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Abstract 

An analytical investigation on a free convective mass transfer steady flow along 

a semi-infinite vertical plate bounded by a porous medium with large suction is 

completed in a rotating system. A mathematical model related to the problem is 

developed from the basis of studying Fluid Dynamics(FD). Non-dimensional system 

of equations is obtained by the usual similarity transformation with the help of similar 

variables. The perturbation technique is used to solve the momentum wiith 

concentration equations. The chief physical interest of the problem as shear stress and 

Sherwood number are also calculated here. The numerical values of velocities, 

concentration, shear stress and Sherwood number are plotted in figures. In order to 

observe the effects of various parameters on the flow variables, the results are 

discussed in detailed with the help of graphs.  

Last of all, some important findings of the problem are concluded in this study. 
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Eš² pjpÉ¡ pÇf¢LÑa N¡¢Z¢aL j−X−ml Eá¡he Ll¡ q−u−R z fËb¡e¤p¡−l pcªn ÙÛ¡e¡¿¹l−Zl 

j¡dÉ−j pcªn a−ml p¡q¡−kÉ A - j¡¢œL a−¿»l pj£LlZ¢V ¢eZÑu Ll¡ q−u−R z HC pjpÉ¡l 

j¤MÉ −i±a BLoÑZ ¢qp¡−h L«¿¹e f£sZ Hhw −nlEX e¡ð¡l (SHERWOOD NUMBER) NZe¡ 

Ll¡ q−u−R z N¢a−hN, N¡ ta¡, L«¿¹e f£se Hhw −nlEX e¡ð¡−ll p¡wMÉj¡e…¢m−L pwMÉ¡u 

fÔV Ll¡ q−u−R z fËh¡q Q−ml Efl ¢h¢hd fËQ−ml fËi¡h−L h¤Th¡l SeÉ Cq¡−cl gm¡gm…¢m 

¢hnci¡−h B−m¡Qe¡ Ll¡ q−u−R −mM¢Q−œl p¡q¡−kÉ z 

Ah−n−o, HC Ae¤på¡−e pjpÉ¡l ¢LR¥ …l¦aÆf§ZÑ ¢pÜ¡¿¹−L Q¨s¡¿¹ Ll¡ q−u−R z 

1. Introduction 

The processes of mass transfer play an important role in the production of 

materials in order to obtain the desired properties of a substance. Separation processes 

in chemical engineering such as the drying of solid materials, distillation, extraction 

and absorption are all affected by the process of mass transfer. Chemical reactions 

including combustion processes are often decisively determined by the mass transfer. 

Callahan and Marner(1976) studied a free convective unsteady flow with mass transfer 

past a semi-infinite plate. An investigation on free convective unsteady flow with mass 

transfer past an infinite vertical porous plate with constant suction has been completed 

by Soundalgekar and Wavre(1977). Transient free convection flow on a semi-infinite 

plate with mass transfer has been observed by Soundalgekar and Ganesan(1980).  

Since porous media are very widely used to insulate a heated body to maintain 

its temperature so to make the heat insulation of the surface more effective, it is 

necessary to study the flow through a porous medium. Raptis et al.(1981) have 

observed the steady free convective flow through a porous medium bounded by an 

infinite surface by use of the model of Yamamoto and Iwamura(1976) for the flow 

near the surface. A natural convective flow about a vertical plate embedded in porous 

medium have been analyzed by Kim and Vafai(1989). Recently, Magyari et al.(2004) 

have studied a free convective unsteady flow in a porous medium. 
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The flow problems in a rotating system are very important in rocket propulsion 

control, crystal growth technology, astrophysical plasma fluid dynamics and 

tribological regulation in moving machine parts. The Ekman boundary layers of an 

incompressible fluid have been investigated as basic boundary layers in a 

rotating environment appearing in the oceanic, atmospheric, cosmic fluid 

dynamics and solar physics or geophysical problems. Greenspan(1968) was the first 

author to recognize the Ekman boundary layer near a flat plate in a rotating fluid and 

find out the viscous and the Coriolis forces are of same order of magnitude. A 

free convective mass transfer flow in a rotating fluid past an infinite porous plate 

has been studied by Raptis and Perdikis(1982). Hence, our main aim is to investigate a 

free convective mass transfer Ekman boundary layer flow along a semi-infinite 

vertical plate surrounded by a porous medium with large suction. These types of problems 

play a decisive role in a number of industrial applications as chemical engineering, fiber 

and granular insulation, crystal growth technology, rocket propulsion control etc. 

2. Mathematical Model of Flow 

A free convective mass transfer steady flow of an electrically conducting 

incompressible viscous fluid past an electrically non-conducting semi-infinite 

vertical plate bounded by a porous medium is considered in a rotating system. The 

flow is assumed to be in the x-direction which is chosen along the plate in upward 

direction and y-axis is normal to it. Initially, we consider that the plate as well as the 

fluid particles is at rest at the same species concentration level ( )∞= CC  at all points, 

where ∞C  denotes the uniform concentration of fluid. It is also assumed that the plate 

be at rest after that the system is allowed to rotate with a constant angular velocity Ω  

about the y -axis. Hence the angular velocity vector is of the form ( )0,,0 Ω−=Ω .  

 Within the framework of the above stated assumptions, we have the following 

system of coupled non-linear partial differential equations in accordance with the 

Boussinesq’s approximation, 
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∂
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under also the Ekman bounder layer phenomena, the appropriate boundary conditions 

of the problem are as given below, 

0=u ,     ( )xVv = ,     0=w ,       wCC = ,     at 0→y  

0=u ,     0=v ,          0=w ,       ∞= CC ,     as ∞→y  
where x & y denote the cartesian coordinates in two directions, u, v & w are velocity 

components of flow, g is the local acceleration due to gravity, β  is the thermal 

expansion coefficient, υ  is the kinematic viscosity, K ′  is the permeability of porous 

medium, mD  is coefficient of mass diffusivity and wC  represents the species 

concentration near at the plate.  

In order to obtain the non-dimensional system of equations, it is required to 

introduce the following similar variables, 

0

2
Uy

x
η

υ
= ,   ( )02 xU fψ υ η=   and  ( )

∞

∞

−
−

=
CC
CC

w

ηϕ . 

Introducing the above stated variables, we have the followings, 

0 ( )u U f η′= ,   [ ]0 ( ) ( )
2
Uv f f
x

υ η η η′= −   and  gUw 0= . 

Using the above relations, we have the following dimensionless equations, 
( ) ( ) ( ) ( ) ( ) ( )2 0mf f f Kf G Egη η η η φ η η′′′ ′′ ′+ − + + =  

( ) ( ) ( ) ( ) ( )2 0g g f Ef Kgη η η η η′′ ′ ′+ − − =  

( ) ( ) ( ) 0cS fϕ η η ϕ η′′ ′+ =  
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where, 
0

2x vK
K U

=
′

 (Permeability Parameter),       
0

2Ω xE
U

=  (Ekman Number), 

2
0

2 ( )m w
g xG C C
U
β

∞= −  (Modified Grashof Number),   
m

c D
vS =  (Schmidt Number) 

and ( )f η′ , ( )g η  and ( )ϕ η  represent the non-dimensional primary velocity, 

secondary velocity of fluid and species concentretion respectively.   
Also the dimensionless boundary conditions, 

wff = ,       0=′f ,        0=g ,        1=ϕ ,                at   0=η  
                    0=′f ,        0=g ,        0=ϕ ,               as  ∞→η  

where, 
vU

xxVf w
0

2)(−=  is the transpiration parameter. Here 0>wf  indicates the 

suction and 0<wf  indicates the injection. 
 

3. Analytical Solutions 

Since the solution is sought for the large suction, so we take the followings, 

wfξ η= ,       ( ) ( )wf f Fη ξ= ,       2( ) ( )wfϕ η φ ξ= ,       2( ) ( )wg f Gη ξ= . 

Using the above quantities, we have the following system of equations, 

)2( EGGFKFFF m −−′=′′+′′′ φε ,       )2( FEKGGFG ′+=′+′′ ε ,       0=′+′′ cSFφφ  
with boundary conditions,  

1=F ,          0=′F ,          0=G ,        εφ =                 at 0=ξ         

                    0=′F ,          0=G ,        0=φ                 as ∞→ξ     where, 2

1

wf
ε = . 

Now for the large suction 1>wf , ε  will be very small. Hence F , G  and φ   can be 

expended in terms of the small perturbation quantity ε  as,   
2 3

1 2 3( ) 1 ( ) ( ) ( )F F F Fξ ε ξ ε ξ ε ξ= + + + +                
2 3

1 2 3( ) ( ) ( ) ( )G G G Gξ ε ξ ε ξ ε ξ= + + +                   
2 3

1 2 3( ) ( ) ( ) ( )φ ξ ε φ ξ ε φ ξ ε φ ξ= + + +              
Introducing ( )F ξ , ( )G ξ  and ( )φ ξ  in the above system of equations, we get the first 

order equations,   011 =′′+′′′ FF ,   011 =′+′′ GG    and   1 1 0cSφ φ′′ ′+ =  
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with first order boundary conditions,  

01 =F ,          01 =′F ,         01 =G ,        11 =φ             at 0=ξ  
           01 =′F ,         01 =G ,        01 =φ             as ∞→ξ . 
Also we have the second order equations, 

1111122 2EGGKFFFFF m −−=′′+′′+′′′ φ  

111122 2 FEKGGFGG ′+=′+′+′′             and          2 2 1 1 0c cS F Sφ φ φ′′ ′ ′+ + =  
with second order boundary conditions,  

02 =F ,          02 =′F ,         02 =G ,         02 =φ          at 0=ξ  
           02 =′F ,         02 =G ,         02 =φ          as ∞→ξ . 
And we obtain the third order equations, 

222321123 2EGGFKFFFFFF m −−′=′′+′′+′′+′′′ φ  

22321123 2 FEKGGGFGFG ′+=′+′+′+′′       and       3 3 1 2 2 1 0c c cS F S F Sφ φ φ φ′′+ + + =  

with the third order boundary conditions,  

03 =F ,          03 =′F ,          03 =G ,          03 =φ           at 0=ξ  

           03 =′F ,          03 =G ,          03 =φ           as ∞→ξ . 
Using the prescribed boundary conditions upon simplification, we obtain the           

First order solution,                 01 =F ,  01 =G   and   1
cSe ξφ −=  

Second order solution,            2 20
cSF A e ξ−= ,  02 =G   and  02 =φ  

and Third order solution,   3 21
cSF A e ξ−= ,  3 22

cSG A e ξ−=   and  2
3 23

cSA e ξφ −= . 

From the first, second and third order solutions, the velocities and concentration 

functions are obtained as follows, 

Primary velocity,   2
20 21( ) c w c wS f S f

c cf S A e S A eη ηη ε ε− −′ = − −  

Secondary velocity,   2
22( ) c wS fg A e ηη ε −=  

Concentration,   22
23( ) .c w c wS f S fe A eη ηϕ η ε− −= +   
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4. Shear Stress and Sherwood Number 
Since the quantities of chief physical interest are shear stress and Sherwood 

number, so the primary shear stress near at the plate is defined as, 
0=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
y

x y
uμτ

 
which implies that, ( )2 2 2

20 21x c cS A S Aτ α ε ε+ ; the secondary shear stress near at plate is 

also defined as, 
0

z
y

w
y

τ μ
=

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

which implies that, ( )2
22z cS Aτ α ε−  and the Sherwood 

number is defined as, 
0=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
y

h y
CS μ  which implies that, ( )2

232h c cS S S Aα ε− − . 

 

5. Results and Discussion 

In order to discuss the results of the problem, analytical solutions of the system 

of coupled non-linear partial differential equations are obtained by using the 

perturbation technique. To analyze the physical situation of the model, we have 

computed the numerical values of the flow variables for different values of suction 

parameter ( )wf , modified Grashof number ( )mG , Schmidt number ( )cS , Ekman 

number ( )E  and the permeability parameter ( )K . The fluid velocities and species 

concentration versus the non-dimensional length scale η  are plotted in Figs. 1-5. 

The primary velocity profiles for different values of K , mG , cS  and wf  are 

displayed in Fig. 1 and Fig. 2. It is observed from Fig. 1 that the primary velocity 

gradually decreases with the rise of K  but it rapidly increases in case of strong mG . 

Fig. 2 declare that primary velocity swiftly decreases with the increase of cS  or wf .  
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  Fig.1. Primary Velocity Profiles for K & mG        Fig.2. Primary Velocity Profiles for cS & wf  

     
Fig.3. Secondary Velocity Profiles for mG & wf   Fig.4. Secondary Velocity Profiles for cS & E 
 

The secondry velocity profiles for different values of mG , wf , cS  and E  are shown 

in Fig. 3 and Fig. 4. We see in Fig. 3, the secondry velocity decreases for the 

increasing value of mG  while it increases with the rise of wf . It is observed from 

Fig. 4, the secondry velocity is increasingly affected by cS  but decreasingly affected 

by E . Decreasing effect of wf  or cS  on species concentration is observed from Fig. 5. 



 
J. Mech. Cont. & Math. Sci., Vol.-9, No.-1, (2014) Pages 1357-1367 

1365 
 

     
     Fig.5. Concentration Profiles for wf & cS                Fig.6. Primary Shear Stress for K & mG  

     
       Fig.7. Primary Shear Stress for wf & cS            Fig.8. Secondary Shear Stress for wf & mG  

 

The shear stress near at plate and Sherwood number versus the dimensionless 

length scale η  are illustrated in Figs. 6-10. The curves of primary shear stress are 

shown in Figs. 6-7. It is found from Fig. 6 that the primary shear stress increases in 

case of strong K  while it decreases with the increase of mG . The Fig. 7 shows that 

the primary shear stress rises for the increasing value of wf  but it decreases with the 

increase of cS . We see in Fig. 8, the secondary shear stress fall for the increasing 

values of wf  but it rises in cse of strong mG . It is studied from Fig. 9 that secondary 

shear stress gradually increases with the rise of E  or cS . A negligible effect of wf  
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and a strong decreasing effect of cS on Sherwood number are observed from Fig.10. 

     
       Fig.9. Secondary Shear Stress for E & cS               Fig.10. Sherwood Number for wf & cS  

 

6. Conclusions 

Some of the important findings of the present problem obtained from the 
graphical representation of the results are listed below, 

1. The primary velocity of fluid particles increase with the rise of mG  while 

decrease for the increase of wF , cS  or K . 

2. The secondary fluid velocity increases in case of strong wF  or cS  but it 

decreases with the rise of mG  or E . 

3. The species concentration decreases with the increases of wF  or cS .  

4. The primary shear stress near at the plate increases in case of strong wF  or K   

while it decreases with the increase of mG  or cS . 

5. The secondary shear stress rises with the increase of cS , mG  or E  while it 

decreases for the increase of wF .       

6. The Sherwood number decreases with the increases of cS . 
 

Appendix 
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