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Abstract:  

Fuzzy technique using Petri net is a formal tool for describing a Discrete event 
system model of an actual system. The advantage of this technique is that concurrent 
evolutions with various processes evolving simultaneously and partially independently can 
be easily represented and analyzed. In local control applications conditions /events are 
used to describe the control sequences of elementary devices. Petri nets are made up of 
places, transitions and tokens. A state is represented by distribution of tokens in places. 
Various approaches can be used to combine Petri nets and Fuzzy sets. In this paper the 
authors speak about the fault finding technique of electronic networks with different 
illustrations.  
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¢hj§aÑ p¡l (Bengali version of the Abstract) 
HL¢V fËL«a a−¿»l ¢h¢nÔø OVe¡ a−¿»l j−Xm−L hZÑe¡ Ll¡l SeÉ −f¢VÊ−eV (Petri 

net) hÉhq¡l pjªÜ g¡¢S L«v−L±nm    (Fuzzy technique) q−μR HL¢V ¢h¢dhv k¿» z HC 

L«v−L±n−ml p¤¤¢hd¡ q−μR −k k¤Nfv Hhw Awna ü¡d£ei¡−h Eá¥a hý¢hd fË¢œ²u¡ pq 

pjL¡m£e AhO¡ae−L (concurrent evolutions) AaÉ¿¹ pqSi¡−h fËL¡n J ¢h−nÔoZ Ll¡ 

k¡u z fË¡b¢jL eLn¡l Ae¤œ²¢jL ¢eu¿»Z−L hZÑe¡ Ll¡l SeÉ ÙÛ¡e£u ¢eu¿»L fË−u¡N n−aÑ 

OVe¡…¢ml hÉhq¡l Ll¡ q−u−R z ÙÛ¡e, AhÙÛ¡e¡¿¹la¡ (transitions) Hhw −V¡−Le…¢m 

(tokens) ¢e−u °al£ q−u−R −f¢VÊ−eVÚ z ÙÛ¡e…¢m−a −V¡−L−el h¾V−el à¡l¡ HL¢V AhÙÛ¡e−L 
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(state) EfÙÛ¡fe Ll¡ q−u−R z −f¢VÊ−eVÚ Hhw g¡¢S −pV−L pwk¤š² Ll−a hý¢hd 

A¢iNje−L hÉhq¡l Ll¡ −k−a f¡−l z HC f−œ −mM−Ll¡ ¢h¢iæ Ec¡ql−Zl p¡q¡−kÉ 

C−mLVÊ¢eL −eVÚJu¡−LÑl œ¥¢V ¢eZÑ¡uL L«v−L±n−ml ¢ho−u h−m−Re z 

1. Introduction:  
More recently, fuzzy logic has been successfully applied to a specialized 

structure of knowledge, called Fuzzy Petri Nets (FPN), [1],[3]-[9], [19], [23], [37] 

for handling one or more of the above problems. The concept of the management 

of imprecision of data with FPN was pioneered by Looney [24], who considered an 

acyclic model of  FPN, for estimating the degree of truth of a proposition with a 

foreknowledge of its predecessors in the network. Chen et al. [7] presented an 

alternative model and an interactive algorithm for reasoning in the presence of both 

imprecision and uncertainty. Bugarin and Barro [1] refined the underlying concept 

of the model in [9] and extended it in the light of classical fuzzy logic [42]. The 

most challenging part of their work was reasoning under incomplete specification 

of knowledge. Yu improved the concept of structural mapping of knowledge onto  

FPN [40] and presented a new formalism [41] for reasoning with a knowledge 

base, comprising of fuzzy predicates [42], instead of fuzzy  propositions [7].  

Scarpelli et al. presented new algorithms for forward [36] and backward [35] 

reasoning on FPN which is of much interest. A completely different type of model 

of FPN using fuzzy t and  s norms [13] was proposed by Pedrycz [29] for 

applications in supervised learning problems. There exists an extensive literature 

on FPN models [11], [1], [3],  [8], which cannot be discussed  here for lack of 

space. However, to the best of the author’s knowledge, none of the existing models 

of FPN can handle the complexities in a reasoning system created by the 

coexistence of imprecision  and inconsistency of data and uncertainty of 

knowledge. The complexity of the reasoning system is further complicated, when 

the knowledge base has an explicit self-reference to itself. The chapter presents 
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new models of FPN [20], pivoted around the work of Looney, for dealing with the 

above problems by a unified approach. 

2. Imprecision Management in an Acyclic FPN 

Before describing the technique for imprecision management in acyclic 
FPN, we present a few terminologies first. 
 

6.2.2.1 Formal  Definitions  and the  Proposed  Model 

Definition 1: An FPN can be defined as a 9-tuple: 

  FPN={P, Tr, D, I, O, cf, th, n, b} 

where 

• P ={p1 , p2, ,….,pm  } is a finite set of places, 
• Tr ={tr1 , tr2 , …., trn } is a finite set of transitions. 
• D ={d1 , d2 , ……, dm } is a finite set of propositions, 
• P∩T∩D=φ,  | P | = | D | , 
• I : Tr  P∝ is the input function, representing a mapping from transitions to 
bags of (their input) places, 
• O : Tr   P∝ is the output function, representing a mapping from transitions to 
bags of (their output) places, 
• cf, th : Tr  [0, 1] are association functions, representing a mapping from 
transitions to real values between 0 and 1 
• n : P  [0, 1] is an association functions, representing a mapping from places  
to real values between 0 and 1 
• b : P D is an association function, representing a bijective mapping from 
places to propositions. 
      In realistic terminology, ni represents the fuzzy beliefs of place pi i.e.,  ni = 

n(pi); cfj = cf(trj)  and thj = th(trj)  represent the CF and threshold of transition  trj  

respectively. Further di = b(pi).                     

Definition 2: A transition tri is enabled if AND  {ni : pi∈ I(trj )} > thj where ni = 

n(pi) and thj = th(trj). An enabled transition fires, resulting in a fuzzy truth token 

(FTT) at all its output arcs. The value of the FTT is a function of the CF of the 

transition and fuzzy beliefs of its input places.  
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      The technique for computing the fuzzy beliefs at a place can be conveniently 

represented by a model. Based on Definitions 1 and 2 we propose a model, called 

the Belief Propagation Model. 

3. Proposed Model for Belief Propagation  

Consider a place pi which is one of the common output places of transitions trj,  

where 1≤ j ≤m. Now, for computing fuzzy beliefs ni at place of pi, first the 

condition for transition firing is checked for all trj. If a transition fires then the 

fuzzy beliefs of its input places are ANDed and then the result, called FTT is 

saved. If the transition does not fire, then the FTT corresponding to this transition 

is set to zero. The fuzzy belief of place pi can now be computed by ORing the FTT 

associated with the  trj for  1≤ j ≤ m. 

      For the sake of brevity, the AND (Minimum of inputs) and OR (maximum of 

inputs) operators are represented by  �  and  �,  respectively 

3.1 Problem: Draw a Petri-net model for a given Production Rule. If (d1)  THEN 

(d2), where d1 = it is raining, d2 = soil to be wetted. The transition value, tr1, that 

represents the trueness of this Production Rule also to be included. Determine the 

value of d2 when d1 and tr1 are given as 0.7 and 0.9 respectively. 

Solution: According to production rule the Petri-net model is given below. 

 
Here the circles are called as places or nodes and denoted by p1, p2,..etc. The bar is 

called transition and denoted as tr1. The value in the place are denoted as n1, n2, … 

etc. That is the value of d1 = n1 = 0.7 and the value of d2 = n2. 

The value of d2 can be obtained as n2 =  n1∧ tr1 = 0.7 ∧ 0.9 = 0.7. 

3.2  Problem: Given a Production Rule : IF((d1) AND (d2)) THEN ((d3) OR (d4)). 

Here d1 = it is hot, d2 = the sky is cloudy, d3 = it will rain, d4 = humidity is high, P 

tr1= 0.9 
d2d1  

0.7 
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= {p1, p2, p3, p4}, T = {tr1}, D = {d1, d2, d3, d4}, tr1 = 0.9, n1 = 0.9, n2 = 0.5, and n3 

and n4 are to be determined. Draw the Petri-net model for this production rule. 

Solution: According to production rule the Petri-net model is given below. 

 

       n3 = n4 = [(n1 ∧ tr1) ∧ (n2 ∧ tr1)] = [(0.9 ∧ 0.9) ∧ (0.5∧ 0.9)] = 0.5. 
3.3 Problem: Given a Petri-net model below, determine the P matrix and Q-
matrix. Write the dynamic equation of Petri-net model. 

 
Solution: The evaluation of P matrix and Q- matrix are given below. 
 

From                                                              

       To           tr1   tr2     tr3   tr4   tr5   tr6                         

              p1         1     0     0  0     0     0        

 P =        p2     0     1     0  0     0     0               

              p3      0     0     1  0     0     1 

              p4      0     0     0     1     0     0 

              p5      0     0     0     0     1     0 

p5 

p4 

p3 
p2 

tr5 

 

tr3 
tr6 tr2 

p1 

tr1 

n1 

n4 

n5 

n3 n2 

tr4 
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From        

                                                       

       To           p1   p2    p3   p4   p5                         

              tr1        1    0    0    0    0              

Q =        tr2     1    0    0    0    1                

              tr3     0    0    0    1    0 

              tr4     0    0    0    1    0 

              tr5     0    0    1    0    0 

              tr6     0    1    0    0    0 

and N(t) = [n1    n2     n3     n4    n5]. 

The dynamic equation of Petri-net is written below. 

 N(t+1) = P o (Q o Nc (t))c. 

3.4  Problem: The P matrix and Q matrix of a Petri-net as well as the present state 

value (N(t)) of all the nodes of the petri-net are given below. 

From                                                              

       To           tr1   tr2     tr3   tr4   tr5                         

              p1         0     0     0  0     1              

 P =        p2     1     0     0  0     0                

              p3      0     1     0  0     0 

              p4      0     0     1     0     0 

              p5      0     0     0     1     0 

        

From                                                              

       To           p1   p2    p3   p4   p5                         

              tr1        1    0    0    0    0              

Q =        tr2     0    1    0    0    0                

              tr3     0    1    1    0    0 

              tr4     0    0    0    1    0 
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              tr5     1    0    0    0    0 

                    n1    n2     n3     n4    n5  

  

and N(t) = [0.9   0.9   0.6   0.8   0.7]. 

Determine the next nodes value, i.e., N(t+1) and previous nodes values, i.e.,  N(t-1) 

of this petri-net. 

Solution: Using the equation of Petri-net’s dynamic, we write  

            N(t+1) = P o (Q o Nc (t))c 

Nc (t) = ¬ N(t) = [(1-0.9)   (1-0.9)   (1-0.6)   (1-0.8)   (1-0.7)]  

                         = [0.1   0.1   0.4   0.2   0.3]. 

and N(t) = [0.9   0.9   0.6   0.8   0.7]. 

Determine the next nodes value, i.e., N(t+1) and previous nodes values, i.e.,  N(t-1) 
of this petri-net. 
Solution: Using the equation of Petri-net’s dynamic, we write  

            N(t+1) = P o (Q o Nc (t))c 

Nc (t) = ¬ N(t) = [(1-0.9)   (1-0.9)   (1-0.6)   (1-0.8)   (1-0.7)]  

                         = [0.1   0.1   0.4   0.2   0.3]. 

N(t+1) = 
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          = [0.9   0.9   0.9   0.6   0.8] 

For N(t-1), we rewrite Petri-net’s dynamic as 

           N(t) = P o (Q o Nc (t-1))c 

           P-1 o N(t) = (Q o Nc (t-1))c     (Since, P-1 o P = I) 

           (P-1 o N(t))c = Q o Nc (t-1) 
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           Q-1 o (P-1 o N(t))c = Nc (t-1)    (Since, Q-1 o Q = I) 

           Nc (t-1) = Q-1 o (P-1 o N(t))c    

           (N(t‐1))c = 
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Using Algorithm I, P-1 and Q-1 are evaluated below. 
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         (N(t-1))c = [0.1   0.4   0.2   0.2   0.1] 

         N(t-1) = [0.9   0.6   0.8   0.8   0.9]. 

 
Fuzzy Abduction Technique to Diagnosis an Electronics Circuit:  

  We have taken a simple example to diagnosis an electronics circuit by 

abductive or backward reasoning. This electronic circuit comprises backward 
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reasoning. This electronic circuit comprises with two diodes and three 1 kΩ 

resistances as depicted bellow. In this circuit, we want to diagnosis whether the 

diodes 1D  and 2D  are working properly. And this diagnosis will be done by 

applying 2D  are working properly. And this diagnosis will be done. 

 

 
 

abductive reasoning with the help of output voltage i.e., voltage across 3r   

resistance. It is obvious, if diode 1D  is defective, then output voltage will be 0 

volts. If diode 2D  is defective a nd diode 1D  is not defective, then output voltage is 

5 volts (voltage across 3r = 
11

1
+

×10volts = 5 volts). And if the two diodes 1D  and 

2D  are not defective, then applying voltage divider rule, we have output voltage as 

6.66 volts (voltage across 3r = 
5.01

1
+

×10volts = 6.66 volts). Thus we have three 

membership curve of output voltage as LOW, MEDIUM and HIGH for 0 volts, 5 

volts and 7 volts respectively. 

O/p  Diode,  2D      Diode,  1D  

   1r =1 kΩ  2r =1 kΩ 

   3r =1 kΩ 

+10 volts  +10 volts

Fig:1 Schematic diagram of OR gate circuit where diodes are shown 
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Fig2: LOW, MEDIUM and HIGH membership curve of output voltage. 

In the other hand the defectiveness of diodes ( 1D  and 2D  both) will be measured 

by forward junction voltage of diode. If the forward junction voltage of diode is 

greater than 0.7 V, then the diode is defective and otherwise it is proper. Thus for 

both of the diodes, we have two membership curve as LOW and HIGH forward 

junction voltage (fig. 13). 

Construction of Rules: 

Let us consider three rules: 

Rule1: If the forward junction voltage of diode 1D  is HIGH, then output voltage is 

LOW. 

Rule2: If the forward junction voltage of diode 1D  is LOW and 2D  is HIGH, then 

output voltage is MEDIUM. 

Rule3: If the forward junction voltage of diode 1D  is LOW and 2D  is LOW, then 

output voltage is HIGH. 

 0 volts    5 volts  7 volts 

 μ 

 1.0 
   MEDIUM 

HIGH

LOW=(volts,  LOWμ (volts)) 

MEDIUM=(volts, MEDIUMμ
(volts)) 

HIGH=(volts, 

HIGHμ (volts)) 
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Figure 4: Inferential Graph representing the relationship between antecedent and 

consequent clause. 

Abductive Reasoning:  Now, we assume the primary membership distribution 

of “output voltage as MEDIUM” is: Source 1: (0.2   0.9   0.1), source 2: (0.1   

1.0   0.2) and source 3: (0.1   1.0   0.1). Furthermore, the secondary 

membership distribution of “output voltage as MEDIUM” is: Q' = [1.0   0.7   

0.7   0.6   0.9   0.8   0.9   0.5   0.8]. Thus, the primary membership distribution 

for output voltage as ‘MEDIUM’ is obtained using the above primary 

distributions from all sources corresponding to  best secondary membership 

values as, )(__ yMMEDIUVoltOutput
best

′μ = )( 1xB
best

′μ = [0.2   1.0   0.1]. Now, we have 

the primary distribution for diode 1D  as )( 1xA
best

′μ  = )( 1xB
best

′μ  o (1R1)T = [0.2   

1.0   0.1] o 

⎥
⎥
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⎦
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⎢
⎢
⎢

⎣

⎡
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= [0.9   0.3   0.1]. Similarly, we obtain the primary distribution for 

diode 2D  as )( 1xc
best

′μ  

1.0   0.1]. Now, we have the primary distribution for diode 1D  as )( 1xA
best

′μ  = 

)( 1xB
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′μ  o (1R1)T = [0.2   1.0   0.1] o 
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= [0.9   0.3   0.1]. Similarly, we obtain the primary distribution for 

diode 2D  as )( 1xc
best

′μ  
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