SOME PROPERTIES OF 1-DISTRIBUTIVE JOIN SEMILATTICES

By

¹ Shiuly Akhter ²A. S. A. Noor, and ³M. Ayub Ali,

¹ Department of Mathematics, Rajshahi University, Bangladesh ²Department of ECE, East West University, Dhaka, Bangladesh.

³Department of Mathematics, Jagannath University, Dhaka, Bangladesh.

Abstract.

J. C. Varlet introduced the concept of 1-distributive lattices to generalize the notion of dual pseudo complemented lattices. A lattice L with 1 is called a 1-distributive lattice if for all $a,b,c \in L$, $a \lor b = 1 = a \lor c$ imply $a \lor (b \land c) = 1$. Of course every distributive lattice with 1 is 1-distributive. Also every dual pseudo complemented lattice is 1-distributive.Recently, Shiuly and Noor extended this concept for directed below join semi lattices. A join semi lattice S is called directed below if for all $a,b \in S$, there exists $c \in S$ such that $c \le a,b$. Again Y. Ray has extended the concept of 1-distributivity by introducing the notion of semi prime filters in a lattice. Recently, Noor and Ayub have studied the semi prime filters in a directed below join semi lattice. In this paper we have included several characterizations and properties of 1-distributive join semi lattices. We proved join lattice $A^1 = \{x \in S : x \lor a = 1 \text{ for some } a \in A\}$ is a semi prime filter of S if and only if S is 1distributive. We also showed that a directed below join semi lattice with 1 is 1-distributive if and only if for all $a,b \in S$, $(a)^1 \cap (b)^1 = (d)^1$ for some $d \in S$, $d \leq a,b$. Introducing the notion of α - filters and using different equivalent conditions of 1-distributive join semi lattices we have given a 'Separation theorem' for α - filters.

Keywords and Phrases: 1-distributive join semi lattice, Semi prime filter, Prime ideal, Maximal ideal, α -filter.

Introduction: J. C. Varlet [8] first introduced the concept of 1-distributive lattices. Then many authors including [1, 2, 7] studied them for lattices and semilattices. By [7], a join semilattice S with 1 is called 1-distributive if for all $a,b,c \in S$ with $a \lor b = 1 = a \lor c$ imply $a \lor d = 1$ for some $d \le b,c$. We also know that a 1-distributive join semilattice is directed below. A join semi-lattice S is called *directed below* if for all $a,b \in S$, there exists $c \in S$ such that $c \le a,b$. A non-empty subset F of a directed below join semilattice S is called an S is called an

J.Mech.Cont.& Math. Sci., Vol.-9, No.-1, July (2014) Pages 1377-1384

 $x \in F$ and $y \ge x$ $(y \in S)$ imply $y \in F$. Up set F is called a *filter* if for $x, y \in F$, there exists $z \le x$, y such that $z \in F$.

A non-empty subset I of S is called a *down set* if $x \in I$ and $y \le x$ ($y \in S$) imply $y \in I$. A down set I of S is called an *ideal* if for all $x, y \in I$, $x \lor y \in I$. A filter (up set) Q is called a prime filter (down set) if $a \lor b \in Q$ implies either $a \in Q$ or $b \in Q$. An ideal P of S is called prime if S - P is a prime filter.

An ideal I of S is called a maximal ideal if $I \neq S$ and it is not contained by any other proper ideal of S. A prime up set P is called a minimal prime up set if it does not contain any other prime up set of S.

Following Lemmas in lattices are due to [2] and [6], and also hold for join semi lattices by [1, 7].

Lemma 1: A proper subset I of a join semilattice S is a maximal ideal if and only if S - I is a minimal prime up set. \square

Lemma 2: Let I be a proper ideal of a join semilattice S with I. Then there exists a maximal ideal containing I. \square

Following result is due to [1, Lemma 5]

Lemma 3: Let I be an ideal and F be a filter of a directed below join semilattice S, such that $F \cap I = \{$. Then I is a maximal ideal disjoint from F if and only if for each $a \notin I$, there exists $b \in I$ such that $a \lor b \in F$.

Let S be a join semilattice with 1. For a non-empty subset A of S, we define $A^{\perp^d} = \{x \in S \mid x \vee a = 1 \mid for \ all \ a \in A \}$. This is clearly an up set, but we can not prove that this is a filter even in a distributive join semilattice. If L is a lattice with 1, then it is well known that L is 1-distributive if and only if D(L), the lattice of all filters of L is 0-distributive. Unfortunately, we can not prove or disprove that when S is a 1-distributive join semi lattice, then D(S) is 0-distributive. But if D(S) is 0-distributive, then it is easy to prove that S is also 1-distributive. We define $A^1 = \{x \in S \mid x \vee a = 1 \text{ for some } a \in A \}$. This is obviously an up set. Moreover, $A \subseteq B$ implies $A^1 \subseteq B^1$. For any $a \in S$, it easy to check that $(a)^{\perp^d} = (a)^1 = (a)^1$.

Following result is due to [7].

Theorem 4: Let S be a directed below join semilattice with 1. Then the following conditions are equivalent.

J.Mech.Cont.& Math. Sci., Vol.-9, No.-1, July (2014) Pages 1377-1384

- (i) S is 1-distributive
- (ii) For each $a \in S$, $(a] \lor (d] \subseteq (a] \lor (b]$ is a filter.
- (iii) Every maximal ideal of S is prime. \square

Since in a 1-distributive join semilattice S, for each $a \in S$, $(a)^{\perp^d}$ is a filter, so we prefer to denote it by $[a)^{*d}$. Y Rav [6] have generalized the concept of 1-distributive lattices and introduced the notion of semi prime ideals and filters in lattices. Recently, [3] have studied many properties of semi prime ideals in lattices. In a directed below join semilattice S, a filter F is called a *semi prime filter* if for all $x, y, z \in S$, $x \vee y \in F$, $x \vee z \in F$ imply $x \vee d \in F$ for some $d \leq y, z$. In a distributive semilattice, every filter is semi prime. Moreover, the semilattice itself is obviously a semi prime filter. Also, every prime filter of S is semi prime.

Theorem 5: For any join sub semilattice A of a directed below join semi lattice S with I, A^1 is a semi prime filter of S if and only if S is I-distributive.

Proof: Suppose S is 1-distributive. We already know that A^1 is an up set, Now let $x, y \in A^1$. Then $x \vee a = 1 = y \vee b$ for some $a, b \in A$. Then $x \vee a \vee b = 1 = y \vee a \vee b$. Since S is 1-distributive, so $(a \vee b) \vee d = 1$ for some $d \leq x, y$. Now $a \vee b \in A$ implies $d \in A^1$, and so A^1 is an ideal. Finally let $x \vee y \in A^1$, and $x \vee z \in A^1$. Then $x \vee y \vee a_1 = 1 = x \vee z \vee b_1$ for some $a_1, b_1 \in A$. Thus $x \vee a_1 \vee b_1 \vee y = 1 = x \vee a_1 \vee b_1 \vee z$. Then by the 1-distributive property, $x \vee a_1 \vee b_1 \vee d_1 = 1$ for some $d_1 \leq y, z$. Thus $x \vee d_1 \in A^1$ as $a_1 \vee b_1 \in A$. Therefore A^1 is semi-prime. Conversely, if A^1 is a semi-prime filter for every join sub-semilattice A of S, then in particular $(a)^1$ is a filter. Thus S is 1-distributive by Theorem 4. \square

Following characterization of semi prime filters is due to [1].

Theorem 6: Let S be a directed below join Semilattice with 1 and F be a filter of S.

Then the following conditions are equivalent.

- (i) F is semi prime
- (ii) Every maximal ideal disjoint to F is prime. \square

Thus we have the following separation theorem.

J.Mech.Cont.& Math. Sci., Vol.-9, No.-1, July (2014) Pages 1377-1384

Theorem 7: Let S be a 1-distributive join semi lattice and A be a join subsemilattice of S. Then for an ideal I disjoint from A^1 , there exists a prime filter containing A^1 and disjoint from I.

Lemma 8: Let A and B be ideals of a directed below join semilattice S with 1, such that $A \cap B^1 = \emptyset$. Then there exists a minimal prime up set containing B^1 and disjoint from A.

Proof: Observe that $1 \notin A \lor B$. For if $1 \in A \lor B$, Then $1 \le a \lor b$ for some $a \in A$, $b \in B$. That is, $a \lor b = 1$, which implies $a \in B^1$ gives a contradiction. It follows that $A \lor B$ is a proper ideal of S. Then by Lemma 2, $A \lor B \subseteq M$ for some maximal ideal M. If $x \in M \cap B^1$, Then $x \in M$ and $x \lor b_1 = 1$ for some $b_1 \in B \subseteq M$. This implies $1 \in M$ which is a contradiction as M is maximal. Thus, $M \cap B^1 = \emptyset$. Then by Lemma 1, S - M is a minimal prime up set containing B^1 . Moreover, $(S - M) \cap A = \{$.

Lemma 9: Let A be an ideal of a directed below join semilattice S with A. Then A is the intersection of all the minimal prime up sets disjoint from A.

Proof: Let N be any minimal prime up set disjoint from A. If $x \in A^1$, then $x \lor a = 1$ for some $a \in A$ and so $x \in N$ as N is prime.

Conversely, let $y \in A^1$. Then $y \vee a \neq 1$ for all $a \in A$. Hence $A \vee (y]$ is a proper ideal of S. Then by Lemma 2, $A \vee (y] \subseteq M$ for some maximal ideal M. Thus by Lemma 1, S - M is a minimal prime up set. Clearly $(S - M) \cap A = \{$ and $y \notin S - M$.

Now we include some characterization of 1-distributive join semilattices.

Theorem 10: Let S be a directed below join semilattice with 1. Then the following statements are equivalent.

- (i) S is 1-distributive.
- (ii) For each $a \in S$, $(a)^1$ is a semi prime ideal.
- (iii) For any three ideals A, B, C of S, $(A \lor (B \cap C))^{1} = (A \lor B)^{1} \cap (A \lor C)^{1}$
- (iv) For all $a,b,c \in S$, $((a] \lor ((b] \cap (c]))^1 = ((a] \lor (b])^1 \cap ((a] \lor (c])^1$
- (v) For all $a,b,c \in S$, $(a \lor d)^1 = (a \lor b)^1 \cap (a \lor c)^1$ for some $d \le b,c$.

Proof: (i) \Leftrightarrow (ii). Follows by theorem 4.

(i) \Rightarrow (iii). Let $x \in (A \lor B)^1 \cap (A \lor C)^1$. Then $x \in (A \lor B)^1$ and $x \in (A \lor C)^1$. Thus $x \lor f = 1 = x \lor g$ for some $f \in A \lor B$ and $g \in A \lor C$. Then $f \le a_1 \lor b$, and $g \le a_2 \lor c$ for some $a_1, a_2 \in A$, $b \in B$, $c \in C$. This implies $x \lor a_1 \lor b = 1 = x \lor a_2 \lor c$ and so $x \lor a_1 \lor a_2 \lor b = 1 = x \lor a_1 \lor a_2 \lor c$. Since S is 1-distributive, so $x \lor a_1 \lor a_2 \lor d = 1$ for some $d \le b, c$. Now $a_1 \lor a_2 \in A$ and $d \in B \cap C$. Therefore, $((a_1 \lor a_2) \lor d \in A \lor (B \cap C))$ and so $x \in (A \lor (B \cap C))^1$. The reverse inclusion is trivial as $A \lor (B \cap C) \subseteq A \lor B$, $A \lor C$. Hence (iii) holds.

(iii) \Rightarrow (iv) is trivial by considering A = (a], B = (b] and C = (c] in (iii).

(iv) \Rightarrow (v). Let (iv) holds. Suppose $x \in (a \lor b)^1 \cap (a \lor c)^1$. Then by (iv) $x \in ((a] \lor (b])^1 \cap ((a] \lor (c])^1 = ((a] \lor ((b] \cap (c]))^1$. This implies $x \lor f = 1$ for some $f \in (a] \lor ((b] \cap (c])$. Then $f \le a \lor d$ for some $d \in (b] \cap (c]$. That is, $f \le a \lor d$ for some $d \le b, c$. It follows that $x \lor a \lor d = 1$ and so $x \in (a \lor d)^1$. On the other hand, $(a] \lor (d] \subseteq (a] \lor (b]$ and $(a] \lor (d] \subseteq (a] \lor (c]$ implies that $(a \lor d)^1 \subseteq (a \lor b)^1 \cap (a \lor c)^1$. Therefore (v) holds as the reverse inclusion is trivial.

(v) \Rightarrow (i). Suppose (v) holds. Let $a,b,c \in S$ with $a \lor b = 1 = a \lor c$. Then $a \lor (a \lor b) = 1 = a \lor (a \lor c)$ implies $a \in (a \lor b)^1 \cap (a \lor c)^1 = (a \lor d)^1$ for some $d \le b,c$. Thus, $a \lor (a \lor d) = 1$ for some $d \le b,c$. That is $a \lor d = 1$ for some $d \le b,c$ and so S is 1 –distributive.

Now we include few more characterizations of 1-distributive semilattices.

Theorem 11: Let S be a directed below join semi lattice with 1. Then the following are equivalent.

- (i) S is 1-distributive.
- (ii) For any three ideals A, B, C of L. $((A \cap B) \vee (A \cap C))^{1} = A^{1} \cap (B \vee C)^{1}$
- (iii) For any two ideals A, B of S, $(A \cap B)^1 = A^1 \cap B^1$
- (iv) For all $a,b \in S$, $(a)^1 \cap (b)^1 = (d)^1$ for some $d \le b,c$.
- (v) For all $a,b \in S$, $[a)^{*d} \cap [b)^{*d} = [d)^{*d}$ for some $d \le b,c$.

Proof: (i) \Rightarrow (ii). Suppose S is 1-distributive, Since $(A \cap B) \vee (A \cap C) \subseteq A$ and $B \vee C$, so $((A \cap B) \vee (A \cap C))^1 \subseteq A^1 \cap (B \vee C)^1$. Now suppose $x \in A^1 \cap (B \vee C)^1$. Then $x \in A^1$ and $x \in (B \vee C)^1$. Thus $x \vee a = 1$ for some $x \in A$ and $x \vee d = 1$ for some $d \in B \vee C$. Now $d \in B \vee C$ implies $d \leq b \vee c$ for some $b \in B$, $c \in C$. Hence

 $x \lor a = 1 = x \lor b \lor c$. Then $x \lor c \lor a = 1 = x \lor c \lor b$. Since S is 1-distributive, so $x \lor c \lor d_1 = 1$ for some $d_1 \le a,b$. Then $d_1 \in A \lor B$. Now $x \lor a = 1$ implies $x \lor d_1 \lor a = 1 = x \lor d_1 \lor c$. Again by the 1-distributivity, $x \lor d_1 \lor d_2 = 1$ for some $d_2 \le a,c$ that is $d_2 \in A \lor C$. Therefore, $x \in ((A \cap B) \lor (A \cap C))^1$ and so (ii) holds.

- (ii) \Rightarrow (iii) is trivial by considering B = C in (iii).
- (iii) \Rightarrow (iv). Choose A = (a] and B = (b] in (iii).

Now for all $d \le a, b$, $(a] \supseteq (d]$ and $(b] \supseteq [d)$ and so $(d]^1 \subseteq (a)^1 \cap (b)^1$. Also by (iii), $(a)^1 \cap (b)^1 = ((a] \cap (b])^1$. Thus, $x \in (a)^1 \cap (b)^1$ implies $x \lor d_1 = 1$ for some $d_1 \le a, b$ as S is directed below. That is, $x \in (d_1)^1$ for some $d_1 \le a, b$. Thus (iv) holds.

- (iv) \Leftrightarrow (v) is obvious.
- (v) \Rightarrow (i). Suppose (v) holds and for $a,b,c \in S$, $a \lor b = 1 = a \lor c$. Then $a \in [b)^{*d} \cap [c)^{*d} = [d)^{*d}$ for some $d \le b,c$. Therefore, $a \lor d = 1$ and so S is 1-distributive.

A filter F in a directed below join semilattice S with 1 is called an α -filter if for each $x \in F$, $\{x\}^{\perp^d \perp^d} \subseteq F$.

Proposition 12: If F is an Γ -filter of a 1-distributive join semilattice S, then $F = \{ y \in S \mid [y] \subseteq \{x\}^{\perp^{d} \perp^{d}} \text{ for some } x \in F \}$.

Proof: Let $y \in R$. H. S. Then $[y) \subseteq \{x\}^{\perp^d \perp^d} \subseteq F$. This implies $y \in F$. Conversely, let $y \in F$. Since S is 1-distributive, so by theorem 4, $[y)^{\perp^d}$ is a filter and $[y) \cap [y)^{\perp^d} = [1)$. Thus, $[y) \subseteq [y)^{\perp^d \perp^d}$, which implies $y \in R$. H. S.

Prime separation theorem for α -ideals in 0-distributive lattices was given [4]. Now we include a prime separation theorem on α -filters for 1-distributive join semilattices.

Theorem 13: Let I be an ideal and F be an Γ -filter of a directed below join semilattice S with I, such that $I \cap F = \{$. If D(S), the lattice of filters of S is 0-distributive, then there exists a prime Γ -filter Q containing F such that $Q \cap I = \emptyset$.

Proof: By lemma 2, there exists a maximal ideal M containing I and disjoint to F. Thus Q = S - M is a minimal prime up set containing F and disjoint to M. Now let $p, q \in S - M$. Then by lemma 3, there exist $a, b \in M$ such that

 $a \lor p \in F$ and $b \lor q \in F$. Then by proposition 12, $[a \lor p) \subseteq (x]^{\perp^{d} \perp^{d}}$ $[b \lor q) \subseteq [y)^{\perp^d \perp^d}$ for some $x, y \in F$. Thus $[a \lor p) \land [x]^{\perp^d} = [1] = [b \lor q) \land [y]^{\perp^d}$. This implies $[a \lor b) \land [x]^{\perp^d} \land [y]^{\perp^d} \land [p] = [1] = [a \lor b) \land [x]^{\perp^d} \land [y]^{\perp^d} \land [q]$, Now as F is a filter, so there exists $d_1 \le x, y$ such that $d_1 \in F$. Again by Theorem $[x]^{\perp^d} \wedge [y]^{\perp^d} = [d_2]^{\perp^d}$ for some $d_2 \le x, y$. Then $d = d_1 \vee d_2 \in F$, and so $[d)^{\perp^d} \subseteq [x)^{\perp^d} \wedge [y)^{\perp^d} = [d_2)^{\perp^d} \subseteq [d)^{\perp^d}$. Thus $[x)^{\perp^d} \wedge [y)^{\perp^d} = [d)^{\perp^d}$ for some $d \in F$, $d \le x, y$. Then we have $[a \lor b) \land [d]^{\perp^d} \land [p] = [1] = [a \lor b) \land [d]^{\perp^d} \land [q]$. Since D(S) is 0-distributive, so $[a \lor b) \land [d]^{\perp^d} \land ([p) \lor [q]) = [1]$. Then $[a \lor b) \land [d)^{\perp^d} \land [t) = [1)$ for some $t \leq p, q$. Thus $[a \lor b \lor t) \subseteq [d)^{\perp^{d} \perp^{d}} \subseteq F \subseteq S - M$. But $a \lor b \in M$ implies $t \in S - M$ as S - M is prime. Therefore Q = S - M is a filter. Now let $x \in Q$. If $x \in F$, then $[x]^{\perp^d \perp^d} \subseteq F \subseteq Q$ as F is an α -filter. Finally if $x \in Q - F$. Then again by Lemma 3, there exists $a \in M$ such that $a \lor x \in F$. Thus $[a]^{\perp^d \perp^d} \lor [x]^{\perp^d \perp^d} \subseteq F \subseteq Q$. Since $a \notin Q$, so $[a]^{\perp^d \perp^d} \subseteq Q$. Therefore, $[x]^{\perp^d \perp^d} \subseteq Q$ as Q is prime, and hence Qis also an α -filter.

References

1. M. Ayub Ali and A. S. A. Noor, Semiprime filters in join semilattices, Submitted in Annals of Pure & Applied Mathematics, India.

- 2. P. Balasubramani and P. V. Venkatanarasimhan, *Characterizations of the 0-Distributive Lattices*, Indian J. Pure appl.Math. 32(3) 315-324, (2001).
- 3. R. M. Hafizur Rahman, M. Ayub Ali and A. S. A. Noor, On Semiprime ideals of lattices, J.
 - Mech. Cont. & Math. Sci. Vol.-7, No. -2, January (2013), pages 1094-1102.
- 4. C. Jayaram, *0-modular semilattices*, Studia Sci. Math. Hung. 22(1987), 189-195.
- 5. Y. S. Powar and N. K. Thakare, *0-Distributive semilattices*, Canad. Math. Bull. Vol. 21(4) (1978), 469-475.
- 6. Y. Rav, *Semi prime ideals in general lattices*, Journal of pure and Applied Algebra, 56(1989) 105-118.
 - 7. Shiuly Akhter and A.S.A.Noor, *1-distributive join semilattice*, J. Mech. Cont. & Math. Sci. Vol.-7,No.-2, January (2013) pages 1067-1076.
 - 8.J. C. Varlet, *A generalization of the notion of pseudo-complementedness*, Bull.Soc.Sci.Liege, 37(1968), 149-158.