined on [0,1] and 

satisfying ∫ =φ
1

0

1dx)x(  will be called a continuous probability distribution on [0,1].  

The collection of all continuous probability distributions on [0,1] will be denoted by Ρ. 

A real valued function φ  defined on [0,1] by ∑
=

−δ=φ
n

1j
jj )xx(a)x(  and 

satisfying ∫ =φ
1

0

1dx)x(  will be called a discrete probability distribution on [0,1] where 

ja  and jx  are real numbers satisfying ja0 ≤  and 0 1x j ≤≤ , and δ  is the Dirac 

−δ function.  The collection of all discrete probability distributions will be denoted by 
P′ . 

For any PP ′∪∈φ  and any positive integer n, let ∫ φ=φμ
1

0

n
n dx)x(x)( .  )(n φμ  

will be called the nth moment of φ , as in [1]. 

Let }|R),{(D 12
2
1

2
21 μ<μ<μ∈μμ=  as shown in Figure (1) and D  its 

closure. 
For any 'PP ∪∈φ  let 2

21 R))(),(()( ∈φμφμ=φμ .  The main results to be proved here 
were first proved by Hausdorff [1923].  These are: 
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Figure 1 

Theorem 1. D)P( =′μ  i.e. a point 2
21 R),( ∈μμ  is equal to )(φμ  for some discrete 

probability distribution φ  if and only if 12
2
1 μ≤μ≤μ , and  

Theorem 2. D)P( =μ  i.e. a point 2
21 R),( ∈μμ  is equal to )(φμ  for some continuous 

probability distribution φ  if and only if 12
2
1 μ<μ<μ . 

 The rest of this section will be devoted to the proof of these two theorems. 
Let 1φ  and 2φ  be both in P or both in P′  and 0 1x j ≤≤ . Let 

21t t)t1( φ+φ−=φ .  It is clear that tφ  is a probability distribution of the same type as 

1φ  and 2φ .  Also ( ) )(t)()t1( 21t φμ+φμ−=φμ .  This gives 

Lemma 1. Both )P(μ and )'P(μ  are convex subsets of 2R  i.e. they contain the line 
segment joining any two of their points. 
 We prove the following propositions. 
Proposition 1: D)'P( ⊂μ  and D)P( ⊂μ  i.e. the conditions in Theorem 1 and 
Theorem 2 are necessary. 
Proof: Let PP ′∪∈φ  then 

 ∫ φφμ−≤
1

0

2
1 dx)x()](x[0  

    )()( 2
12 φμ−φμ= . 
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 Further if P∈φ  then the integrand is positive somewhere in [0,1] and so the 
inequality is strict. 

On the other hand 

∫ φ−≥
1

0

dx)x()1x(x0  

    )()( 12 φμ−φμ= . 
 Again, if P∈φ  then the inequality is strict.  The last argument is due to 

Banerjee and Shandil [2].  This completes the proof of Proposition 1. 

Proof of Theorem 1. In view of Lemma 1, Proposition 1 and the obvious fact that D 

is the convex hull of (smallest convex set) containing its boundary points, it suffices to 

prove that every boundary point of D is in )'P(μ . 

 Let ),( 21 μμ=μ  be a boundary point of D then either 2
12 μ=μ  or 12 μ=μ . 

 Suppose 2
12 μ=μ .  For any ∈'x  [0,1] let ∫ −δ=η

1

0

dx)'xx()'x( , so that 

1)'x( =η  if )1,0('x ∈  and ( )
2
1'x =η  if 0'x =  and 1.  Since μ  is a boundary point of D 

it is clear that 10 1 ≤μ≤ . 

Let )x()()x( 11
1 μ−δμη=φ − .  Clearly then 'P∈φ  and μ=φμ )( . 

 On the other hand if 12 μ=μ , let )]1x()x()1[(2)x( 11 −δμ+δμ−=φ .  Clearly 
'P∈φ  and μ=φμ )( .  This argument is due to Kapur [3] and completes the Proof of 

Theorem 1. 

Theorem 2 will now be proved by approximating discrete probability 

distributions by continuous ones, and crucial use will be made of the convexity of 

)P(μ . 

Lemma 2: )P(μ  is dense in D i.e. given D∈μ  there is a sequence Pn ∈φ  such that 

)(lim nn
φμ=μ

∞→
. 
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Proof. For every [ ]1,0x ∈′ , let ( ){ }∞=′ 1nn x,xu  be a sequence of functions in P satisfying 

∫∫ =−δη= −

∞→

1

0

1
1

0
nn

)'x(fdx)'xx()x(f)'x(dx)'x,x(u)x(flim   

for every continuous function f on [0,1].  It is well known that such a sequence exists, 

e.g. 

 )'x,x(v.dx)'x,x(v)'x,x(u n

11

0
nn

−

⎭
⎬
⎫

⎩
⎨
⎧

= ∫  

where 

 0)'x,x(vn =  if 
n
1'xx0 −≤≤  

     ⎟
⎠
⎞

⎜
⎝
⎛ +−=

n
1'xxn2 2  if 'xx

n
1'x ≤≤−  

     )'xx(n2n2 2 −−=  if 
n
1'xx'x +≤≤  

     0=  if 1x
n
1'x ≤≤+ . 

By Theorem 1 there is a 'P∈φ   such that μ=φμ )( .  Let ∑
=

−δ=φ
m

1j
jj )xx(a)x( .  Then 

∑∫
=

=η=φ
m

1j
jj

1

0

1)x(adx)x( . 

Let ∑
=

η=φ
m

1j
jnjjn )x,x(u)x(a)x( . Then ∑∫

=

=η=φ
m

1j
jj

1

0
n 1)x(adx)x(  because 

.P)x,x(u jn ∈  It follows that P)x(n ∈φ  for every n. 

Further for 1k =  and 2, 
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 ∑∫
=

∞→∞→
η=φμ

m

1j
jnjj

1

0

k

nnn
dx)x,x(u)x(axlim)(lim  

    
⎭
⎬
⎫

⎩
⎨
⎧

η= ∫∑ ∞→
=

dx)x,x(uxlim)x(a jn

1

0

k

n

m

1j
jj  

    ∑
=

η=
m

1j
j

k
jj )x(xa  

    )(k φμ= . 
    kμ= . 

It follows that μ=φμ
∞→

)(lim nn
 and this completes the proof of Lemma 2. 

Proof of Theorem 2.  In view of Proposition 1 it suffices to prove that )P(D μ∈ . 
 Let D∈μ  be the point P as in Figure (2).  Let D,, 321 ∈ααα  and represented 

by the points 21 A,A  and 3A  respectively be such that the point P lies in the interior 

of the triangle 21AA 3A .  Let 0∈>  be such that the ball of centre P and radius ε  lies 

in the interior of triangle 321 AAA .  By Lemma 2 there are points 21 A,A ′′  and 

)P(A3 μ∈′  such that each of the distances iiAA ′   is less than 
4
∈ .  It is easy to prove 

then that the point P lies in the interior of the triangle 321 AAA ′′′ .  Since )P(Ai μ∈′  and 
)P(μ  is convex by Lemma 1, it follows that )(PP μ∈ .  This completes the proof of  

Theorem 2. 
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Figure 2 

 Some immediate consequences of these theorems are worth noticing.  Let [a, 

b] be any finite interval.  Let P~  and P~ ′  denote respectively the space of continuous 
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and discrete probability distribution on [a, b].  Let j
~μ  be the jth moment function on 

'P~P~ ∪  and let 2
21 R)](~),(~[)(~ ∈φμφμ=φμ  for any P~P~ ′∪∈φ .  Consider the linear 

homeomorphism ]1,0[]b,a[:T →  given by )ay()ab()y(Tx 1 −−== −  so that its 

inverse is given by ( ) ( )xabaxTy −+== −1 . T induces bijective mappings 'P~P →  

and 'P~P →′ , given by φ↔φ
~  where )]ay()ab[()ab()y(~ 11 −−φ−=φ −−   and  

)ab()x( −=φ ]x)ab(a[~
−+φ .  Now 

 ∫ φ=φμ
1

0
1 dx)x(x)(  

          ∫ φ−−= −−
b

a

11 dy)y()ay()ab(  

          ]a)~(~[)ab( 1
1 −φμ−= −  

and 

 ∫ φ=φμ
1

0

2
2 dx)x(x)(  

          ]a)~(~a2)~(~[)ab( 2
12

2 +φμ−φμ−= − . 

Therefore 

 )~(~)~(~)()( 2
2
12

2
1 φμ≤φμ⇔φμ≤φμ  

and 

 )~(~)~(~)()( 2
2
12

2
1 φμ<φμ⇔φμ<φμ . 

Similarly 
}a)~(~{)ab(a)~(~a2)~(~)()( 1

2
1212 −φμ−≤+φμ−φμ⇔φμ≤φμ  

   ab)~(~)ab()~(~
12 −φμ+≤φμ⇔  

and 
ab)~(~)ab()~(~)()( 1212 −φμ+<φμ⇔φμ<φμ . 
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Stated geometrically this means that for any 'PP ∪∈φ , 

D~)~(~D)( 1 ∈φμ⇔∈φμ  

and 

DD ~)~(~)( 1 ∈⇔∈ φμφμ  

where }ab~)ab(~~|R)~,~(~{D~ 1
2
21

2
21 −μ−<μ<μ∈μμ=μ=  is the parabolic sector 

determined by the two points )a,a( 2  and )b,b( 2  on the parabola 2
12

~~ μ=μ  (Figure 

(3)), and D~  its closure. 
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Figure 3 

 As immediate corollaries to the above arguments one gets 

Corollary 1. The necessary and sufficient condition for a point 2
21 R)~,~( ∈μμ  to be 

)(~ φμ  for some ~ discrete probability distribution φ
~  on [a, b] is 

ab~)ab(~~
12

2
1 −μ+≤μ≤μ  and 

Corollary 2. The necessary and sufficient condition for a point 2
21 R)~,~( ∈μμ  to be 

)(~ φμ  for some ~ continuous probability distribution φ
~  on [a, b] is 

ab~)ab(~~
12

2
1 −μ+<μ<μ  and 
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Corollary 3. If bdca ≤<≤  and φ~  a discrete (respectively continuous) probability 

distribution on [a, b] such that 0)x(~
=φ  for every ]d,c[x ∉  then )~(~ φμ  is in the closed 

(respectively open) parabolic sector of the parabola determined by the point )c,c( 2  

and )d,d( 2  

�d,d2�
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�c,c2�
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Figure 4 

Proof. This follows immediately from Corollary 1 and Corollary 2 because φ~  when 

restricted to [c, d] defines a probability distribution in [c, d], of the same type as φ~  

with the same moments. 

Corollary 4.  If bdca ≤<≤  and φ~  a probability distribution on [a, b] such that 

0)x(~
=φ  for every ]d,c[x ∈  then )~(~ φμ  is not in the open parabolic sector of the 

parabola 2
12

~~ μ=μ  determined by the point )c,c( 2  and )d,d( 2 . 

Proof: If either a=c or b=d and then the result follows from Corollary 3. Let 

bdca <<< .  Let )x(~)x(1 φ=φ  if ]c,a[x ∈  and 0)x(1 =φ  otherwise and let 
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)x(~)x(2 φ=φ  if ]b,d[x∈  and 0)x(2 =φ  otherwise.  By Corollary 3 we may assume 

φ1Τ0  φ2 Τ0 and.  Clearly ( ) ( ) ( )xxx~
21 φ+φ=φ . 

Let ( )∫ φ=α
b

a
jj dxx  for j = 1 and 2.  Clearly 0, 21 >αα  and 121 =α+α .  Let 

( ) )x(x j
1

jj φα=ψ − .  It follows then that 1ψ  and 2ψ  are probability distributions on [a, 

b] and so is 2212 )1( ψα+ψα−=ψ .  By Lemma 1 )(~ ψμ  lies on the line segment 

joining )(~
1ψμ  and )(~

2ψμ .  By Corollary 3 )(~
jψμ  for j = 1, 2 lie in the closed 

unbounded sector of the parabola determined by the points )c,c( 2  and )d,d( 2 .  The 

corollary now follows from the obvious fact that this sector is convex. 
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