J.Mech.Cont.\& Math. Sci., Vol.-9, No.-2, January (2015) Pages 1368-1376

FAULT DETECTION IN ENGINEERING APPLICATION USING FUZZY PETRI NET AND ABDUCTION TECHNIQUE

By
${ }^{1}$ Sudipta Ghosh, ${ }^{2}$ Nabanita Das, ${ }^{3}$ Debasish Kundu and ${ }^{4}$ Gopal Paul
${ }^{1}$,Dept. of ECE, Bengal Institute of Technology and Management, Santiniketan, West Bengal, India
${ }^{2}$,Dept. of EE, Bengal Institute of Technology and Management, Santiniketan, West Bengal, India
${ }^{2}$ Gobindopur Saphali Memorial Polytechnic, Gobindopur, Guskara, Burdwan, West Bengal, India
${ }^{4} 370$, Basunagar, Madhyamgram, Kolkata, India

Abstract

: This paper addresses on engineering application using fuzzy abduction and Petri net technique. The problems are introduced informally about the fault finding technique of electronic networks with different illustrations, so that anyone without any background in the specific domain easily understands them. and easily find out the fault of the complicated electronic circuit. The problems require either a mathematical formulation or a computer simulation for their solutions. The detail outline of the solution of the engineering problem is illustrated here.

Keywords and Phrases : Fuzzy abduction, Petri net, Relational matrix, Abductive Reasoning

1. Introduction.

Consider the problem of diagnosis of a 2 -diode full wave rectifier circuit. The expected rectifier output voltage is 12 volts, when the system operates properly. Under defective condition, the output could be close to 0 volts or 10 volts depending on the number of defective diodes. The knowledge base of the diagnosis problem is extended into a FPN (vide fig. 1). The task here is to identify the possible defects: defective (transformer) or defective (rectifier). Given the belief distribution of the predicate close-to (rectifier-out, 0 v) and more-or-less (rectifierout, 10 v) (vide fig. 9 and 10), one has to estimate the belief distribution of the predicate: defective (transformer) and defective (rectifier). However, for this
J.Mech.Cont.\& Math. Sci., Vol.-9, No.-2, January (2015) Pages 1368-1376
estimation, one should have knowledge of the relational matrices corresponding to input-output place pairs of each transition and the thresholds. Let us assume for the sake of simplicity that the thresholds are zero and the relational matrices for each input-output pair of ${\operatorname{transition~} \operatorname{tr}_{1} \text { through } \operatorname{tr}_{7} \text { are equal. So, for } 1 \leq \mathrm{i} \leq 7 \text { let } \mathbf{R}_{\mathbf{i}}=}_{=}$ $\left[\begin{array}{lll}0.3 & 0.5 & 0.6 \\ 0.4 & 0.6 & 0.9 \\ 0.8 & 0.7 & 0.2\end{array}\right]$.

$\mathrm{d}_{1}=$ defective (transformer), $\mathrm{d}_{2}=$ close-to (primary, 230), $\mathrm{d}_{3}=$ defective (rectifier), $\mathrm{d}_{4}=$ Close-to (trans-out, 0 V), $\mathrm{d}_{5}=$ Open (one half-of-secondary-coil), $\mathrm{d}_{6}=$ Defective (one-diode), $\mathrm{d}_{7}=$ Defective (two-diodes), $\mathrm{d}_{8}=$ Close-tp (rectifier-out, 0 V), $\mathrm{d}_{9}=$ More-or-less (rectifier-out, 0 V).

Fig. 1 A FPN representing diagnostic knowledge of a 2-diode full wave rectifier.

Fig. 2: Belief distribution of Close-to (rectifier-out, 0V).
J.Mech.Cont.\& Math. Sci., Vol.-9, No.-2, January (2015) Pages 1368-1376

Fig. 3: Belief distribution of More-or-Less (rectifier-out, 10V).

2. Outlines Based Approach:

Step 1: Given, the relational matrices for each input-output pair of transition tr_{1} through tr_{7} are equal. And these are, $\mathbf{R}_{\mathbf{i}}=\left[\begin{array}{ccc}0.3 & 0.5 & 0.6 \\ 0.4 & 0.6 & 0.9 \\ 0.8 & 0.7 & 0.2\end{array}\right]$ for $1 \leq \mathrm{i} \leq 7$.
The $\mathbf{R}_{\mathbf{i}}{ }^{-1}=$ Pre-invrrse of $\left(\mathbf{R}_{\mathbf{i}}\right)=\left[\begin{array}{lll}0.2 & 0.2 & 0.8 \\ 0.2 & 0.2 & 0.7 \\ 0.4 & 0.9 & 0.4\end{array}\right]$, is determined by the Algorithm is given below.
At $i=1$

Evaluate $q_{i k}(\mathrm{i})$
With $q_{11}=r_{11}=0.3 ; h_{1}\left(q_{11}\right)=q_{11}-\left\{\left(q_{11} \wedge r_{12}\right)+\left(q_{11} \wedge r_{13}\right)\right\} / 2=0.0$
With $q_{12}=r_{21}=0.4 ; h_{1}\left(q_{12}\right)=q_{12}-\left\{\left(q_{12} \wedge r_{22}\right)+\left(q_{12} \wedge r_{23}\right)\right\} / 2=0.0$
With $q_{13}=r_{31}=0.8 ; h_{1}\left(q_{13}\right)=q_{13}-\left\{\left(q_{13} \wedge r_{32}\right)+\left(q_{13} \wedge r_{33}\right)\right\} / 2=3.5$
$\operatorname{Max}\left\{h_{1}\left(q_{11}\right), h_{1}\left(q_{12}\right), h_{1}\left(q_{13}\right)\right\}=h_{1}\left(q_{13}\right) ; \operatorname{Return} q_{13}=r_{31}=0.8$ and $\mathrm{k}=3$.
Evaluate $q_{i j}$ for all $\operatorname{jexcept} \mathrm{k}=3$.
$q_{11}=\operatorname{Min}\left(r_{31}, r_{32}, r_{33}\right)=0.2 ; q_{12}=\operatorname{Min}\left(r_{31}, r_{32}, r_{33}\right)=0.2$.

At $i=2$

Evaluate $_q_{i k}(i)$
With $q_{21}=r_{12}=0.5 ; h_{1}\left(q_{21}\right)=q_{21}-\left\{\left(q_{21} \wedge r_{11}\right)+\left(q_{21} \wedge r_{13}\right)\right\} / 2=0.1$
With $q_{22}=r_{22}=0.6 ; h_{1}\left(q_{22}\right)=q_{22}-\left\{\left(q_{22} \wedge r_{21}\right)+\left(q_{22} \wedge r_{23}\right)\right\} / 2=0.1$
With $q_{23}=r_{32}=0.7 ; h_{1}\left(q_{23}\right)=q_{23}-\left\{\left(q_{23} \wedge r_{31}\right)+\left(q_{23} \wedge r_{33}\right)\right\} / 2=0.25$
Since, $\operatorname{Max}\left\{h_{1}\left(q_{21}\right), h_{1}\left(q_{22}\right), h_{1}\left(q_{23}\right)\right\}=h_{1}\left(q_{23}\right) ;$
Return $q_{23}=r_{23}=0.7$ and $k=3$.
\quad Evaluate $q_{i j}$ for all j except $\mathrm{k}=3$.
$q_{21}=\operatorname{Min}\left(r_{31}, r_{32}, r_{33}\right)=0.2 ; \quad q_{22}=\operatorname{Min}\left(r_{31}, r_{32}, r_{33}\right)=0.2$.

J.Mech.Cont.\& Math. Sci., Vol.-9, No.-2, January (2015) Pages 1368-1376

At $i=3$

Evaluate $_q_{i k}(i)$
With $q_{31}=r_{13}=0.6 ; h_{1}\left(q_{31}\right)=q_{31}-\left\{\left(q_{31} \wedge r_{11}\right)+\left(q_{31} \wedge r_{12}\right)\right\} / 2=0.2$
With $q_{32}=r_{23}=0.9 ; h_{1}\left(q_{32}\right)=q_{32}-\left\{\left(q_{32} \wedge r_{21}\right)+\left(q_{32} \wedge r_{22}\right)\right\} / 2=0.4$
With $q_{33}=r_{33}=0.2 ; h_{1}\left(q_{33}\right)=q_{33}-\left\{\left(q_{33} \wedge r_{31}\right)+\left(q_{33} \wedge r_{32}\right)\right\} / 2=0.0$
Since, $\operatorname{Max}\left\{h_{1}\left(q_{31}\right), h_{1}\left(q_{32}\right), h_{1}\left(q_{33}\right)\right\}=h_{1}\left(q_{32}\right) ;$
\quad Return $q_{32}=r_{23}=0.9$ and k=2.
Evaluate $q_{i j}$ for all j except k=2.
$q_{31}=\operatorname{Min}\left(r_{21}, r_{22}, r_{23}\right)=0.4 ; \quad q_{33}=\operatorname{Min}\left(r_{21}, r_{22}, r_{23}\right)=0.4$.

Step 2: The $\mathbf{R}_{\mathbf{i}}$ for $8 \leq \mathrm{i} \leq 9$ will be the identity matrix. Thus $\mathbf{R}_{\mathrm{f}} \mathrm{m}$ in the present context will be a (27×27) matrix, whose diagonal blocks will be occupied by $\mathbf{R}_{\mathbf{i}}$. Further, since all the non-diagonal block matrices are null matrix, the \mathbf{R}^{-1} can be constructed by substituting $\mathbf{R}_{\mathbf{i}}$ in \mathbf{R}_{fm} by $\mathbf{R}_{\mathbf{i}}{ }^{-1}$.
The $\mathbf{P}^{\prime}{ }_{f m}$ and $\mathbf{Q}^{\prime}{ }_{\mathrm{fm}}$ in the present context are also (27×27) matrices.

$$
\begin{aligned}
& \mathbf{P}^{\prime}{ }_{\mathrm{fm}}=\left[\begin{array}{lllllllll}
\Phi & \Phi \\
\Phi & \Phi \\
\Phi & \Phi \\
\mathrm{I} & \Phi \\
\mathrm{I} & \Phi \\
\Phi & \mathrm{I} & \Phi \\
\Phi & \Phi & \mathrm{I} & \Phi & \Phi & \Phi & \Phi & \Phi & \Phi \\
\Phi & \Phi & \Phi & \mathrm{I} & \Phi & \Phi & \mathrm{I} & \mathrm{I} & \Phi \\
\Phi & \Phi & \Phi & \Phi & \mathrm{I} & \mathrm{I} & \Phi & \Phi & \mathrm{I}
\end{array}\right], \\
& \mathbf{Q}^{\prime} \mathrm{f}_{\mathrm{f}}=\left[\begin{array}{lllllllll}
\mathrm{I} & \mathrm{I} & \Phi \\
\Phi & \Phi & \mathrm{I} & \Phi & \Phi & \Phi & \Phi & \Phi & \Phi \\
\Phi & \Phi & \mathrm{I} & \Phi & \Phi & \Phi & \Phi & \Phi & \Phi \\
\Phi & \Phi & \Phi & \mathrm{I} & \Phi & \Phi & \Phi & \Phi & \Phi \\
\Phi & \Phi & \Phi & \Phi & \mathrm{I} & \Phi & \Phi & \Phi & \Phi \\
\Phi & \Phi & \Phi & \Phi & \Phi & \mathrm{I} & \Phi & \Phi & \Phi \\
\Phi & \Phi & \Phi & \Phi & \Phi & \Phi & \mathrm{I} & \Phi & \Phi \\
\Phi & \mathrm{I} & \Phi \\
\Phi & \mathrm{I}
\end{array}\right]
\end{aligned}
$$

The $\mathbf{P}{ }^{\prime}{ }_{\mathrm{f} \mathbf{m}}{ }^{-1}$ and $\mathbf{Q}{ }^{\prime} \mathrm{fm}^{-1}$ are now estimated using the Algorithm I.
$\mathbf{P}^{\mathrm{ffm}^{-1}}=\left[\begin{array}{ccccccccc}\Phi & \Phi & \Phi & \mathrm{I} & \Phi & \Phi & \Phi & \Phi & \Phi \\ \Phi & \Phi & \Phi & \Phi & \Phi & \mathrm{I} & \Phi & \Phi & \Phi \\ \Phi & \Phi & \Phi & \Phi & \Phi & \Phi & \mathrm{I} & \Phi & \Phi \\ \Phi & \mathrm{I} & \Phi \\ \Phi & \mathrm{I} \\ \Phi & \mathrm{I} \\ \Phi & \mathrm{I} & \Phi \\ \Phi & \mathrm{I} & \Phi \\ \Phi & \mathrm{I}\end{array}\right]$,
$\mathbf{Q}^{\prime}{ }_{\mathbf{f}}{ }^{-1}=\left[\begin{array}{ccccccccc}\mathrm{I} & \Phi \\ \mathrm{I} & \Phi \\ \Phi & \mathrm{I} & \Phi \\ \Phi & \Phi & \Phi & \mathrm{I} & \Phi & \Phi & \Phi & \Phi & \Phi \\ \Phi & \Phi & \Phi & \Phi & \mathrm{I} & \Phi & \Phi & \Phi & \Phi \\ \Phi & \Phi & \Phi & \Phi & \Phi & \mathrm{I} & \Phi & \Phi & \Phi \\ \Phi & \Phi & \Phi & \Phi & \Phi & \Phi & \mathrm{I} & \Phi & \Phi \\ \Phi & \mathrm{I} & \Phi \\ \Phi & \mathrm{I}\end{array}\right]$
$\mathbf{N}_{\text {ini }}$ is a (27 x 1) vector, given by
$\mathbf{N}_{\text {ini }}=\left[\begin{array}{lllllllllll}0 & 0 & 0 & 000 & 000 & 000 & 000 & 000 & 000 & 0.20 .1 & 0.0\end{array}\right.$ $0.50 .6]^{\mathrm{T}}{ }_{27 \mathrm{x} 1}$
Using the equation of Petri-net's dynamic, we write

$$
\begin{aligned}
& N(t+1)=P^{\prime}{ }_{f m} O R_{f m} O\left(Q^{\prime}{ }_{f m} O N^{c}(t)\right)^{c} \\
& P^{\prime}{ }_{f m}{ }^{-1} O N(t+1)=R_{f m} O\left(Q^{\prime}{ }_{f m} O N^{c}(t)\right)^{c} \\
& R_{f}{ }^{-1} O\left(P^{\prime}{ }_{f m}{ }^{-1} O N(t+1)\right)=\left(Q^{\prime}{ }_{f m} O N^{c}(t)\right)^{c}
\end{aligned}
$$

$$
\begin{aligned}
& N(t)=\left[Q^{\prime}{ }_{f m}{ }^{-1} o\left(R_{f}{ }^{-1} o\left(P_{f m}{ }^{-1} o N(t+1)\right)\right)^{c}\right]
\end{aligned}
$$

Now, the algorithm for backward reasoning is then invoked using above formula and the value of $\mathbf{Q}^{\prime} \mathbf{f m}^{-1}, \mathbf{R}_{\mathbf{f}}{ }^{-\mathbf{1}}, \mathbf{P}^{\prime}{ }_{\mathrm{f} \mathbf{m}}{ }^{\mathbf{- 1}}$ and $\mathbf{N}(\mathbf{t} \mathbf{+ 1})=\mathbf{N}_{\mathrm{inin}}$.
Sample run

$$
\begin{array}{rl}
1^{\text {st }} \text { step: } \mathbf{N}(\mathbf{t})= & {\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) 0} \\
& .2 .2 .2 .2 \\
.2 & .2 \\
& 0.2 \\
\hline
\end{array}
$$

J.Mech.Cont.\& Math. Sci., Vol.-9, No.-2, January (2015) Pages 1368-1376

$$
\begin{aligned}
& 0.60 .60 .5 \quad 0.60 .60 .5 \quad 0.20 .20 .2 \quad 0.20 .10 .0 \quad 0.40 .50 .6]^{\mathrm{T}} \\
& 3^{\text {rd }} \text { step: } \mathbf{N}(\mathbf{t})=\left[\begin{array}{lllllll}
0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.5 \\
0.5 & 0.6 & 0.2 & 0.2 & 0.2
\end{array}\right. \\
& 0.60 .60 .5 \quad 0.60 .60 .5 \\
& 0.20 .20 .2 \\
& 0.20 .10 .0 \quad 0.40 .50 .6]^{\mathrm{T}}
\end{aligned}
$$

The steady-state belief distribution obtained after 3 iterations is given by

```
N s.S =[lll.2 0.2 0.2 0.2 0.2 0.2 0.5 0.5 0.6 0.2 0.2 0.2 0.6 0.6 0.5
    0.6 0.6 0.5 0.2 0.2 0.2 0.2 0.1 0.0 0.4 0.5 0.6 ] [
```

The output of rectifier is near to 9 volts because in $\mathbf{N}_{\text {ini }}$ only \mathbf{n}_{9} was set as higher value. $\mathbf{N}_{\text {ini }}$ is input of FPN for backward reasoning. After performing abductive reasoning in FPN we got: $\mathbf{n}_{3}, \mathbf{n}_{5}$ and \mathbf{n}_{6} has been triggered. \mathbf{n}_{3} indicates diode has been damaged. \mathbf{n}_{5} indicates only one diode has been damaged. And \mathbf{n}_{6} indicates transformer's secondary coil which is connected to damaged-diode may also be damaged. This inference is logically true and valid.

Forward junction voltage of diode D_{1}

Forward junction voltage of diode D_{2}

Fig. 4: ${ }^{1} \mathrm{R}_{1}$ and ${ }^{1} \mathrm{R}_{2}$ are relational matrices
J.Mech.Cont.\& Math. Sci., Vol.-9, No.-2, January (2015) Pages 1368-1376

Step 3: Abductive Reasoning:

Now, we assume the primary membership distribution of "output voltage as MEDIUM" is: Source 1: ($\left.\begin{array}{llll}0.2 & 0.9 & 0.1\end{array}\right)$, source 2: $\left(\begin{array}{lll}0.1 & 1.0 & 0.2\end{array}\right)$ and source 3: (0.1 $1.0 \quad 0.1$). Furthermore, the secondary membership distribution of "output voltage as MEDIUM" is: $Q^{\prime}=\left[\begin{array}{lllllllll}1.0 & 0.7 & 0.7 & 0.6 & 0.9 & 0.8 & 0.9 & 0.5 & 0.8\end{array}\right]$. Thus, the primary membership distribution for "output voltage as MEDIUM" is obtained using the above primary membership distributions from all sources correspond to the best secondary membership value as, ${ }^{\text {best }} \mu_{\text {Oupput_Volt_MEDIUM }^{\prime}(y)}={ }^{\text {best }} \mu_{B^{\prime}}\left(x_{1}\right)=[0.2$ 1.0 0.1]. Now, we have the primary distribution for diode D_{1} as ${ }^{\text {best }} \mu_{A^{\prime}}\left(x_{1}\right)=$ ${ }^{\text {best }} \mu_{B^{\prime}}\left(x_{1}\right)$ o $\left({ }^{1} \mathrm{R}_{1}\right)^{\mathrm{T}}=\left[\begin{array}{lll}0.2 & 1.0 & 0.1\end{array}\right]$ o $\left[\begin{array}{ccc}0.2 & 0.2 & 0.1 \\ 0.9 & 0.3 & 0.1 \\ 0.1 & 0.1 & 0.1\end{array}\right]=\left[\begin{array}{lll}0.9 & 0.3 & 0.1\end{array}\right]$. Similarly, we obtain the primary distribution for diode D_{2} as ${ }^{\text {best }} \mu_{c^{\prime}}\left(x_{1}\right)={ }^{\text {best }} \mu_{B^{\prime}}\left(x_{1}\right)$ o $\left({ }^{1} \mathrm{R}_{2}\right)^{\mathrm{T}}=$ $\left[\begin{array}{lll}0.2 & 1.0 & 0.1\end{array}\right]$ o $\left[\begin{array}{lll}0.1 & 0.2 & 0.2 \\ 0.1 & 0.2 & 0.9 \\ 0.1 & 0.1 & 0.1\end{array}\right]=\left[\begin{array}{lll}0.1 & 0.2 & 0.9\end{array}\right]$.

Thus, when the output voltage is MEDIUM, then we have the primary distribution for diode D_{1} as $\left[\begin{array}{lll}0.9 & 0.3 & 0.1\end{array}\right]$, i.e., diode D_{1} is not defective and the primary distribution for diode D_{2} as $\left[\begin{array}{lll}0.1 & 0.2 & 0.9\end{array}\right]$, i.e., diode D_{2} is defective.

References

1) Bugarin, A. J. and Barro, S., "Fuzzy reasoning supported by Petri nets", IEEE Trans. on Fuzzy Systems, vol. 2, no.2, pp 135-150,1994.
2) Buchanan, B. G., and Shortliffe E. H., Rule Based Expert Systems: The MYCIN Experiment of the Stanford University, Addison-Wesley, Reading, MA, 1984.
3) Cao, T. and Sanderson, A. C., "A fuzzy Petri net approach to reasoning about uncertainty in robotic systems," in Proc. IEEE Int. Conf. Robotics and Automation, Atlanta, GA, pp. 317-322, May 1993.
4) Cao, T., "Variable reasoning and analysis about uncertainty with fuzzy Petri nets," Lecture Notes in Computer Science, vol. 691, Marson, M. A., Ed., Springer-Verlag, New York, pp. 126-145, 1993.
5) Cao, T. and Sanderson, A. C., "Task sequence planing using fuzzy Petri nets," IEEE Trans. on Systems, Man and Cybernetics, vol. 25, no.5, pp. 755769, May 1995.
6) Cardoso, J., Valette, R., and Dubois, D., "Petri nets with uncertain markings", in Advances in Petri nets, Lecture Notes in Computer Science, Rozenberg, G., Ed., vol.483, Springer-Verlag, New York, pp. 65-78, 1990.
7) Chen, S. M., Ke, J. S. and Chang, J. F., "Knowledge representation using fuzzy Petri nets," IEEE Trans. on Knowledge and Data Engineering, vol. 2, no. 3, pp. 311-319, Sept. 1990.
8) Chen, S. M., "A new approach to inexact reasoning for rule-based systems," Cybernetic Systems, vol. 23, pp. 561-582, 1992.
9) Daltrini, A., "Modeling and knowledge processing based on the extended fuzzy Petri nets," M. Sc. degree thesis, UNICAMP-FEE0DCA, May 1993.
10) Doyle, J., "Truth maintenance systems," Artificial Intelligence, vol. 12, 1979.
J.Mech.Cont.\& Math. Sci., Vol.-9, No.-2, January (2015) Pages 1368-1376
11) Garg, M. L., Ashon, S. I., and Gupta, P. V., "A fuzzy Petri net for knowledge representation and reasoning", Information Processing Letters, vol. 39, pp.165-171,1991.
12) Graham, I. and Jones, P. L., Expert Systems: Knowledge, Uncertainty and Decision, Chapman and Hall, London, 1988.
13) Hirota, K. and Pedrycz, W., " OR-AND neuron in modeling fuzzy set connectives," IEEE Trans. on Fuzzy systems, vol. 2, no. 2, May 1994.
14) Hutchinson, S. A. and Kak, A. C., "Planning sensing strategies in a robot workcell with multisensor capabilities," IEEE Trans. Robotics and Automation, vol. 5, no. 6, pp.765-783, 1989.
15) Jackson, P., Introduction to Expert Systems, Addison-Wesley, Reading, MA, 1988.
16) Konar, A. and Mandal, A. K., "Uncertainty management in expert systems using fuzzy Petri nets ," IEEE Trans. on Knowledge and Data Engineering, vol. 8, no. 1, pp. 96-105, February 1996.
17) Konar, A. and Mandal, A. K., "Stability analysis of a non-monotonic Petri net for diagnostic systems using fuzzy logic," Proc. of 33rd Midwest Symp. on Circuits, and Systems, Canada, 1991.
18) Konar, A. and Mandal, A. K., "Non-monotonic reasoning in Expert systems using fuzzy Petri nets," Advances in Modeling \& Analysis, B, AMSE Press, vol. 23, no. 1, pp. 51-63, 1992.
