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Abstract:  

In this paper , we introduce the concept of partially α – shading ( resp. 
partially *α – shading ), in ahort, αp – shading ( resp. *αp – shading ) and 

partially α – compact ( resp. partially *α – compact ), in short, αp – compact ( 

resp. *αp – compact ) fuzzy sets and study their several features in fuzzy 
topological spaces. 
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¢hj§aÑ p¡l (Bengali version of the Abstract) 

HC f−œ Bjl¡ Bw¢nL α - Y¡L¢ek¤−š²l ( resp. partially *α – shading ) 

d¡lZ¡−L, pw−r−f αp - Y¡L¢ek¤−š²l      Hhw Bw¢nL α -pwqa ( resp. partially 

*α – compact ), pw−r−f αp  - pwqa ( resp. *αp – compact ) g¡¢S −pV−L (fuzzy 

sets) EfÙÛ¡fe L−l¢R Hhw g¡¢S −V¡−f¡mS£u −c−n (fuzzy topological spaces.) Cq¡−cl 

hý¢hd °h¢nøÉ−L Ae¤på¡e L−l¢R z 

1.  Introduction   

The concept of α – compactness was first introduced by T. E. Gantner et 

al.[5] in 1978.   α – compactness occupies a very important place in fuzzy 

topological spaces. The purpose of this paper is to introduce and study the 

concept of αp – compact ( resp. *αp – compact )  fuzzy sets in more detail and 

to obtain several features of the concept.  We find that this concept has  many 

tangible flavors.      
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2.  Preliminaries  

        In this section, we recall some fundamental definitions which are 

needed in the next section. These are essential in our study and can be found in the 

papers referred to.   

Definition 2.1 [13] : Let X be a non-empty set and I is the closed unit interval [0, 

1]. A fuzzy set in X is a function u : X →  I which assigns to every element x ∈  X. 

u(x) denotes a degree or the grade of membership of x. The set of all fuzzy sets in 

X is denoted by XI . A member of XI  may also be called a fuzzy subset of X. 

Definition 2.3 [10] : A fuzzy set is empty iff its grade of membership is identically 

zero . It is denoted by 0 or φ . 

Definition 2.4 [10] : A fuzzy set is whole iff  its grade of membership is 

identically one in X . It is denoted by 1 or X.  

Definition 2.5 [3] : Let u and v be two fuzzy sets in X. Then we define           

(i) u = v iff  u(x) = v(x) for all x ∈  X  

(ii) u ⊆  v iff  u(x) ≤  v(x) for all x ∈  X  

(iii) λ  = u ∪ v iff  λ (x) = (u ∪ v) (x) = max [ u(x) , v(x) ] for all x ∈ X  

(iv) μ  = u∩ v iff  μ (x) = (u∩ v) (x) = min [ u(x) , v(x) ] for all x ∈  X  

(v) γ  = cu  iff  γ (x) = 1 – u(x) for all x ∈  X.  

Remark : Two fuzzy sets u and v are disjoint iff u ∩  v = 0.   

Definition 2.6 [3] : In general , if { iu  : i  ∈  J } is family of fuzzy sets in X , then 

union ∪ iu  and intersection ∩ iu  are defined by 

∪ iu (x) = sup { iu (x) : i  ∈ J  and x ∈ X } 

∩ iu (x) = inf { iu (x) : i  ∈ J  and x ∈ X } , where J is an index set. 

Definition 2.7 [3] : Let f : X →  Y be a mapping and u be a fuzzy set in X. Then 

the image of u, written )(uf , is a fuzzy set in Y whose membership function is 

given by 
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Definition 2.8 [3] : Let f : X →  Y be a mapping and v be a fuzzy set in Y. Then 

the inverse of v, written 1−f (v) , is a fuzzy set in X whose membership function is 

given by 1−f (v) (x) = v(f(x)). 

Distributive laws 2.9 [13] : Distributive laws remain valid for fuzzy sets in X i.e. 

if u , v and w are fuzzy sets in X , then 

(i) u ∪ ( v ∩  w ) = ( u ∪  v ) ∩  ( u ∪  w ) 

(ii) u ∩  ( v ∪  w ) = ( u ∩  v ) ∪  ( u ∩  w ). 

Definition 2.10 [3] : Let X be a non-empty set and t ⊆  XI  i.e. t is a collection of 

fuzzy set in X. Then t is called a fuzzy topology on X if  

(i) 0 , 1 ∈  t 

(ii) iu ∈  t for each i ∈J , then ∪
i

iu ∈  t 

(iii) u , v ∈  t , then u ∩  v ∈t 

The pair ( )tX ,  is called a fuzzy topological space and in short, fts. Every 

member of t is called a t-open fuzzy set. A fuzzy set is t – closed  iff its 

complements is t-open. In the sequel, when no confusion is likely to arise, we shall 

call a t – open  ( t – closed ) fuzzy set simply an open ( closed ) fuzzy set.   

Definition 2.11 [3] : Let ( )tX ,  and ( )sY ,  be two fuzzy topological spaces. A 

mapping f : ( )tX ,  →  ( )sY ,  is called an fuzzy continuous iff the inverse of 

each s-open fuzzy set is t –    open. 

Definition 2.12 [10] : Let ( )tX ,  be an fts and A ⊆  X. Then the collection At = { 

u|A  : u ∈  t } = { u ∩  A  : u ∈  t }  is fuzzy topology on A, called the subspace 

fuzzy topology on A and the pair ( )AtA ,  is referred to as a fuzzy subspace of 

( )tX , . 
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Definition 2.13 [4] : Let ( )AtA ,  and ( )BsB ,  be fuzzy subspaces of fuzzy 

topological spaces ( )tX ,  and ( )sY ,  respectively and f is a mapping from 

( )tX ,  to ( )sY , , then we say that f is a mapping from ( )AtA ,  to ( )BsB ,  if 

f(A) ⊆  B.  

Definition 2.14 [4] : Let ( )AtA ,  and ( )BsB ,  be fuzzy subspaces of fts’s 

( )tX ,  and ( )sY ,  respectively. Then a mapping f : ( )AtA ,  →  ( )BsB ,  is 

relatively fuzzy continuous iff for each v ∈  Bs  , the intersection 1−f (v) ∩  A ∈  

At .  

Definition 2.15 [1] : Let λ  be a fuzzy set in X , then the set { x ∈ X : λ (x) > 0 } 

is called the support of λ  and is denoted by 0λ  or suppλ  .  

Definition 2.16 [1] :  Let ( )TX ,  be a topological space. A function f : X →  R  ( 

with  usual topology ) is called lower semi-continuous ( l . s . c. ) if for each a ∈ R 

, the set 1−f ( a  , ∞  ) ∈ T. For a topology T on a set X ,  let ω ( T ) be the set of 

all l . s . c. functions from  ( )TX ,  to I ( with usual topology ); thus ω ( T ) = { u 

∈  XI  : 1−u ( a , 1 ] ∈  T , a ∈  1I  } . It can be shown that  ω ( T ) is a fuzzy 

topology on X. 

      Let P be a property of topological spaces and FP be its fuzzy topology 

analogue. Then FP is called a ‘ good extension’ of P “ iff the statement  ( )TX ,  

has P iff ( ))(, TX ω has FP”   holds good for every topological space   ( )TX , .  

Thus characteristic functions are l . s. c.  

Definition 2.17 [11] : An fts ( )tX ,  is said to be fuzzy – 1T  space iff for every x , 

y ∈ X , x ≠  y, there exist u , v ∈ t such that u(x) = 1, u(y) = 0 and v(x) = 0, v(y) = 

1.    

Definition 2.18 [12] : An fts ( )tX ,  is said to be fuzzy – 1T  space iff for all x , y 

∈  X , x ≠  y, there exist u , v ∈  t such that u (x) > 0, u (y) = 0 and v (x) = 0, v (y) > 

0.    
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Definition 2.19 [5] : An fts ( )tX ,  is said to be fuzzy Hausdorff  iff for all x , y  

∈  X , x ≠  y , there exist u , v ∈  t such that u(x) = 1 , v(y) = 1 and u ∩ v = 0.  

Definition 2.20 [9] : An fts ( )tX ,  is said to be fuzzy Hausdorff iff for all x , y  

∈  X , x ≠  y , there exist u , v ∈  t such that u(x) = 1 , v(y) = 1 and u ⊆  1 – v.  

Definition 2.21 [7] : An fts ( )tX ,  is said to be fuzzy Hausdorff iff for all x , y ∈  

X , x ≠  y, there exist u , v ∈ t such that u (x) > 0, v (y) > 0 and u ∩  v = 0.    

Definition 2.22 [9] : An fts ( )tX ,  is said to be fuzzy regular iff for each x ∈ X 

and u ∈ ct  with u(x) = 0 , there exist v , w ∈ t such that v(x) = 1 , u ⊆  w and v ⊆  

1 – w.   

Definition 2.23 [2] : Let λ ∈  XI  and μ ∈  YI . Then (λ × μ  ) is a fuzzy set in X 

×Y for which (λ × μ  ) ( x , y ) = min { λ (x) , μ (y) } , for every ( x , y ) ∈  X 

×Y.   

3. Characterizations of αp – compact ( resp. *αp – compact ) fuzzy sets :    

First we give two definitions: 

Definition 3.1 : Let ( )tX ,  be an fts and α ∈  I. A family M of fuzzy sets is 

called a αp  – shading ( resp. *αp – shading ) of a fuzzy set λ  in X if for each x 

∈  0λ , ( 0λ  ≠  X ) there exists a u ∈  M with u (x) > α  ( resp. u (x) ≥  α  ). 

A subfamily of a αp – shading ( resp. *αp – shading ) of λ  which is also a αp – 

shading          ( resp. *αp – shading ) is called a αp – subshading ( resp. *αp – 

subshading ) of λ .  

If λ ( x) ≠  0 for all x ∈ X i.e. 0λ  = X, then αp – shading ( resp. *αp – shading ) 

and α – shading ( resp. α – shading ) will be same.   

Definition 3.2 : Let ( )tX ,  be an fts and α ∈ I. A fuzzy set λ  in X is said to be 

αp – compact ( resp. *αp – compact ) if every open αp – shading ( resp. *αp – 

shading ) of λ  has a finite αp – subshading ( resp. *αp – subshading ). 
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Theorem 3.3 : Let ( )tX ,  be an fts, A ⊆  X and λ  be a fuzzy set in X. Then 

( i ) If λ  is αp – compact with respect to t, then λ  is αp – compact with respect 

to At , where  0 ≤ α  < 1.  

 ( ii ) If λ  is *αp – compact with respect to t, then λ  is *αp – compact with 

respect to At , where 0 < α  ≤  1.  

Proof : ( i ) : Let M = { iu  : i  ∈  J } be an open αp – shading of λ  with respect to 

At . By definition of subspace fuzzy topology, there exist iv  ∈  t such that iu  = A 

∩  iv . Therefore, { A ∩  iv  : i  ∈  J } is an open αp – shading of λ  with respect 

to t. As λ  is αp – compact with respect to t, then λ  has a finite αp – subshading, 

say { A ∩  
ki

v } ( k  = 1, 2, …… , n ) such that (A ∩  
ki

v ) (x) > α  for each x ∈  

0λ . But then { 
ki

u } ( k  = 1, 2, …… , n ) is a finite αp – subshading of M. Thus 

λ  is αp   compact with respect to At . 

( ii ) The proof is similar. 

The following example will show that the αp – compact, 0 ≤ α  < 1 ( resp. *αp – 

compact, 0 < α  ≤  1 )  fuzzy set in an fts need not be closed. 

Example 3.4 : Let X = { a , b , c } and I = [ 0 , 1 ]. Let 1u  , 2u  , 3u  , 4u  ∈  XI  

defined by 1u (a) = 0.6, 1u (b) = 0.2, 1u (c) = 0.4; 2u (a) = 0.3, 2u (b) = 0.1, 2u (c) = 

0.7; 3u (a) = 0.6, 3u (b) = 0.2, 3u (c) = 0.7; 4u (a) = 0.3, 4u (b) = 0.1, 4u (c) = 0.4. 

Now, take t = { 0 , 1 , 1u  , 2u  , 3u  , 4u  }, then we see that ( )tX ,  is an fts. Let λ  

∈  XI  with λ (a) = 0.4, λ (b) = 0, λ (c) = 0.7. Take α  = 0.5. Then by definition of 

αp – compact, λ  is clearly αp – compact. But λ  is not closed, as its complement 
cλ is not open in ( )tX , . 

This example is also applicable for *αp – compactness. 
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Theorem 3.5 : Let ( )tX ,  and ( )sY ,  be two fuzzy topological spaces and f : 

( )tX ,  →  ( )sY ,  be fuzzy continuous and onto. Then 

( i ) If λ  is αp – compact in ( )tX , , then f (λ ) is αp – compact in ( )sY , , 

where 0 ≤ α  < 1. 

(ii)If λ  is *αp – compact in ( )tX , , then f (λ ) is *αp – compact in ( )sY , , 

where 0 ≤ α  < 1.                                           

Proof : ( i ) : Let M = { iu  : i  ∈ J } be an open αp – shading of f (λ ) in ( )sY , . 

Since f is fuzzy continuous, then 1−f (M) = { 1−f ( iu ) : iu  ∈  M } is an open αp – 

shading of λ  in ( )tX , . For, if x ∈ 0λ , then f (x) ∈ f ( 0λ ). So there exists 
0iu ∈  

M such that 
0iu (f (x) ) > α  which implies that 1−f (

0iu ) (x) > α . As λ  is αp – 

compact in ( )tX , , then 1−f (M) has a finite αp – subshading, say { 1−f (
1iu ), 

1−f (
2iu ), …… , 1−f (

niu ) }. Now, if y ∈ f ( 0λ ), then y = f (x) for some x ∈ 0λ . 

Then there exists k  such that 1−f (
kiu ) (x) > α  which implies that 

kiu ( f (x) ) > 

α  or 
kiu (y) > α . Hence f (λ ) is αp – compact in ( )sY , . 

( ii ) The proof is similar. 

Theorem 3.6 : Let ( )tX ,  and ( )sY ,  be two fuzzy topological spaces and f : 

( )tX ,  →  ( )sY ,  be bijective. Then  

(i) If λ  is αp – compact in ( )sY , , then 1−f (λ ) is αp – compact in 

( )tX , ,where 0 ≤ α  < 1. 

( ii ) If λ  is *αp – compact in ( )sY , , then 1−f (λ ) is *αp – compact in ( )tX , , 

where            0 ≤ α  < 1.   

Proof : ( i ) : Let M = { iu  : i  ∈  J } be an open αp – shading of 1−f (λ ) in 

( )tX , . Then f (M) = { f ( iu ) : i  ∈  J } is an open αp – shading of λ  in ( )sY , . 

For, if y ∈  0λ , then 1−f (y) ∈  1−f ( 0λ ). So there exists 
0iu ∈  M such that 

0iu ( 1−f (y) ) > α  which implies that f (
0iu ) (y) > α . 
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Since λ  is αp – compact in ( )sY , , then f (M) has a finite αp – subshading, say 

{ f (
1iu ),       f (

2iu ), …… , f (
niu ) }. For if x ∈  1−f ( 0λ ), then x = 1−f (y) for 

some y ∈  0λ . Therefore, there exists k  such that f (
kiu ) (y) > α  which implies 

that 
kiu ( 1−f (y) ) > α  or 

kiu (x) > α . Hence 1−f (λ ) is αp – compact in 

( )tX , .     

( ii ) The proof is similar.  

Theorem 3.7 : Let ( )AtA ,  be a fuzzy subspace of an fts ( )tX ,  and f : ( )tX ,  

→  ( )AtA ,   

be fuzzy continuous and onto. Then 

( i) If λ  is αp – compact in ( )tX , , then f (λ ) is αp – compact in ( )AtA , , 

where 0 ≤ α  < 1. 

(ii) If λ is *αp – compact in ( )tX , , then f(λ ) is *αp – compact in 

( )AtA , ,where 0 ≤ α  < 1.                                           

Proof : ( i ) : Let M = { iu  : i  ∈ J } be an open αp – shading of f (λ ) in 

( )AtA , . By definition of subspace fuzzy topology, there exists iv  ∈  t such hat iu  

=  A ∩  iv . Since f is fuzzy continuous, then 1−f (M) = { 1−f ( iu ) : iu  ∈  M } i.e 

1−f (M) = { 1−f ( A ∩  iv ) : i  ∈  J }is an open αp – shading of λ  in ( )tX , . For, 

if x ∈ 0λ , then f (x) ∈  f ( 0λ ). So there exists 
0iu ∈  M such that 

0iu ( f (x) ) > α  

which implies that 1−f (
0iu ) (x) > α  i.e. 1−f ( A ∩  

0iv ) (x) > α  . As λ  is αp – 

compact in ( )tX , , then 1−f (M) has a finite αp – subshading, say { 1−f ( A ∩  

1iv ), 1−f ( A ∩  
2iv ), …… , 1−f ( A ∩  

niv ) }. Now, if y ∈  f ( 0λ ), then y = f (x) 

for some x ∈  0λ . Then there exists k  such that 1−f ( A ∩  
kiv ) (x) > α  which 

implies that (A ∩  
kiv ) ( f (x) ) > α  or 

kiu (y) > α . Hence f (λ ) is αp – compact 

in ( )AtA , . 
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( ii ) The proof is similar. 

Theorem 3.8 : Let ( )AtA ,  and ( )BsB ,  be fuzzy subspaces of fuzzy topological 

spaces ( )tX ,  and ( )sY ,  respectively and f : ( )AtA ,  →  ( )BsB ,  be 

relatively fuzzy continuous and onto. Then  

(i) If λ is αp – compact in ( )AtA , , then f(λ ) is αp – compact in ( )BsB , , 

where 0 ≤ α  < 1. 

(ii) If λ is *αp – compact in ( )AtA , ,then f(λ ) is *αp – compact in ( )BsB , , 

where 0 ≤ α  < 1. 

Proof : Let M = { iv  : iv  ∈  Bs  } be an open αp – shading of f (λ ) in ( )BsB ,  

for every i  ∈ J. Since f is fuzzy relatively continuous, then 1−f ( iv ) ∩  A ∈  At  

and hence 1−f (M) = { 1−f ( iv ) ∩  A : iv  ∈  Bs  } is an open αp – shading of λ  in 

( )AtA , . For, if x ∈  0λ , then f (x) ∈ f ( 0λ ). So there exists 
0iv ∈ M such that 

0iv ( f (x) ) > α  which implies that ( 1−f (
0iv ) ∩  A ) (x) > α . As λ  is αp – 

compact in ( )AtA , , then 1−f (M) has a finite αp – subshading, say { 1−f ( 
1iv ) 

∩  A, 1−f (
2iv ) ∩  A, …… , 1−f (

niv ) ∩  A }. Now, if y ∈  f ( 0λ ), then y = f (x) 

for some x ∈  0λ . Then there exists k  such that ( 1−f (
kiv ) ∩  A ) (x) > α  which 

implies that  
kiv  ( f (x) ) > α  or 

kiv (y) > α . Hence f (λ ) is αp – compact in 

( )BsB , . 

( ii ) The proof is similar. 

Theorem 3.9 : Let λ  be a αp – compact, 0 ≤ α  < 1 ( resp. *αp – compact, 0 < 

α  ≤  1 ) fuzzy set in a fuzzy – 1T  space ( )tX ,  ( as def. – 2.17 ) with 0λ  ⊂  X ( 

proper subset ). Let x ∉ 0λ  (λ (x) = 0 ) , then there exist u , v ∈  t such that u (x) = 

1 ,  0λ ⊆  1−v ( 0 , 1].  
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Proof : Suppose y ∈  0λ . Then clearly x ≠  y. As ( )tX ,  is fuzzy – 1T  space, there 

exist yu  , yv ∈ t such that yu (x) = 1 , yu (y) = 0 and yv (x) = 0 , yv (y) = 1. Let us 

take α ∈  1I . Then yv (y) > α  > 0 , as yv (y) = 1. Hence we see that { yv  : y ∈  0λ  

} is an open αp – shading of λ  in ( )tX , . Since λ  is αp – compact, then λ  has 

a finite αp – subshading, say { 
kyv : ky ∈ 0λ  } ( k  = 1, 2, …… , n )  such that 

kyv (y) > α  for each y ∈  0λ . Now, let v = 
1yv ∪

2yv ∪ ...... ∪
nyv  and u = 

1yu ∩  

2yu ∩  ...... ∩
nyu . Thus we see that v and u are open fuzzy sets, as they are the 

union and finite intersection of open fuzzy sets respectively i.e. v, u ∈  t. Moreover, 

0λ  ⊆       1−v ( 0 , 1 ] and u (x) = 1, as  
kyu (x) = 1 for each k .  

Similar proof of *αp – compact can be given.  

Theorem 3.10: Let λ  and μ  be disjoint αp – compact, 0 ≤ α  < 1 ( resp. *αp – 

compact, 0 < α  ≤  1 ) fuzzy sets in a fuzzy – 1T   space ( )tX ,  ( as def. – 2.17 ) 

with 0λ  , 0μ  ⊂  X ( proper subsets ). Then there exist u , v ∈  t such that 0λ  ⊆  

1−u ( 0 , 1] and  0μ  ⊆  1−v ( 0 , 1]. 

Proof : Suppose y ∈  0λ . Then y ∉ 0μ , as λ  and μ  are disjoint. Since μ  is αp – 

compact in ( )tX , , then by theorem 3.9, there exist yu  , yv ∈  t such that yu (y) = 

1 and 0μ  ⊆  1−
yv ( 0 , 1 ]. Let us take α ∈ 1I  with yu (y) > α  > 0 , as yu (y) = 1. 

Then we see that { yu  : y ∈ 0λ  } is an open αp – shading of λ  in ( )tX , . Since 

λ  is αp – compact, then λ  has a finite αp – subshading, say { 
kyu : ky ∈  0λ  } 

( k  = 1, 2, …… , n )  such that 
kyu (y) > α  for each y ∈  0λ .  Furthermore, as μ  is 

αp – compact , so μ  has a finite αp – subshading, say { 
kyv : ky ∈  0μ  } ( k  = 1, 

2, …… , n )  such that 
kyv (x) > α  for each x ∈  0μ , as 0μ  ⊆  1−

kyv ( 0 , 1 ] for each 

k . Now, let u = 
1yu ∪  

2yu ∪  ...... ∪
nyu  and v = 

1yv ∩
2yv ∩ ...... ∩

nyv . Hence 

we see that 0λ  ⊆  1−u ( 0 , 1 ] and 0μ  ⊆  1−v ( 0 , 1 ]. Thus u and v are open fuzzy 
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sets, as they are the union and finite intersection of open fuzzy sets respectively i.e. 

u, v ∈ t. 

Similar proof of *αp – compact can be done.  

The following example will show that the αp – compact, 0 ≤ α  < 1 ( resp. *αp – 

compact, 0 < α  ≤  1 )  fuzzy set in a fuzzy – 1T   space ( )tX ,  ( as def. – 2.17 ) 

need not be closed. 

Example 3.11 : Let X = { a , b , c } and I = [ 0 , 1 ]. Let 1u  , 2u  , 3u  , 4u  , 5u  , 6u  

∈  XI  defined by 1u (a) = 1, 1u (b) = 0, 1u (c) = 0; 2u (a) = 0, 2u (b) = 1, 2u (c) = 0; 

3u (a) = 0, 3u (b) = 0, 3u (c) = 1; 4u (a) = 1, 4u (b) = 1, 4u (c) = 0; 5u (a) = 1 , 5u (b) = 

0 , 5u (c) = 1; 6u (a) = 0 , 6u (b) = 1 , 6u (c) = 1. Now, put t = { 0 , 1 , 1u  , 2u  , 3u  , 

4u  , 5u  , 6u  }, then we have ( )tX ,  is a fuzzy – 1T   space. Let λ  ∈  XI  with 

λ (a) = 0.2, λ (b) = 0.6, λ (c) = 0. Take α  = 0.4. Then by definition of αp – 

compact, λ  is clearly αp – compact in ( )tX , . But λ  is not closed, as its 

complement cλ is not open in ( )tX , . 

This example is also applicable for *αp – compactness. 

Theorem 3.12 : Let λ  be a αp – compact, 0 ≤ α  < 1 ( resp. *αp – compact, 0 < 

α  ≤  1 ) fuzzy set in a fuzzy – 1T  space ( )tX ,  ( as def. – 2.18 ) with 0λ  ⊂  X ( 

proper subset ). Let x ∉ 0λ  (λ (x) = 0 ) , then there exist u , v ∈  t such that u (x) > 

0 ,  0λ ⊆  1−v ( 0 , 1].  

Proof : Similar as Theorem 3.9. 

Theorem 3.13 : Let λ  and μ  be disjoint αp – compact, 0 ≤ α  < 1 ( resp. *αp – 

compact, 0 < α  ≤  1 ) fuzzy sets in a fuzzy – 1T   space ( )tX ,  ( as def. – 2.18 ) 

with 0λ  , 0μ  ⊂  X ( proper subsets ). Then there exist u , v ∈  t such that 0λ  ⊆  

1−u ( 0 , 1] and  0μ  ⊆  1−v ( 0 , 1]. 

Proof : Similar as Theorem 3.10.  



 

J.Mech.Cont.& Math. Sci., Vol.-9, No.-1, July (2014) Pages 1322-1340 

1333 
 

 

The following example will show that the αp – compact, 0 ≤ α  < 1 ( resp. *αp – 

compact, 0 < α  ≤  1 )  fuzzy set in a fuzzy – 1T   space ( as def. – 2.18 ) need not 

be closed. 

Example 3.11 will serve the purpose. 

Theorem 3.14 : Let λ  be a αp – compact, 0 ≤ α  < 1 ( resp. *αp – compact, 0 < 

α  ≤  1 ) fuzzy set in a fuzzy Hausdorff space ( )tX ,  ( as def. – 2.19 ) with 0λ  ⊂  

X ( proper subset ). Let x ∉ 0λ  (λ (x) = 0 ) , then there exist u , v ∈  t such that u 

(x) = 1 ,  0λ ⊆  1−v ( 0 , 1] and u ∩  v = 0.  

Proof : Let y ∈  0λ . Then clearly x ≠  y. Since ( )tX ,  is fuzzy Hausdorff space, 

there exist yu  , yv ∈  t such that yu (x) = 1 ,  yv (y) = 1 and yu ∩  yv  = 0. Let us 

take α ∈  1I such that yv (y) > α  > 0 , as yv (y) = 1. Hence we see that { yv  : y ∈  

0λ  } is an open αp – shading of λ  in ( )tX , . As λ  is αp – compact in 

( )tX , , then λ  has a finite αp – subshading, say { 
kyv : ky ∈  0λ  } ( k  = 1, 2, 

…… , n )  such that 
kyv (y) > α  for each y ∈  0λ . Now, let v = 

1yv ∪
2yv ∪ ...... 

∪
nyv  and u = 

1yu ∩  
2yu ∩  ...... ∩

nyu . Thus we see that v and u are open fuzzy 

sets, as they are the union and finite intersection of open fuzzy sets respectively i.e. 

v, u ∈  t. Moreover, 0λ  ⊆  1−v ( 0 , 1 ] and u (x) = 1, as  
kyu (x) = 1 for each k .  

Finally, we have to show that u ∩ v = 0. As  
kyu ∩  

kyv = 0 implies that u ∩
kyv = 0 

, by distributive law , we see that u ∩ v = u ∩ ( 
1yv ∪

2yv ∪  ….. ∪
nyv ) = 0 . 

Similar proof of *αp – compactness.  

Theorem 3.15 : Let λ  and μ  be disjoint αp – compact, 0 ≤ α  < 1 ( resp. *αp – 

compact, 0 < α  ≤  1 ) fuzzy sets in a fuzzy Hausdorff space ( )tX ,  ( as def. – 

2.19 ) with 0λ  , 0μ  ⊂  X        ( proper subsets ). Then there exist u , v ∈ t such 

that 0λ  ⊆  1−u ( 0 , 1] , 0μ  ⊆  1−v ( 0 , 1] and    u ∩ v = 0. 
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Proof : Suppose y ∈  0λ . Then y ∉ 0μ , as λ  and μ  are disjoint. Since μ  is αp – 

compact fuzzy set in ( )tX , , then by theorem 3.14, there exist yu  , yv ∈ t such 

that yu (y) = 1, 0μ  ⊆  1−
yv ( 0 , 1 ] and yu ∩  yv  = 0. Let us take α ∈  1I  such that 

yu (y) > α  > 0 , as yu (y) = 1. Then we see that { yu  : y ∈  0λ  } is an open αp – 

shading of λ  in ( )tX , . Since λ  is αp – compact in ( )tX , , then λ  has a 

finite αp – subshading, say { 
kyu : ky ∈  0λ  } ( k  = 1, 2, …… , n )  such that 

kyu (y) > α  for each y ∈  0λ .  Furthermore, as μ  is αp – compact , then μ  has a 

finite αp – subshading, say { 
kyv : ky ∈  0μ  } ( k  = 1, 2, …… , n )  such that 

kyv (x) > α  for each x ∈  0μ , as 0μ  ⊆  1−
kyv ( 0 , 1 ] for each k . Now, let u = 

1yu ∪  

2yu ∪  ...... ∪
nyu  and            v = 

1yv ∩
2yv ∩ ...... ∩

nyv . Hence we see that 0λ  ⊆  

1−u ( 0 , 1 ] and 0μ  ⊆  1−v ( 0 , 1 ]. Thus u and v are open fuzzy sets, as they are the 

union and finite intersection of open fuzzy sets respectively i.e. u, v ∈ t. 

Finally, we have to show that u ∩ v = 0. We observe that 
kyu ∩  

kyv = 0 for each 

k implies that 
kyu  ∩  v = 0 for each k , by distributive law , we see that u ∩  v = ( 

1yu ∪  
2yu ∪  ...... ∪

nyu )∩  v = 0 . 

Similar proof of *αp – compact can be done.  

The following example will show that the αp – compact, 0 ≤ α  < 1  ( resp. *αp – 

compact, 0 < α  ≤  1 )  fuzzy set in a fuzzy Hausdorff space ( as def. – 2.19 ) need 

not be closed. 

Example 3.11 will work for the same. 

Theorem 3.16 : Let λ  be a αp – compact, 0 ≤ α  < 1 ( resp. *αp – compact, 0 < 

α  ≤  1 ) fuzzy set in a fuzzy Hausdorff space ( )tX ,  ( in the sense of Def. 2.20 ) 

with 0λ  ⊂  X ( proper subset ). Let x ∉ 0λ  (λ (x) = 0 ) , then there exist u , v ∈ t 

such that u (x) = 1 ,  0λ ⊆  1−v ( 0 , 1] and u ⊆  1 – v.  
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Proof : Suppose y ∈  0λ . Then clearly x ≠  y. Since ( )tX ,  is fuzzy Hausdorff 

space, there exist yu  , yv ∈ t such that yu (x) = 1 ,  yv (y) = 1 and yu  ⊆  1 –  yv . 

Let us take α ∈  1I such that yv (y) > α  > 0 , as yv (y) = 1. Thus we see that { yv  : 

y ∈  0λ  } is an open αp – shading of λ  in ( )tX , . Since λ  is αp – compact in 

( )tX , , then λ  has a finite αp – subshading, say       { 
kyv : ky ∈  0λ  } ( k  = 1, 2, 

…… , n )  such that 
kyv (y) > α  for each y ∈  0λ .  

Now, let v = 
1yv ∪

2yv ∪ ...... ∪
nyv  and u = 

1yu ∩  
2yu ∩  ...... ∩

nyu . Thus we see 

that v and u are open fuzzy sets, as they are the union and finite intersection of 

open fuzzy sets respectively i.e. v, u ∈  t. Moreover, 0λ  ⊆  1−v ( 0 , 1 ] and u (x) = 

1, as  
kyu (x) = 1 for each k .  

Finally, we have to show that u ⊆  1 – v . Since yu  ⊆  1 – yv  implies that u ⊆  1 –

yv  . As 
kyu  (x) ≤  1 –

kyv  (x) for all x ∈  X and for each k , then u ⊆  1 – v . If not , 

then there exist x ∈ X , such that yu (x) >1 – yv (x) . We have yu (x) ≤  
kyu  (x) for 

each k . Then for some k  , 
kyu  (x) >1 –

kyv  (x) . But this is a contradiction, as 

kyu (x) ≤  1 –
kyv (x) for each k  . Hence u ⊆  1 – v . 

Similar proof of *αp  – compactness.  

Theorem 3.17 : Let λ  and μ  be disjoint αp – compact, 0 ≤ α  < 1 ( resp. *αp – 

compact, 0 < α  ≤  1 ) fuzzy sets in a fuzzy Hausdorff space ( )tX ,  ( in the sense 

of Def. 2.20 ) with 0λ  , 0μ  ⊂  X ( proper subsets ). Then there exist u , v ∈  t such 

that 0λ  ⊆  1−u ( 0 , 1] , 0μ  ⊆  1−v ( 0 , 1] and u ⊆  1 – v. 

Proof : Suppose y ∈  0λ . Then y ∉ 0μ , as λ  and μ  are disjoint. Since μ  is αp – 

compact fuzzy set in ( )tX , , then by theorem 3.16, there exist yu  , yv ∈  t such 

that yu (y) = 1, 0μ  ⊆  1−
yv ( 0 , 1 ] and yu  ⊆  1 –  yv . Let us assume that α ∈  1I  

such that yu (y) > α  > 0 , as yu (y) = 1. Then we see that { yu  : y ∈  0λ  } is an 
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open αp – shading of λ  in ( )tX , . Since λ  is αp  – compact in ( )tX , , then 

λ  has a finite αp – subshading, say { 
kyu : ky ∈  0λ  } ( k  = 1, 2, …… , n )  such 

that 
kyu (y) > α  for each y ∈  0λ .  Furthermore, as μ  is αp – compact , then μ  

has a finite αp – subshading, say { 
kyv : ky ∈  0μ  } ( k  = 1, 2, …… , n )  such that 

kyv (x) > α  for each x ∈  0μ , as 0μ  ⊆  1−
kyv ( 0 , 1 ] for each k . Now, let u = 

1yu ∪  

2yu ∪  ...... ∪
nyu  and      v = 

1yv ∩
2yv ∩ ...... ∩

nyv . Hence we see that 0λ  ⊆  

1−u ( 0 , 1 ] and 0μ  ⊆  1−v ( 0 , 1 ]. Thus u and v are open fuzzy sets, as they are the 

union and finite intersection of open fuzzy sets respectively i.e. u, v ∈  t. 

Finally, we have to show that u ⊆  1 – v. Since 
kyu ⊆ 1 – 

kyv  for each k implies 

that 
kyu ⊆  1 – v for each k and hence it is clear that u ⊆  1 – v.  

Similar proof of *αp – compactness.  

The following example will show that the αp – compact, 0 ≤ α  < 1  ( resp. *αp – 

compact, 0 < α  ≤  1 )  fuzzy set in a fuzzy Hausdorff space ( in the sense of Def. 

2.20 ) need not be closed. 

Example 3.11 will surve the purpose. 

Theorem 3.18 : Let λ  be a αp – compact, 0 ≤ α  < 1 ( resp. *αp – compact, 0 < 

α  ≤  1 ) fuzzy set in a fuzzy Hausdorff space ( )tX ,  ( in the sense of Def. – 2.21 

) with 0λ  ⊂  X            ( proper subset ). Let x ∉ 0λ  (λ (x) = 0 ) , then there exist u 

, v ∈  t such that u (x) > 0,  0λ ⊆  1−v ( 0 , 1] and u ∩  v = 0.  

Proof : Similar as Theorem 3.14.  

Theorem 3.19 : Let λ  and μ  be disjoint αp – compact, 0 ≤ α  < 1 ( resp. *αp – 

compact, 0 < α  ≤  1 ) fuzzy sets in a fuzzy Hausdorff space ( )tX ,  ( in the sense 

of Def. – 2.21 ) with 0λ  , 0μ  ⊂  X ( proper subsets ). Then there exist u , v ∈  t 

such that 0λ  ⊆  1−u ( 0 , 1] , 0μ  ⊆        1−v ( 0 , 1] and u ∩ v = 0. 

Proof : Similar as Theorem 3.15.     
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The following example will show that the αp – compact, 0 ≤ α  < 1  ( resp. *αp – 

compact, 0 < α  ≤  1 )  fuzzy set in a fuzzy Hausdorff space, in the sense of Def. – 

2.21  need not be closed. 

Example 3.11 will surve the purpose. 

Theorem 3.20 : Let λ  be a αp – compact, 0 ≤ α  < 1 ( resp. *αp – compact, 0 < 

α  ≤  1 ) fuzzy set in a fuzzy regular space ( )tX ,  with 0λ  ⊂  X ( proper subset ). 

If for each x ∈ 0λ , there exists u ∈ ct  with u(x) = 0, we have v , w ∈ t such that v 

(x) = 1 , u ⊆  w, 0λ ⊆  1−v ( 0 , 1] and v ⊆  1 – w.   

Proof : Let ( )tX ,  be a fuzzy regular space and λ  be a αp – compact fuzzy set 

in ( )tX , . Then for each x ∈ 0λ , there exists u ∈ ct  with u(x) = 0. As ( )tX ,  is 

fuzzy regular, we have xv , xw  ∈  t such that xv (x) = 1, xu  ⊆  xw  and xv ⊆  1 – xw . 

Let us assume that α ∈  1I , then xv  (x) > α  > 0, as xv (x) = 1. Hence we see that { 

xv  : x ∈ 0λ  } is an open αp – shading of λ . Since λ  is αp  – compact, then λ  

has a finite αp – subshading, say { 
kxv : kx ∈  0λ  } ( k  = 1, 2, …… , n )  such that 

kxv (x) > α  for each x ∈ 0λ . Now, let v = 
1x

v ∪
2xv ∪ ...... ∪

nxv  and w = 

1x
w ∩

2xw ∩ ...... ∩
nxw . Thus we see that v and w are open fuzzy sets, as they are 

the union and finite intersection of open fuzzy sets respectively i.e. v, w ∈  t. 

Moreover, 0λ ⊆  1−v ( 0 , 1] , v (x) = 1 and u ⊆  w, as u ⊆  
kxw  for each k . 

Finally, we have to show that v ⊆  1 – w. First, we observe that 
kxv ⊆ 1 – 

kxw = 0 

for each k implies that 
kxv ⊆  1 – w for each k and hence it is clear that v ⊆  1 – w.  

Similar proof of *αp – compactness.  

Theorem 3.21 : Let ( )TX ,  be a topological space and ( ))(, TX ω  be an fts. 

Let λ  be a fuzzy set in X.  

( i ) If 0 ≤ α  < 1, then λ  is αp – compact in ( ))(, TX ω  iff 1−λ ( 0 , 1 ] is 

compact in ( )TX , . 
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( ii ) If 0 < α  ≤  1, then λ  is *αp – compact in ( ))(, TX ω  iff  1−λ ( 0 , 1 ] is 

compact in ( )TX , . 

Proof : ( i ) : Suppose λ  is αp  – compact fuzzy set in ( ))(, TX ω . Let W = { 

iV  : i  ∈ J } be an open cover of 1−λ ( 0 , 1 ] in ( )TX , . Then, since for each iV , 

there exists a iu  ∈ ω  (T) such that iV  = 1−
iu ( 0 , 1 ], we have W = { 1−

iu ( 0 , 1 ] : i  

∈  J }. Then the family G = { iu  : i  ∈  J } is an open αp  – shading of λ  in 

( ))(, TX ω . To see this, let x ∈ 0λ . Since W is an open cover of 1−λ ( 0 , 1 ], 

then there exists a 
0iV ∈  W such that x ∈

0iV . But 
0iV = 1

0

−
iu ( 0 , 1 ] for some 

0iu ∈  

ω  (T). Therefore x ∈  1
0

−
iu ( 0 , 1 ] which implies that 

0iu (x) > α . By αp – 

compactness of λ , G has a finite αp – subshading, say { 
kiu } ( k  = 1, 2, …… , n 

). Then { 1−
kiu ( 0 , 1 ] } ( k  = 1, 2, …… , n ) forms a finite subcover of W and hence 

1−λ ( 0 , 1 ] in ( )TX , .    

Conversely, suppose 1−λ ( 0 , 1 ] is compact in ( )TX , . Let M = { jv  : j  ∈  J } be 

an open αp  – shading of λ  in ( ))(, TX ω . Then the family H = { 1−
jv ( 0 , 1 ] : 

j  ∈  J } is an open cover of 1−λ ( 0 , 1 ] in ( )TX , . Now, for let x ∈ 0λ . Then 

there exists 
0j

v ∈  M such that 
0j

v (x) > α . Therefore x ∈ 1
0

−
jv ( 0 , 1 ] and hence 

1
0

−
jv ( 0 , 1 ] ∈  H. By compactness of 1−λ ( 0 , 1 ], H has a finite subcover, say { 1−

kj
v ( 

0 , 1 ] } ( k  = 1, 2, …… , n ). Then the family { 
kj

v }  ( k  = 1, 2, …… , n ) forms a 

finite αp – subshading of M and hence λ  is αp  – compact in ( ))(, TX ω . 

( ii ) The proof is similar. 

Theorem 3.22 : Let λ  and μ  be fuzzy sets in ( )tX ,  and ( )sY ,  respectively. 

Then 

( i ) If λ  and μ  are αp – compact fuzzy sets in ( )tX ,  and ( )sY ,  respectively,  

then (λ × μ ) is αp – compact in ( X×Y , t×s ), where  0 ≤ α  < 1. 
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( ii ) If λ  and μ  are *αp – compact fuzzy sets in ( )tX ,  and ( )sY ,  

respectively,  then (λ × μ ) is *αp – compact in ( X×Y , t×s ), where 0 < α  ≤  1. 
Proof : ( i ) : Suppose { iu  : i  ∈  J } is an open αp – shading of λ  in ( )tX ,  i.e. 

iu (x) > α  for each x ∈ 0λ  and { jv  : j  ∈  J } is an open αp – shading of μ  in 

( )sY ,  i.e. jv (y) > α  for each y ∈ 0μ . Now, let δ  = { iu × jv  : iu ∈  t and jv ∈  s 

} be an open αp – shading of (λ × μ ) in ( X×Y , t×s ). Thus we see that ( iu × jv  

) ( x , y ) = min ( iu (x) , jv (y) ) > α , for each ( x , y ) ∈ ( 0λ × 0μ ). As λ  is αp – 

compact in ( )tX ,  and μ  is αp – compact in ( )sY , , then λ  and μ  have finite 
αp – subshadings in ( )tX ,  and ( )sY ,  respectively, say 

ki
u ∈  { iu }  and 

kj
v ∈  

{ jv  } such that 
ki

u (x) > α  and 
kj

v (y) > α  for each x ∈ 0λ  and y ∈ 0μ  

respectively. Hence we have δ  has a finite αp – subshading, say (
ki

u ×
kj

v )∈  { 

iu × jv  } such that (
ki

u ×
kj

v ) ( x , y ) = min (
ki

u (x) , 
kj

v (y) ) > α  for each ( x , y ) 

∈ ( 0λ × 0μ ). Therefore (λ × μ ) is αp – compact in ( X×Y , t×s ).     

( ii ) The proof is similar.    
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