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Abstract:

This paper addresses on engineering application using fuzzy abduction and Petri

net technique. The problems are introduced informally about the fault finding technique of

electronic networks with different illustrations, so that anyone without any background in

the specific domain easily understands them. and easily find out the fault of the

complicated electronic circuit. The problems require either a mathematical formulation or

a computer simulation for their solutions. The detail outline of the solution of the

engineering problem is illustrated here.
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1. Introduction.

Consider the problem of diagnosis of a 2-diode full wave rectifier circuit.

The expected rectifier output voltage is 12 volts, when the system operates

properly. Under defective condition, the output could be close to 0 volts or 10 volts

depending on the number of defective diodes. The knowledge base of the diagnosis

problem is extended into a FPN (vide fig. 1). The task here is to identify the

possible defects: defective (transformer) or defective (rectifier). Given the belief

distribution of the predicate close-to (rectifier-out, 0 v) and more-or-less (rectifier-

out, 10 v) (vide fig. 9 and 10), one has to estimate the belief distribution of the

predicate:  defective (transformer) and defective (rectifier). However, for this
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estimation, one should have knowledge of the relational matrices corresponding to

input-output place pairs of each transition and the thresholds. Let us assume for the

sake of simplicity that the thresholds are zero and the relational matrices for each

input-output pair of transition tr1 through tr7 are equal. So, for 1  i 7 let Ri =

















2.07.08.0

9.06.04.0

6.05.03.0

.

d1= defective (transformer), d2 =close-to (primary, 230), d3=defective (rectifier),

d4= Close-to (trans-out, 0V), d5 = Open (one half-of-secondary-coil), d6 =

Defective (one-diode), d7 = Defective (two-diodes), d8 =Close-tp (rectifier-out,

0V), d9 =More-or-less (rectifier-out, 0V).

Fig. 1 A FPN representing diagnostic knowledge of a 2- diode full wave rectifier.

Fig. 2: Belief distribution of Close-to (rectifier-out, 0V).
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Fig. 3: Belief distribution of More-or-Less (rectifier-out, 10V).

2. Outlines Based Approach:

Step 1: Given, the relational matrices for each input-output pair of transition tr1

through tr7 are equal. And these are, Ri =

















2.07.08.0

9.06.04.0

6.05.03.0
for 1  i 7.

The Ri
-1 = Pre-invrrse of (Ri) =

















4.09.04.0

7.02.02.0

8.02.02.0
, is determined by the Algorithm is given below.

At i =1

Evaluate_ ikq (i)

With 11q = 11r =0.3; 1h ( 11q ) = 11q - {( 11q  12r )+( 11q  13r )}/2 = 0.0

With 12q = 21r =0.4; 1h ( 12q ) = 12q - {( 12q  22r )+( 12q  23r )}/2 = 0.0

With 13q = 31r =0.8; 1h ( 13q ) = 13q - {( 13q  32r )+( 13q  33r )}/2 = 3.5

Max{ 1h ( 11q ), 1h ( 12q ), 1h ( 13q )}= 1h ( 13q ) ; Return 13q = 31r =0.8 and k=3.

Evaluate ijq for all j except k =3.

11q = Min( 31r , 32r , 33r ) = 0.2; 12q = Min( 31r , 32r , 33r ) = 0.2.

At i =2

Evaluate_ ikq (i)

With 21q = 12r = 0.5; 1h ( 21q ) = 21q - {( 21q  11r )+( 21q  13r )}/2 = 0.1

With 22q = 22r =0.6; 1h ( 22q ) = 22q -{( 22q  21r )+( 22q  23r )}/2 =0.1

With 23q = 32r = 0.7; 1h ( 23q ) = 23q -{( 23q  31r )+( 23q  33r )}/2 =0.25

Since, Max{ 1h ( 21q ) , 1h ( 22q ) , 1h ( 23q ) }= 1h ( 23q ) ;

Return 23q = 23r = 0.7 and k=3.

Evaluate ijq for all j except k = 3.

21q = Min( 31r , 32r , 33r ) = 0.2; 22q = Min( 31r , 32r , 33r ) = 0.2.
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At i =3

Evaluate_ ikq (i)

With 31q = 13r =0.6; 1h ( 31q ) = 31q -{( 31q  11r )+( 31q  12r )}/2 = 0.2

With 32q = 23r =0.9; 1h ( 32q ) = 32q -{( 32q  21r )+( 32q  22r )}/2= 0.4

With 33q = 33r =0.2; 1h ( 33q ) = 33q -{( 33q  31r )+( 33q  32r )}/2 = 0.0

Since, Max{ 1h ( 31q ), 1h ( 32q ), 1h ( 33q )}= 1h ( 32q );

Return 32q = 23r = 0.9 and k=2.

Evaluate ijq for all j except k = 2.

31q = Min( 21r , 22r , 23r ) = 0.4; 33q = Min( 21r , 22r , 23r ) = 0.4.

Step 2: The Ri for  8 i 9 will be the identity matrix. Thus Rf m in the present

context will be a (27 x 27) matrix, whose diagonal blocks will be occupied by Ri.

Further, since all the non-diagonal block matrices are null matrix, the Rf
-1 can be

constructed by substituting Ri in Rfm by Ri
-1.

The P ' f m and Q ' f m in the present context are also (27 x 27) matrices.

P ' f m =













































,

Q ' f m=













































The P 'f m
-1 and Q 'f m

-1 are now estimated using the Algorithm I.



J.Mech.Cont.& Math. Sci., Vol.-9, No.-2, January (2015) Pages 1368-1376

1372

P 'f m
-1=













































,

Q 'f m
-1=













































Nini is a (27 x 1) vector, given by

Nini =  [ 0 0 0    0 0 0    0 0 0    0 0 0     0 0 0     0 0 0     0 0 0      0.2 0.1 0.0    0.4

0.5 0.6 ] T
27x1

Using the equation of Petri-net’s dynamic, we write

N(t+1) = P ' f m o Rfm o (Q ' f m o Nc (t))c

P 'f m
-1 o N(t+1) = Rfm o (Q ' f m o Nc (t))c

Rf
-1 o (P 'f m

-1 o N(t+1)) = (Q ' f m o Nc (t))c

( Rf
-1 o (P 'f m

-1 o N(t+1)) )c = Q ' f m o Nc (t)

N (t) = [Q 'f m
-1 o ( Rf

-1 o (P 'f m
-1 o N(t+1)) )c]

Now, the algorithm for backward reasoning is then invoked using above formula

and the value of Q 'f m
-1 , Rf

-1 , P 'f m
-1 and N(t+1) = Nini.

Sample run

1st step: N (t) = [ 0 0 0     0 0 0     0 0 0     .2 .2 .2     .6 .6 .5       .6 .6 .5

.2 .2 .2 0.2 0.1 0.0       0.4 0.5 0.6] T

2nd step: N (t) = [0.2 0.2 0.2        0.2 0.2 0.2         0.5 0.5 0.6       0.2 0.2 0.2
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0.6 0.6 0.5       0 .6 0.6 0.5      0.2 0.2 0.2   0.2 0.1 0.0        0.4 0.5 0.6] T

3rd step: N (t) = [0.2 0.2 0.2       0.2 0.2 0.2      0.5 0.5 0.6      0.2 0.2 0.2

0.6 0.6 0.5       0.6 0.6 0.5       0.2 0.2 0.2       0.2 0.1 0.0   0.4 0.5 0.6 ] T

The steady-state belief distribution obtained after 3 iterations is given by

N S.S = [0.2 0.2 0.2      0.2 0.2 0.2      0.5 0.5 0.6      0.2 0.2 0.2       0.6 0.6 0.5

0.6 0.6 0.5     0.2 0.2 0.2       0.2 0.1 0.0   0.4 0.5 0.6 ] T

The output of rectifier is near to 9 volts because in Nini only n9 was set as higher

value. Nini is input of FPN for backward reasoning. After performing abductive

reasoning in FPN we got: n3, n5 and n6 has been triggered. n3 indicates diode has

been damaged. n5 indicates only one diode has been damaged. And n6 indicates

transformer’s secondary coil which is connected to damaged-diode may also be

damaged. This inference is logically true and valid.

Fig. 4: 1R1 and 1R2 are relational matrices

y

2x

1x

Forward junction voltage of
diode 1D

Forward junction voltage of
diode 2D

Output voltage

1R1

1R2
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Step 3: Abductive Reasoning:

Now, we assume the primary membership distribution of “output voltage as

MEDIUM” is: Source 1: (0.2   0.9   0.1), source 2: (0.1   1.0   0.2) and source 3:

(0.1   1.0   0.1). Furthermore, the secondary membership distribution of “output

voltage as MEDIUM” is: Q' = [1.0   0.7   0.7   0.6   0.9   0.8   0.9   0.5 0.8]. Thus,

the primary membership distribution for “output voltage as MEDIUM” is obtained

using the above primary membership distributions from all sources correspond to

the best secondary membership value as, )(__ yMMEDIUVoltOutput
best

 = )( 1xB
best

 = [0.2

1.0   0.1]. Now, we have the primary distribution for diode 1D as )( 1xA
best

 =

)( 1xB
best

 o (1R1)
T = [0.2   1.0   0.1] o

















1.01.01.0

1.03.09.0

1.02.02.0

= [0.9   0.3   0.1]. Similarly,

we obtain the primary distribution for diode 2D as )( 1xc
best

 = )( 1xB
best

 o (1R2)
T =

[0.2   1.0   0.1] o
















1.01.01.0

9.02.01.0

2.02.01.0

= [0.1   0.2   0.9].

Thus, when the output voltage is MEDIUM, then we have the primary distribution

for diode D1 as [0.9   0.3   0.1], i.e., diode D1 is not defective and the primary

distribution for diode D2 as [0.1   0.2   0.9], i.e., diode D2 is defective.
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