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Abstract:  

Due to engineering applications and its intricacy, the flow in a rotating curved duct has 
become one of the most challenging research fields of fluid mechanics. A comprehensive 
numerical study is presented for the fully developed two-dimensional thermal flow of viscous 
incompressible fluid through a rotating curved rectangular duct of constant curvature 1.0=δ . 
Numerical calculations are carried out by using a spectral method and covering a wide range 
of the Taylor number 02000 <≤− Tr and the Dean number 1000100 ≤≤ Dn  for the 
constant Grashof number 100=Gr . A temperature difference is applied, that is the outer wall 
of the duct is heated while the inner wall is cooled. The rotation of the duct about the center of 
curvature is imposed, and the effects of rotation (Coriolis force) on the unsteady flow 
characteristics are investigated. Flow characteristics are investigated for the case of negative 
duct rotation. We investigate the unsteady flow characteristics for the Taylor number

02000 <≤− Tr  and it is found that the unsteady flow undergoes in the scenario ‘steady-
state→ periodic→ multi-periodic → steady-state’, if Tr is increased in the negative direction. 
Contours of secondary flow patterns and temperature profiles are also obtained at several 
values of Tr, and it is found that there exist two- and multi-vortex solutions if the duct rotation 
is involved in the negative direction. 

Keywords and phrases : thermal flow, viscous incompressible fluid, duct rotation, Taylor number, 
Grashof number 
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hœ²a¡ ¢h¢nø HL¢V O§ZÑ¡uj¡e hœ² BuaL¡l em£l ¢ial ¢c−u p¡¾cÊ ApwejÉ gÓ¥¢u−Xl f§ZÑ 

hª¢ÜfË¡ç ¢àj¡¢œL a¡f£u fËh¡−ql SeÉ HL¢V hÉ¡fL p¡wMÉ Ae¤på¡e EfÙÛ¡fe Ll¡ q−u−R z 

hZÑ¡m£u fÜ¢a−L hÉhq¡l L−l p¡wMÉ NZe¡ pÇf¡ce Ll¡ q−u−R Hhw dË¥hL NË¡ngÚ pwMÉ¡ 

(Grashof number) 100=Gr Hl SeÉ −Vm¡l e¡ð¡l (Taylor number) 02000 <≤− Tr  Hhw 

X£e e¡ð¡l (Dean number) 1000100 ≤≤ Dn Hl c£OÑÉ f¡õ¡−L A¿¹Ñi¥š² Ll¡ q−u−R z Eo·a¡l 

f¡bÑLÉ−L fË−u¡N Ll¡ q−u−R, AbÑ¡v em£l h¡C−ll fË¡Q£l−L Ešç Ll¡ q−u−R kMe ¢ia−ll 

fË¡Q£l−L W¡ä¡ l¡M¡ q−u−R z em£l O§ZÑe - hœ²a¡ −L−¾cÊ B−l¡f Ll¡ q−u−R z VmVm¡uj¡e 

fËh¡q °h¢n−øÉl Efl BhaÑ−el fËi¡h  (Coriolis force) −L Ae¤på¡e Ll¡ q−u−R z 

02000 <≤− Tr  −Vml e¡ð¡−ll SeÉ VmVm¡uj¡e fËh¡−ql °h¢nøÉ−L Bjl¡ Ae¤på¡e L−l¢R 

Hhw HV¡ −cM¡ −N−R −k VmVm¡uj¡e fËh¡q¢Vl ¢QœLÒfVC HCl©f x “ÙÛ¡u£ AhÙÛ¡ --- fkÑ¡hªš -- 

hý fkÑ¡hªš -- ÙÛ¡u£ AhÙÛ¡ “z k¢c GZ¡aÈL ¢c−L Tr - Hl j¡e h¡s¡−e¡ qu ¢àa£u −nËZ£l fËh¡q 

ej¤e¡l LeÚV¥l (Contour) Hhw Eo·a¡l f¡nÄÑÑ¢Qœ−L Tr - Hl hý¢hd j¡−e ¢eZÑu Ll¡ qu Hhw 

HV¡J −cM¡ −N−R −k c¤C Hhw hý - BhaÑ pj¡d¡e ¢hcÉj¡e b¡−L k¢c em£l BhaÑe GZ¡aÈL 

¢c−Ll p−‰ ¢hS¡¢sa qu z 

 
1. Introduction:  

 
         The study of flow and heat transfer in a curved ducts and channels has attracted 

considerable attention because of their ample applications in fluids engineering. Due to 

engineering applications and their intricacy, the flow in a rotating curved duct has 

become one of the most challenging research fields of fluid mechanics. Since rotating 

machines were introduced into engineering applications, such as rotating systems, gas 

turbines, electric generators, heat exchangers, cooling system and some separation 

processes, scientists have paid considerable attention to study rotating curved duct 

flows. The readers are referred to Nandakumar and Masliyah [1], Ito [2] and Yanase et 

al. [3] for some outstanding reviews on curved duct flows.   
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         The fluid flowing in a rotating curved duct is subjected to two forces: the Coriolis 

force due to rotation and the centrifugal force due to curvature. For isothermal flows of 

a constant property fluid, the Coriolis force tends to produce vortices while centrifugal 

force is purely hydrostatic. When a temperature induced variation of fluid density 

occurs for non-isothermal flows, both Coriolis and centrifugal type buoyancy forces can 

contribute to the generation of vortices. These two effects of rotation either enhance or 

counteract each other in a non-linear manner depending on the direction of wall heat 

flux and the flow domain. Therefore, the effect of system rotation is more subtle and 

complicated and yields new; richer features of flow and heat transfer in general, 

bifurcation and stability in particular, for non-isothermal flows. Selmi et al. [4] 

examined the combined effects of system rotation and curvature on the bifurcation 

structure of two-dimensional flows in a rotating curved duct with square cross section. 

Wang and Cheng [5], employing finite volume method, examined the flow 

characteristics and heat transfer in curved square ducts for positive rotation and found 

reverse secondary flow for the co-rotation cases. Selmi and Nandakumer [6] and 

Yamamoto et al. [7] performed studies on the flow in a rotating curved rectangular duct. 

When a temperature induced variation of fluid density occurs for non-isothermal flows, 

both Coriolis and centrifugal type buoyancy forces can contribute to the generation of 

vorticity (Mondal et. al., [8]). These two effects of rotation either enhance or counteract 

each other in a non-linear manner depending on the direction of wall heat flux and the 

flow domain. Therefore, the effect of system rotation is more subtle and complicated 

and yields new; richer features of flow and heat transfer in general, bifurcation and 

stability in particular, for non-isothermal flows. Very recently, Mondal et al. [9], [10] 

and [11] performed numerical investigation of the non-isothermal flows through a 

rotating curved square rectangular duct and obtained substantial results. However, there 

is no known study on rotating curved rectangular duct flows with buoyancy effect. The 

present paper is, therefore, an attempt to fill up this gap. Studying the effects of rotation 
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on the flow characteristics, caused by the buoyancy forces with pressure dropped, is an 

important objective of the present study.  

 
2. PHYSICAL MODEL 
          Consider a hydro-dynamically and thermally fully developed two-dimensional 

flow of viscous incompressible fluid through a rotating curved duct with rectangular 

cross section, whose height and wide are 2h and 2l respectively. The coordinate system 

with the relevant notation is shown in Fig. 1, where x′ and y′ axes are taken to be in the 

horizontal and vertical directions respectively and z’ is the axial direction. The system  

 

 

 

 

 

 

 

 

rotates at a constant angular velocity Ω  around the y′ axis. It is assumed that the outer 

wall of the duct is heated while the inner wall is cooled. The temperature of the outer 

wall is 0T T+ Δ and that of the inner wall is 0T T− Δ  , where 0TΔ >  . The x, y, and z axes 

are taken to be in the horizontal, vertical, and axial directions respectively. It is assumed 

that the flow is uniform in the axial direction, which is driven by a constant pressure 

gradient G along the center-line of the duct as shown in Fig. 1. The variables are non-

dimensionalized by using the representative length l  and the representative velocity 0U . 

  
 

 

 



 

J.Mech.Cont.& Math. Sci., Vol.-9, No.-1, July (2014) Pages 1278-1291 

1282 
 
 
 

 
 
 

Fig. 1: Coordinate system of the rotating duct and physical configuration of the system. 
3. MATHEMATICAL MODEL 
 

Since the flow field is uniform in the z  direction, the sectional stream function 
ψ is introduced as, 

1 1, .
1 1

u v
x x xy

ψ ψ
δ δ

∂ ∂
= = −

+ + ∂∂
                                                         (1) 

A new coordinate variable y′  is introduced in the y  direction as y ay′= , where a h d=

is the aspect ratio of the duct cross-section. From now on y  denotes y′  for the sake of 
simplicity. Then the basic equations for the axial velocity w, the stream function ψ  and 
the temperatureT are derived from the Navier-Stokes equations and the energy equation 
under the Boussinesq approximation as, 

2

2
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2 21 ( , )
where, ,2 2 2 2 ( , )

f g f g f g

x y x y y xx a y

∂ ∂ ∂ ∂ ∂ ∂ ∂
Δ ≡ + ≡ −

∂ ∂ ∂ ∂ ∂∂ ∂                                                                 
  

 
The non-dimensional parameters Dn , the Dean number,Tr , the Taylor number, Gr, the 

Grashof number and Pr, the prandtl number, which appear in equations (2) to (4) are 

defined as: 

             

3 2Gl l
Dn

Lμυ
= ,

32 2 lTTr
δ

υδ

Ω
=  , 

3
, Pr2

g Tl
Gr

β υ

κυ

Δ
= =                     (5) 

Where 
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μ , ,β κ  and g  are the viscosity, the coefficient of thermal expansion, the co-efficient of 

thermal diffusivity and the gravitational acceleration respectively, υ  is the viscosity of 

the fluid. In the present study, Dn and Tr are varied while Gr, a,δ and Pr  are fixed as  

Gr =100, a = 2.0 , 1.0=δ  and Pr 7.0= (water).  

Boundary conditions 
 
          The boundary conditions of the present study are described as follows. 

The rigid boundary conditions for w and ψ  are used as                                

             ( 1, ) ( , 1) ( 1, ) ( , 1) ( 1, ) ( , 1) 0w y w x y x y x
x y

ψ ψ
ψ ψ

∂ ∂
± = ± = ± = ± = ± = ± =

∂ ∂
                       (6) 

 and the temperature T  is assumed to be constant on the walls as 
                     (1, ) 1, ( 1, ) 1, ( , 1)T y T y T x x= − = − ± =                                                         (7) 
 
4. NUMERICAL PROCEDURE 
 
          In order to solve the Equations (2) to (4) numerically, the spectral method is used.  
By this method the expansion functions )(xnφ  and  )(xnψ  are expressed as  

                         
⎪⎭

⎪
⎬
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−=

−=
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),()21()(
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xnCxxn
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φ                                                      (8) 

where ( )1( ) cos cos ( )C x n xn
−=  is the thn  order Chebyshev polynomial. 

( , , ), ( , , )w x y t x y tψ  and ),,( tyxT  are expanded in terms of the expansion functions 
)(xnφ  and )(xnψ  as 
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where M  and N  are the truncation numbers in the x  and y  directions respectively.  
 
5. GRID SENSITIVITY TEST 
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          The accuracy of the numerical calculations is investigated for the truncation 

numbers M  and N  used in this study. Five types of grid sizes were used to check the 

dependence of grid size (i.e. M and N ).  For good accuracy of the solutions, N  is 

chosen equal to 2M . The grid sizes are taken as 4422,4020,3618,3216,2814 ××××× , and it 

is found that M = 16 and N = 32 give sufficient accuracy of the numerical solutions, 

which are not shown here for brevity. In order to calculate the unsteady solutions, the 

Crank-Nicolson and Adams-Bashforth methods together with the function expansion 

(9) and the collocation methods are applied to Eqs. (2) to (4).  

4. Resistance coefficient 

          We use the resistance coefficient λ  as one of the representative quantities of the 

flow state. It is also called the hydraulic resistance coefficient, and is generally used in 

fluids engineering, defined as  

,
2*

2
1

**

*
2

*
1 w

dhz

PP
ρλ

=
Δ

−                                                         (10) 

where quantities with an asterisk denote the dimensional ones, 〉〈  stands for the mean 

over the cross section of the rectangular duct, and ( ) ( ).84/424* lhllhldh ××=  Since 

,*/*
2

*
1 GzPP =Δ⎟

⎠
⎞⎜

⎝
⎛ −  λ  is related to the mean non-dimensional axial velocity w  as                  

,
23

216

w

Dnδλ =                                                           (11) 

where .*/2 wvdw δ=  In this paper, λ is used to calculate the unsteady solutions by 

numerical computations. 

7. RESULTS 

          We take a curved rectangular channel of aspect ratio 2.0=a  and curvature 

0.1δ = and rotate it around the centre of curvature with an angular velocity TΩ  in the 

negative direction. In this paper, time evolution calculations of the resistant coefficient 

λ are performed for the non-isothermal flows (Gr = 100) over a wide range of the Dean 
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Numbers (Dn) and the Taylor Number (Tr) for the two cases of the duct rotation, Case 

I: Dn = 500 and Case II: Dn = 800.  

 

5.1 Case I: Dean Number, Dn=500 

          For negative rotation we perform time evolution of λ for 02000 <≤− Tr and 

1000100 ≤≤ Dn . Figure 2(a) shows time evolution of λ  for Tr = -100 and Dn = 500 at 

Gr = 100. It is found that the unsteady flow at Tr = -100 is a steady state solution. Fig. 

2(b) shows typical contours of secondary flow patterns and temperature profiles for Tr 

= -100 and Dn = 500, where we find that the unsteady flow is a two -vortex solution. 

This is caused by the combined action of the Coriolis force due to rotation and 

centrifugal force due to curvature, which increased the number of secondary vortices 

(Wang and Cheng [5]). Then we perform time evolution of λ  for Tr = -360 as shown in 

Fig. 3(a). It is found that the unsteady flow is a multi-periodic solution. In order to 

observe the multi-periodic oscillation more clearly, we draw the phase space of the time 

evolution, result as shown in Fig. 3(b), and it is found that the flow oscillates in a 

definite regular pattern, which confirms that the flow is multi-periodic in the same orbit. 

Typical contours of secondary flow patterns and temperature profiles are shown in Fig. 

3(c), which is consistent with the multi-periodic oscillations and we see that the 

unsteady flow generates two-vortex solution. Then we perform time evolution of λ  for 

Tr = -640 as shown in Fig. 4(a). It is found that the unsteady flow at Tr = -640 is a weak 

chaotic solution, which is well justified by drawing the phase space as shown in Fig. 

4(b). As seen in Fig. 4(b), the flow creates multiple orbits in its path, so that the 

unsteady flow at Tr = -640 is a weak chaotic solution. Typical contours of secondary 

flow patterns and temperature profiles for the corresponding flow parameters are shown 

in Fig. 4(c), where it is found that the multi-periodic to chaos oscillation at Tr = -640 is 

a two-vortex solution. If the rotational speed is increases more in the negative direction, 

for example Tr = -700 up to -2000, it is found that the flow becomes strongly chaotic 

which is not shown for brevity. 
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        ψ    T  
       
 
                                                                                                         t     23.0                                                    
                                  
     

 (a)                                                         (b)   
 
Figure 2: (a) Time evolution of  λ  for Dn = 500 and Tr = -100. (b) Contours of 
secondary flow patterns (top) and temperature profiles (bottom) for Tr = -100, at time

23.0t =  
 
 
 
                                                                                                           ψ     
 
                                                                                                                     
 
 T       
 
                                                                                                            t       20.0     20.8     
21.4    23.3   24.6     26.5 
                (a)                                                       (b)                                                      (c)   
 
Figure 3: (a) Time evolution of  λ  for Dn = 500 and Tr = -360. (b) Phase space for Tr 
=-360, (c) Contours of secondary flow patterns (top) and temperature profiles (bottom) 
for Tr = -360, at time 20.0 26.5t≤ ≤ . 
  
 
  ψ  
                                                                                                                       
 
 T  
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                                                                                                              t    15.7   18.8    
23.9     26.1    29.0   32.8 
          
    (a)                                                         (b)                                                      (c)        
Figure 4: (a) Time evolution of λ for Dn = 500 and Tr = - 640. (b) Phase space for Tr = 

- 640, (c) Contours of secondary flow patterns and temperature profiles for Tr = - 640, 

at time 15.7 32.8t≤ ≤ . 
 

5.2 Case II: Dean Number, Dn=800 

      We perform time evolution of λ for 2000 0Tr− ≤ < and 800Dn = for 0.1δ = . Figure 

5(a) shows time evolution of λ  for Dn = 800 and Tr = -100 at Gr = 100. It is found that 

the unsteady flow at Tr = -100 is a strongly chaotic solution, which is well justified by 

drawing the phase spaces as shown in Fig. 5(b). Figure 5(c) shows typical contours of 

secondary flow patterns and temperature profiles for Tr = - 100, where we find that flow 

is a four-vortex solutions. Then we perform time evolution of λ  for Tr = -300 and 

presented in Fig.6 (a). It is found that the unsteady flow is multi-periodic oscillation at 

Tr = -300. The multi-periodic oscillations are well justified by depicting the phase 

spaces as shown in Fig. 6(b) for Tr = -300. Typical contours of secondary flow patterns 

and temperature profiles are shown in Figs. 6(c) for Tr = -300, which is produced four-

vortex solutions. Then we perform time evolution of λ  for Tr = - 400 as shown in Fig. 

7(a). It is found that the unsteady flow is also a multi-periodic solution which turns into 

chaos. In order to observe the multi-periodic oscillation more clearly, we draw the 

phase space of the time evolution result as shown in Fig. 7(b) and it is found that the 

flow is multi-periodic. Typical contours of secondary flow patterns and temperature 

profiles are shown in Fig. 7(c) and we see that the unsteady flow is only two-vortex 

solutions. If the rotational speed is increased more, for example Tr = -500 or more up to 

-2000, it is found that the flow becomes chaotic. Figure 8(a) shows time evolution of λ  

for Tr = -500 and Dn = 800, and it is found that the flow is chaotic for all the cases. 

Then we draw the phase space for observing flow pattern. From the fig. 8(b) it is clear 
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that the flow patterns are changing multi-periodic to chaos. And finally we draw the 

typical contours of secondary flow patterns and temperature profile is shown in Fig. 

8(b) for Tr = -500 and Dn = 800, and it is found that the unsteady flow is an asymmetric 

four-vortex solution. In this study, it is found that combined action of the coriolis and 

centrifugal force help to increase the number of secondary vortices. It is also found that, 

as the flow becomes chaotic, the secondary flow increases and gets stronger and 

consequently heat is transferred substantially outer wall of the duct. 

 
          
 
                                                                                                     ψ  
                                                                                            
  
   
                                                                                                     T  

      
 

 
                  (a)                                            (b)                                                           t     
27.0     28.0      29.0     30.0     31.0      32.0 
 
Figure 5: (a) Time evolution of  λ for Tr = -100 and Dn=800, (b) Phase space for Tr = -

100 (c) Contours of secondary flow patterns and temperature profiles for Tr = -100, at 

time 27.00 32.00t≤ ≤ . 
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      T   
        
 

 
          t     21.0    21.9     22.8     
23.6    24.5    25.4 
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              (a)                                                      (b)                                                          (c)      
 
Figure 6: (a) Time evolution of  λ  for Tr = -300 and Dn = 800 at Gr = 100. (b) Phase 

space for Tr = - 300. (c) Contours of secondary flow patterns (top) and temperature 

profiles (bottom) for Tr = - 300, at time 21.0 25.4t≤ ≤ . 

 
 
 
 ψ   
   
 
 
 
 T   
 
 

 t       20.6       22.4     24.2      25.9      
27.7     29.9 

                (a)                                                  (b)                                                             (c)   
Figure 7: (a) Time evolution of  λ for Tr = -400 and Dn = 800 at Gr = 100. (b) Phase 
space for Tr = - 400. (c) Contours of secondary flow patterns and temperature profiles 
for Tr = -400, at time 20.6 29.9t≤ ≤ . 
 
 
 
 ψ   
 
 
 
 
 T  
 
 

t         27.0     28.0     29.0      30.0       
31.0     32.0 

                (a)                                                  (b)                                                             (c)   
 
Figure 8: (a) Time evolution of  λ for Tr = - 500 and Dn = 800 at Gr = 100, (b) Phase 
space for Tr = -500, (c) Contours of secondary flow patterns (top) and temperature 
profiles (bottom) for Tr = -500 at time 27.0 32.0t≤ ≤ . 
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6. Conclusion  
 
     A numerical study is presented for the flow characteristics through a rotating curved 

rectangular duct of aspect ratio 2a =  and curvature 0.1δ = . Numerical calculations are 

carried out by using a spectral method, and covering a wide range of the Taylor number 

2000 0Tr− ≤ < for the Dean numbers, Dn = 500 and Dn = 800 for the Grashof number

100=Gr . We investigated unsteady flow characteristics for the negative rotation of the 

channel by time evolution calculations, and it is found that the unsteady flow undergoes 

in the scenario for the case of Dn = 500 is ‘steady-state→  multi-periodic→  chaotic’, 

and for the case of Dn = 800 is ‘Chaotic→  multi-periodic→  periodic→  multi-periodic 
→  Chaotic’, if Tr is increased in the negative direction. Phase spaces were found to be 

fruitful to justify the transition of unsteady flow characteristics. Typical contours of 

secondary flow patterns and temperature profiles are also obtained at several values of 

Tr, and it is found that there exist two- and four-vortex solutions if the duct rotation 

involved in the negative direction. It is found that the temperature distribution is 

consistent with the secondary vortices, and convective heat transfer is enhanced as the 

secondary vortices increase. It is also found that chaotic flow enhances heat transfer 

more significantly than the periodic or steady-state solutions. 
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