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Abstract 

The effects of induced magnetic field on a free convective heat transfer transient 

flow of fluid past an infinite vertical plate through a porous medium have been 

investigated numerically. A mathematical model of the problem is developed from the 

basis of studying magneto-fluid dynamics(MFD) and the equations are solved by the 

finite difference method. The numerical values of non-dimensional velocity, induced 

magnetic field and temperature are computed for the different values of associated 

parameters in different times. In order to discuss the results, the obtained numerical 

values of flow variables are plotted in graphs. Finally the important findings of this 

work are concluded here. 
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¢hj§aÑ p¡l (Bengali version of the Abstract) 

HL¢V Ap£j Emð −fÔ−Vl p¢Râ j¡dÉj ¢c−u A¢aœ²¡¿¹ gÓ¥C−Xl HL¢V j¤š² f¢lQ¡me£ 

a¡f p’¡me fËh¡−ql Efl B¢hø −Q±ðL −r−œl fËi¡h−L p¡wMÉ l£¢a−a Ae¤på¡e Ll¡  

q−u−R z −Q±ðL£u fËh¡qN¢a¢hcÉ¡l Ae¤på¡−el ¢i¢š−a HC pjpÉ¡l HL¢V N¡¢Z¢aL j−Xm °al£ 

Ll¡ q−u−R Hhw pj£LlZ…¢m−L pp£j - A¿¹l (finite difference) fÜ¢a−a pj¡d¡e Ll¡ 

q−u−R z A-j¡¢œL N¢a−hN,B¢hø −Q±ðL −rœ Hhw Eo·a¡l p¡wMÉj¡e NZe¡ Ll¡ q−u−R 



J. Mech. Cont. & Math. Sci., Vol.- 8 , No.-2 , January (2014) Pages 1217-1227 
 

1218 
 

¢h¢iæ pj−u pq−k¡N£ fË¡Q−ml ¢h¢iæ j¡−el SeÉ z gm¡gm pÇfÑ−L B−m¡Qe¡ Ll¡l SeÉ 

fËh¡q - Q−ml ¢e¢ZÑa  p¡wMÉj¡e…¢m−L −mM¢Q−œ AwLe Ll¡ q−u−R z −noa: HC L¡−Sl 

…l¦aÆf§ZÑ gm¡gm…¢m−L −cM¡−e¡ q−u−Rz 
 

1. Introduction 

The convective heat transfer flows play a decisive role in many engineering 

applications as distillation, condensation, evaporation, rectification and absorption of a 

fluid as well as in fluids condensing or boiling at a solid surface. The heat transfer 

processes are of great interest in power engineering, metallurgy, astrophysics and 

geophysics. A natural convective heat transfer flow of fluid was first studied by 

Finston(1956). Sparrow and Gregg(1958) computed a similar solution for laminar free 

convection from a non-isothermal vertical plate. A finite difference solution of 

transient free convective flow over an isothermal plate has been obtained by 

Soundalgekar and Ganesan(1981). A numerical study on the natural convective 

cooling problem of a vertical plate is completed by Camargo et al.(1996). 
The natural convective fluid flows through a porous medium are of great interest 

in many industrial applications as to insulate the heated body to maintain its 

temperature. A steady free convective flow through a porous medium bounded by an 

infinite surface by use of the model of Yamamoto and Iwamura(1976) for the flow 

near the surface has been observed by Raptis et al.(1981). A free convective flow with 

heat transfer through a porous medium has been studied by Ahmed and Sarma(1997). 

Recently, the analytic solutions of unsteady free convective fluid flow in porous 

medium have been obtained by Magyari et al.(2004). 

All the above problems are studied in the absence of induced magnetic field. 

However, the flow under the action of a strong magnetic field that induced another 

magnetic field has a great interest in geophysics and astrophysics. Hence, our main 

goal is to investigate a free convective heat transfer unsteady flow through a porous 

medium in the presence of an induced magnetic field. 
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2. Mathematical Model 

A natural convective heat transfer unsteady flow of an electrically conducting, 

incompressible, viscous fluid past an electrically non-conducting infinite vertical 

plate surrended by a porous medium is considered here. The flow is assumed to be in 

the x-direction, which is chosen along the plate in upward direction and y-axis is 

normal to it. A strong magnetic field is applied normal to the flow region that induced 

an induced magnetic field. Initially, it is considered that the plate as well as the fluid 

particles are at rest at the same temperature ( )T T∞=  at all points, where T∞  be the 

uniform temperature of fluid. 
Within the framework of the above stated assumptions, we have the following 

system of coupled non-linear partial differential equations in accordance with the 

Boussinesq’s approximation, 

Continuity Equation         0v
y
∂

=
∂
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under also the boundary layer phenomena, the appropriate initial and boundary 

conditions of the problem are as given below, 

0, 0, 0, ,xt u H T T∞≤ = = →  everywhere            

0, 0, , , as 0x w wt u H H T T y> = = = →                       

0, 0, , asxu H T T y∞= → → →∞           
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where x & y are cartesian coordinates in two directions, u & v are velocity 

components of flow, g is the local acceleration due to gravity, β  is the thermal 

expansion coefficient, υ  is the kinematic viscosity, eμ  is the magnetic permeability, 

ρ  is the density of the fluid, K is the permeability of porous medium, 0H  is the 

constant induced magnetic field, xH  be the induced magnetic field component, σ  is 

the electrical conductivity, κ  is the thermal conductivity, pc  is the specific heat at 

constant pressure and wH  is the induced magnetic field at the wall. 

From the continuity equation, we get v = constant 0V= − (Constant Suction Velocity). 

To find the solution of the problem, it is required to transfer the system of equations 

into a non-dimensional system, so we take the following dimensionless quantities, 

0 ,yVY
υ

=      
0

,uU
V

=       
2

0 ,tVτ
υ

=         
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,e x
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=         and   .
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−
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−
  

Using the above quantities, we have the following model interms of dimensionless 

variables, 

Non-dimensional Momentum Equation 
2

2
x

r
HU U UG T M U

Y Y Y
γ

τ
∂∂ ∂ ∂

− = + + −
∂ ∂ ∂ ∂

  

Non-dimensional Magnetic Induction Equation 
2

2
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m
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Y Y P Yτ

∂ ∂ ∂∂
− = +
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Non-dimensional Energy Equation 
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where τ  represents the dimensionless time, Y  is the dimensionless cartesian co-

ordinate, U  is the dimensionless velocity component, T  be the dimensionless 

temperature and the non-dimensional parameters are as given below,  

( )
3

0

w
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g T T
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= = Grashof Number,    0

0
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μ
ρ
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m eP υσ μ= = Magnetic Diffusivity Number,               p
r

c
P

υ ρ
κ

= = Prandtl Number,  

( )
2

0
c

p w

VE
c T T∞

=
−

 = Eckert Number,                     
2

2
0K V

υγ =  = Permeability Number  

also the non-dimensional boundary with initial conditions are as follows, 

0, 0, 0, 0xU H Tτ ≤ = = =  everywhere                            

0, 0, 1, 1, as 0xU H T Yτ > = = = →                       

0, 0, 0, as .xU H T Y= → = →∞                                  

3. Numerical Solutions 

In order to solve the mathematical model of nonlinear coupled dimensionless 

partial differential equations with associated initial and boundary conditions, finite 

difference method has been used in this section. To obtain the difference equations, 

the region of the flow within the boundary layer is divided into a grid or mesh of lines 

parallel to X-axis where Y-axis is normal to the plate. Here it is considered that 

( )max 20Y =  as corresponding to Y →∞  i.e. Y  varies 0 to 20. It is also assumed that 

0.125(0 20)Y yΔ = ≤ ≤  is a constant mesh size along Y direction with a smaller time 

step ( )0.01 .τΔ =  

Let U ′ , xH ′ , T ′  denote the values of  U , xH , T at the end of a time-step 

respectively. Using the finite difference approximations we obtain the following 

appropriate set of finite difference equations, 
Finite Difference Momentum Equation 

( )
1 11 1

2

2 x xj j j j jj j j j
r j j

H HU U U U UU U
G T M U

Y YYτ
γ+ −+ +

−′ − − +−
′− = + + −

Δ Δ ΔΔ
  

Finite Difference Magnetic Induction Equation         
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Finite Difference Energy Equation           
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and the initial and boundary conditions with the finite difference scheme are, 
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,    where  .L →∞   

Here the subscripts j  designate the grid points in Y  direction and the superscript n  

represents a value of time, nτ τ= Δ  where 0, 1, 2,....n = . From the initial condition, 

we have the values of U , xH , T   are zero. During any one time-step, the coefficient 

jU  appearing in equations are treated as constant. Hence at the end of any time-step 

τΔ , the new temperature T ′ , the new velocity U ′ , the new induced magnetic field 

xH ′  at all interior nodal points may be obtained by successive applications of 

energy, momentum and induction equations respectively. This process is repeated in 

time and it is provided the time-step is sufficiently small, hence U , xH , T  should 

eventually converge to values which approximate the steady-state solution of the 

problem. 
 

4. Results and Discussion 

In order to discuss the result of the problem, the steady state solutions are 

obtained by using the finite difference method. To discuss the physical situation of the 

model, we have computed the numerical values of the non-dimensional velocity, 

induced magnetic field and temperature within the boundary layer for different 
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values of magnetic parameter ( )M , magnetic diffusivity number ( )mP , Grashof 

number ( )rG , Prandtl number ( )rP , permeability number ( )γ and Eckert number ( )cE . 

It is observed that the results of the computations for flow variables show little 

changes after the time 20τ = . Hence the solution at 50τ =  are essentially steady 

state solutions. In this section, the fluid velocity, induced magnetic field and 

temperature versus the co-ordinate variable Y are illustrated in Figs. 1-12 for the 

time 1, 2, 50.τ =   

The transient velocity profiles have been drawn in Figs. 1-4. The Fig. 1 

represents, the fluid velocity gradually increases with the increasing value of Grashof 

number or time. In Fig. 2, we see that the velocity rapidly decreases with the 

increases of permeability number while it rises with the increase of time. It is 

observed from Fig. 3 that the velocity increases in case of strong magnetic 

diffusivity number. A strong decreasing effect of Prandtl number on velocity 

profiles is observed from Fig. 4. 

   
         Fig. 1. Velocity Profiles for rG                        Fig. 2. Velocity Profiles for γ  
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         Fig. 3. Velocity Profiles for mP                        Fig. 4. Velocity Profiles for rP  

 

The transient profiles of induced magnetic field are displayed in Figs. 5-8 for 

an externally cooled plate ( )0rG > . The effect of Grashof number on the induced 

magnetic field is observed from the Fig. 5. It is shown that the induced magnetic 

field strongly decreases for the increase of rG  or the time. Decreasing effect of 

magnetic parameter on the induced magnetic field is observed from Fig. 6. The Fig. 

7 shows that xH  decreases near the plate but increases far away from the plate with 

the rise of mP . It is observed from the Fig. 8 that the induced magnetic field is 

increasingly affected by the Prandtl number. 

    
    Fig. 5. Induced Magnetic Field for rG          Fig. 6. Induced Magnetic Field for M  
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    Fig. 7. Induced Magnetic Field for rG          Fig. 8. Induced Magnetic Field for M  

 

The transient temperature distributions are shown in Figs. 9-12. A minor 

increasing effect of Grashof number on the temperature of fluid is observed from 

Fig. 9. In Fig. 10, we see a negligible effect of M  on the profiles of temperature. It 

is observed from Fig. 11 that the temperature increases in case of strong Eckert 

number or time. The Fig. 12 shows that the fluid temperature gradually decreases with 

the rise of Prandtl number rP  while it increases with the increasing values of time. 

    
      Fig. 9. Temperature Profilies for rG             Fig. 10. Temperature Profilies for M  



J. Mech. Cont. & Math. Sci., Vol.- 8 , No.-2 , January (2014) Pages 1217-1227 
 

1226 
 

    
     Fig. 11. Temperature Profilies for cE             Fig. 12. Temperature Profilies for rP  
 

5. Conclusions 

A numerical investigation on a natural convective heat transfer unsteady flow 

through a porous medium is completed in the presence of an induced magnetic 

field. From the graphical representation of the results, some important findings of 

the present problem are listed below,    

1. The transient velocity increases with the rise of rG  or mP  while it decreases 

in case of strong γ  or rP . 

2. The transitory induced magnetic field decreases with the increase of rG , M or 

mP  while it rises with the increase of rP . 

3. The transient fluid temperature increases in case of strong rG , M or cE  

while it decreases for the increasing value of Prandtl number. 
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