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Abstract: 

To obtain this present study we studied basic equations. We studied the equation 
of continuity and derived the Navier-Stockes (N-S) equations of motion for viscous 
compressible and incompressible fluid flow. Boundary layer and thermal boundary layer 
equations are also derived. Then we studied similar solution of boundary layer and 
thermal boundary layer equations. We also performed unsteady solutions of thermal 
boundary layer equations. We used some non-dimensional variable to non-
dimensionalised thermal boundary layer equations. The non-dimensional boundary layer 
equations are non-linear partial differential equations. To find out the non-similar 
solutions of unsteady thermal boundary layer equation we used finite difference method. 
The effect on the velocity and temperature profiles for various parameters entering into 
the problems are separately discussed and shown graphically. 

Keywords  and  phrases  :    the Navier-Stockes equations, viscous compressible and 
incompressible fluid, thermal boundary layer, finite difference method. 

¢hj§aÑ p¡l (Bengali version of the Abstract) 

HC f−œ Bjl¡ pwejÉ J ApwejÉ gÓ¥CX fËh¡−ql SeÉ p¿¹a¡ pj£LlZ Hhw 
¢e¢ZÑa −e¢iu¡l - −ØV¡LÚpÚ (Navier-Stockes)- Hl N¢al pj£LlZ…¢m−L Ae¤på¡e L−l¢R z 
p£j¡-Ù¹l Hhw a¡f-p£j¡ Ù¹−ll pj£LlZ…¢m−LJ ¢eZÑu L−l¢R z Hlfl Ae¤l©f p£j¡-Ù¹l 
Hhw a¡f-p£j¡ Ù¹−ll pj£LlZ…¢m−L ¢hQ¡l ¢h−nÔoZ L−l¢R z Bjl¡ a¡f-p£j¡ Ù¹−ll 
AÙÛ¡u£ pj¡d¡e ¢eZÑu L−l¢R z A-j¡¢œL  a¡f-p£j¡ Ù¹−ll pj£Ll−Z A-j¡¢œL Qm−L 
hÉhq¡l L−l¢R z AÙÛ¡u£ a¡f-p£j¡ Ù¹−ll pj£Ll−Zl Apcªn pj¡d¡e ¢eZÑ−ul −r−œ pp£j -
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A¿¹l (finite difference) fÜ¢a−L hÉhq¡l L−l¢R z HC pjpÉ¡l −r−œ ¢h¢iæ fË¡Q−ml 
Ef¢ÙÛ¢al SeÉ N¢a−hN Hhw a¡−fl a¡fj¡œ¡ l©−fl Efl fËi¡h−L Bm¡c¡ i¡−h 
B−m¡Qe¡ L−l¢R Hhw −mM¢Q−œl p¡q¡−kÉ −c¢M−u¢R z   

1. Introduction  

An important application of finite differences is in numerical analysis, 
especially in numerical differential equations, which aim at the numerical solution 
of ordinary, partial differential and thermal Boundary Layer equations respectively. 
The idea is to replace the derivatives appearing in the differential equation by finite 
differences that approximate them. The resulting methods are called finite 
difference methods. Common applications of the finite difference method are in 
computational science and engineering disciplines, such as thermal engineering, 
fluid mechanics, etc. 

The unsteady solution of thermal boundary layer equation is one of the 
most interesting choices to the researcher by using finite difference method. The 
analysis so produced infact arose out natural tendency to investigate a subject that 
may be said to relate to some academic types of problems of solution of the 
equations of fluid mechanics. Falkner and Skan (1931) have made a study on some 
approximate solutions of the boundary equations. Callahan and Marner (1976) 
studied a transient free convection flow with mass transfer past a semi-infinite 
plate.   Recently G. Revathi  et al. (2013)  performed the Non-similar solution for 
unsteady water boundary layer flows over a sphere with non-uniform mass 
transfer. T. Javed, M. Sajid, Z. Abbas, N. Ali, (2011) observer the non-similar 
solution for rotating flow over an exponentially stretching surface. 

Our aim is to make some numerical calculation on unsteady thermal 
boundary layer equation. The non-dimensional stream function is employed as the 
independent variable across the layer. 

2. Mathematical Model of the Flow 

Introducing Cartesian coordinate system, the −x axis is chosen along the 
plate in the direction of the flow and the −y axis is normal to it. Initially we 
consider that the plate as well as the fluid is at the same temperature. Also it is 
assumed that the fluid and the plate is at rest after that the plate is to be moving 
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with a constant velocity. 0U  in  its own  plane and  instantaneously at time t > 0 , 

the temperature of the plate raised to wT  ( )∞> T  which is  there  after  maintained  

constant, where wT  is  temperature  at  the  wall  and ∞T  is the  temperature  of  the  
species far  away from the  plate. The physical model of the study is furnished in 
the following figure.  

 

 

 

       

 

                  

 

 

 

Fig. 1. The physical model and coordinate system 

The equations relevant to the transient two dimensional problems are 
governed by the following system of coupled non-linear partial differential 
equations. 
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With the corresponding initial and boundary conditions are 

,,0,0,0 ∞→==≥ TTvut    Everywhere                                           (4) 
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Where  yx,  is Cartesian coordinate system; vu,  are yx,  component of 
flow velocity 

respectively  is the  local acceleration due  to  gravity ; υ  is the  kinematic 
viscosity; ρ  is  the density  of  the  fluid ; κ  is  the  thermal conductivity ; pC  is  

the  specific heat  at  the constant  pressure. 

3. Mathematical Formulation 

Since the solutions of the governing equations (1)-(3) under the initial (4) 
and boundary (5) conditions will be based on a finite difference method it is 
required to make the said equations dimensionless. For this purpose we now 
introduce the following dimensionless variables; 
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Now  we  substitute  the values of  the above derivatives into the equations 
(1)-(3) and  after  simplification  we  obtain the following  nonlinear coupled  
partial differential equations  in terms of  dimensionless  variables 
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Also the associated initial and boundary conditions become 
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4. Numerical Solutions 

In  this  section, we  attempt   to  solve  the   governing  second  order   
nonlinear coupled  dimensionless  partial  differential  equations  with  the  
associated  initial  and  boundary conditions. For  solving a  transient free  
convection flow with  mass  transfer  past a semi  infinite  plate, Callahan  and  
Marner (1976) used  the  difference  method  
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From  the concept  of  the  above discussion, for  simplicity  the  explicit 
finite  difference  method  has been used to solve  equations (5) - (7) subject to the 
conditions  given  by  (8) and (9). To  obtain  the  difference   equations  the  region  
of   the  flow  is  divided into a grid or mesh of  lines parallel to X and Y axes 
where X -axes is taken along the   plate  and  Y - axes  is   normal  to  the  plate. 
Here   we   consider  that  the  plate  of  height )100(max =X  i.e. X  varies from 0 

to  100 and regard )25(max =Y  as corresponding to ∞→Y  i.e. Y  varies 0 to 25. 

There  are 125=m  and  125=n  grid  spacing  in  the X  and Y  directions  
respectively as  shown  in the  Fig.2. 

                                                             

 

 

 

 

 

 

 

 

Fig. 2: The finite difference space grid 

It is assumed that YX ΔΔ , are constant mesh sizes along X  and 
Y directions respectively and taken as follows, 
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With the smaller time step, 005.0=Δτ  

Now TVU ′′′ ,,  are denoted the values of  TVU ,,  at the end of a time step  
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respectively. Using the explicit finite difference approximation we have,    
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From the system partial differential equations with substituting the above 
relations into the corresponding differential equation we obtain an appropriate set 
of finite difference equations, 
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  And the initial and boundary conditions with the finite difference scheme are 
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             [where ∞→L ] 

Here the subscripts i   and j  designate the grid points with  x  and  y  
coordinates respectively and    the   superscript  n   represents a value of time, 

ττ Δ= n  where ........2,1,0=n . From the initial condition (9), the values of TU ,  
are known at .0=τ  During any one time step, the coefficients  jiU ,  and jiV ,  
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appearing in equations (11)-(12) are created as constants. Then at the end of  any 
time-step τΔ  the temperature T ′ , the new velocityU ′ , the new induced velocity 
field V ′ at all interior nodal points may be  obtained  by  successive  applications  
of   equations  (13), (14), (15)  respectively.  This process is repeated in time and 
provided the time-step is sufficiently small, TVU ,,  should eventually converge to 
values which    approximate the steady-state solution of equations (13)-(15). These 
converged solutions are shown graphically in figures. 

5.  Results and Discussion 

The main goal of the computation is to obtain the steady state solutions for the non-
dimensional velocity U  and temperature T  for different values of Prandtl number 

( )Pr and Grashof number ( )Gr . For this purpose computations have been carried out up 

to dimensionless time τ  = 10 to  80. The results of the computations, however, show 
graphical changes in the below mentioned quantities to time τ =40 have been reached and 
after this at (50 80)τ = −  graphical change negligible. Thus the solution for 
dimensionless time τ =80 is essentially steady state solutions. Along with the steady state 

solutions the solutions for the transient values of U  versus Y  ,T  versus Y  are shown in 
below for different values of parameters. Three values of prandtl number are considered as 
0.71, 1.0 and 7.0. Here,  Pr = 0.71 represent air at 020 , Pr =1.0 correspond to electrolyte 
solutions(such as salt water)  and Pr =7.0 represents water. In this present study, we will 
discuss the graphical solution for different values of parameters at dimensional time τ  = 
10, 40, 50 and 80. From the graphical representation we observed interesting solutions. 
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(a)                 (b) 

Fig.3 Velocity Profile for different values of Prandtl number ( Pr ) and Grashof 
number 0.2=Gr  at time (a) 10=τ , (b) 40=τ , (c) 50=τ and (d) 80=τ . 

From Fig. 3(a) we observe that the velocity profile decreases with the increase of Pr at 
time 10τ =  . We observe that velocity profile decreases dramatically at 0.7Pr =  and 
with the increasing of time the velocity profile remain unchanged which is shown by Fig. 
3(b), Fig.3(c) and Fig. 3(d). 
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                    (c)                                                          (d) 

Fig.4 Temperature Profile for different values of Prandtl number ( Pr ) and Grashof 
number 0.2=Gr  at time (a) 10=τ , (b) 40=τ , (c) 50=τ and (d) 80=τ . 

From Fig. 4(a) we observe that the temperature profile decreases with the increase of Pr at 
time 10τ =  . We observe that temperature profile decreases dramatically when 0.7Pr =  
and with the increasing of time the temperature profile remain unchanged which is shown 
by Fig. 4(b), Fig.4(c) and Fig. 4(d). 
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  (c) (d) 

Fig. 5 Velocity Profile for different values of Grashof number ( Gr ) and Prandtl 
number 71.0Pr =   at time (a) 10=τ , (b) 40=τ , (c) 50=τ and (d) 80=τ . 

From Fig. 5(a) we observe that the velocity profile decreases with the increase of Gr at 
time 10τ =  . We observe that velocity profile decreases dramatically when  

0.6,0.4,0.2=Gr  . From the graphical representation we also found that with the 
increasing of time the velocity profile remain unchanged which is shown by Fig. 5(b), 
Fig.5(c) and Fig. 5(d). 
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                             (c)                                                                 (d) 

Fig.6 Temperature Profile for different values of Grashof number 0.2=Gr and 

Prandtl number 71.0Pr = at time (a) 10=τ , (b) 40=τ , (c) 50=τ and (d) 80=τ . 

From Fig. 6(a) we observe that the temperature profile decreases slightly with the increase 

of Gr at time 10τ = . At time 40=τ , we observe that temperature profile decreases 

sharply as shown in Fig. 6(b) and with the increasing of time the temperature profile 

remain unchanged which is shown by Fig.6(c) and Fig. 6(d). 

6. Conclusion 

In this present study, we studied equation of continuity and derived the Navier-

Stokes (N-S) equations of motion for viscous compressible and incompressible 

fluid flow. Then we studied the boundary layer equation in two-dimensional flow, 

energy equation and thermal boundary layer equation.  
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Finally, the thermal boundary layer equations have been derived from 

Navier-Stokes equation by boundary layer technique. Boundary layer equations 

have been non-dimensionalised by using non-dimensional variable. The non-

dimensional boundary layer equations are non-linear partial differential equations. 

These equations are solved by using finite difference method. Finite difference 

solution of heat and mass transfer flow is studied to examine the velocity and 

temperature distribution characteristics. The effect on the velocity and temperature 

for the various parameters entering into the problems are separately discussed with 

the help of graphs. Then the results in the form of velocity and temperature 

distribution are shown graphically.  

To obtain the steady-state solutions for the non-dimensional velocityU , 

temperature T  and we use different values of Prandtl number ( )Pr , Grashof 

number ( )Gr . For this purpose, computations have been carried out up to 

dimensionless time τ =10 to 80. Along with the steady state solutions, the 

solutions for the transient values of U versus Y  and T  versus Y  are obtained. The 

results of the computations, however, show graphical changes in the mentioned 

quantities to time τ = 40 have been reached and after this at (50 80)τ = −  

graphical change are negligible. Thus the solution for dimensionless time τ = 80 

are essentially steady-state solutions. 
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