GLIVENKO CONGRUENCE ON A 0-DISTRIBUTIVE MEET SEMILATTICE

By Momtaz Begum

Department of ETE, Prime University, Dhaka, Bangladesh.

Abstract:

In This paper the author studies the Glivenko congruence R in a 0-distributive meet semilattice. It is proved that a meet semilattice S with 0 is 0-distributive if and only if the quotient semilattice $\frac{S}{R}$ is distributive. Hence S is 0-distributive if and only if (0) is the Kernel of some homomorphism of S onto a distributive meet semilattice with 0.

Key words and phrases: Glivenko congruence, 0-distributive semilattice, distributive meet semilattice.

Introduction:

J.C.Varlet [7] first introduced the concept of 0-distributive lattices. Then many authors including [1,2,3,5] studied them for lattices and semilattices. By [2], a meet semilattice S with 0 is called 0-distributive if for all $a,b,c \in S$ with $a \wedge b = 0 = a \wedge c$ imply $a \wedge d = 0$ for some $d \geq b,c$. A meet semi lattice S is called *directed above* if for all $a,b \in S$, there exists $c \in S$ such that $c \geq a,b$. We know that all modular and distributive semilattices have the directed above property. Moreover, [3] have shown that every 0-distributive meet semilattice is directed above.

Let S be a meet semilattice with 0. For a non-empty subset A of S, we define $A^{\perp} = \{x \in S \mid x \land a = 0 \text{ for all } a \in A \}$. This is clearly a down set, but we can not prove that this is an ideal even in a distributive meet semilattice, when A is infinite.

By [2,3] we know that, for any $a \in S$, $\{a\}^{\perp}$ is an ideal if and only if S is 0-distributive.

We define a relation R on a meet semilattice S by $a \equiv b(R)$ if and only if $(a]^{\perp} = (b]^{\perp}$. In other words, $a \equiv b(R)$ is equivalent to "for each $x \in S$, $a \wedge x = 0$ if and only if $b \wedge x = 0$ ".

We will show below that this is a congruence on the meet semilattice S. We call it Glivenko congruence. In this paper we establish some results on this congruence in a meet semilattice.

We start with the following result which is due to [3]. We include its proof for the convenience of the reader.

Lemma 1: Let S be a meet-semilattice with O. Again let $A, B \subseteq S$ and $a, b \in S$ then we have the followings:

(i) If
$$A \cap B = (0]$$
, then $B \subseteq A^{\perp}$

(ii)
$$A \cap A^{\perp} = (0]$$
,

(iii)
$$A \subseteq B$$
 imply that $B^{\perp} \subseteq A^{\perp}$

(iv) If
$$a \le b$$
 imply that $\{b\}^{\perp} \subseteq \{a\}^{\perp}$ and $\{a\}^{\perp \perp} \subseteq \{b\}^{\perp \perp}$

(v)
$$\{a\}^{\perp} \cap \{a\}^{\perp \perp} = (0]$$

(vi)
$$\{a \wedge b\}^{\perp\perp} = \{a\}^{\perp\perp} \cap \{b\}^{\perp\perp}$$

(vii)
$$A \subset A^{\perp\perp}$$

(viii)
$$A^{\perp\perp\perp} = A^{\perp}$$

Proof: (i) Let $b \in B$. Then $a \wedge b = 0$ for all $a \in A$, as $A \cap B = \{0\}$. Thus $b \in A^{\perp}$. Hence $B \subseteq A^{\perp}$.

(ii) Let
$$x \in A \cap A^{\perp}$$
.
 $= x \in A \text{ and } x \wedge a = 0 \text{ for all } a \in A$
 $= x \wedge x = 0$
 $= x = 0$

(iii) Let
$$A \subseteq B$$

 $\therefore A \cap B^{\perp} \subseteq B \cap B^{\perp} = (0]$
 $\Rightarrow A \cap B^{\perp} = (0]$
So, by (i), $B^{\perp} \subset A^{\perp}$.

(iv) Let $x \in \{b\}^{\perp}$. Then $b \wedge x = 0$ for some $x \in S$. Since $a \le b$, then we have $a \wedge x = 0$ for some $x \in S$, which imply that $x \in \{a\}^{\perp}$. Hence,

$$\{b\}^{\perp} \subseteq \{a\}^{\perp}$$
.

Now let $x \in \{a\}^{\perp \perp}$. Then $y \wedge x = 0$ for all $y \in \{a\}^{\perp}$, which implies that $y \wedge x = 0$ for all $y \in \{b\}^{\perp}$ as $\{b\}^{\perp} \subseteq \{a\}^{\perp}$ Thus $x \in \{b\}^{\perp \perp}$. Hence,

J.Mech.Cont.& Math. Sci., Vol.-9, No.-2, January (2015) Pages 1418-1424 $\{a\}^{\bot\bot}\subset\{b\}^{\bot\bot}\,.$

(v) Let $x \in \{a\}^{\perp} \cap \{a\}^{\perp \perp}$. Then $x \in \{a\}^{\perp}$ and $x \in \{a\}^{\perp \perp}$ which

implies that $x \wedge a = 0$ and $x \wedge y = 0$ for all $y \in \{a\}^{\perp}$. Thus $x \wedge x = 0$. Hence

$$\{a\}^{\perp} \cap \{a\}^{\perp \perp} = (0].$$

(vi) Let $x \in \{a\}^{\perp \perp} \cap \{b\}^{\perp \perp}$ and $y \in \{a \land b\}^{\perp}$. Then we get $(y \land a) \land b = 0$, which implies that $(y \land a) \in \{b\}^{\perp}$. Since $x \in \{b\}^{\perp \perp}$, we get $(x \land y) \land a = 0$.

Hence $x \wedge y \in \{a\}^{\perp}$. Since $x \in \{a\}^{\perp \perp}$, we get $x \wedge y \in \{a\}^{\perp \perp}$. Thus $x \wedge y \in \{a\}^{\perp} \cap \{a\}^{\perp \perp} = (0]$. Hence $x \wedge y = 0$ for all $y \in (a \wedge b)^{\perp}$. Therefore $x \in (a \wedge b)^{\perp \perp}$. Thus $\{a\}^{\perp \perp} \cap \{b\}^{\perp \perp} \subset \{a \wedge b\}^{\perp \perp}$.

Conversely we can write that $a \wedge b \leq a$, which implies by (i) $(a \wedge b)^{\perp \perp} \subseteq \{a\}^{\perp \perp}$. Similarly $\{a \wedge b\}^{\perp \perp} \subseteq \{b\}^{\perp \perp}$. Therefore we have, $\{a \wedge b\}^{\perp \perp} \subset \{a\}^{\perp \perp} \cap \{b\}^{\perp \perp}$.

- (vii) Let $x \in A$, consider any $r \in A^{\perp}$, then we get $x \wedge a = 0$ for all $a \in A$ which implies that $r \wedge x = 0$. Since $x \wedge r = 0$ for all $r \in A^{\perp}$. Thus $x \in A^{\perp \perp}$. Hence $A \subset A^{\perp \perp}$.
 - (viii) Since by (vii) $A \subseteq A^{\perp \perp}$. So by (iii) $(A^{\perp \perp})^{\perp} \subseteq A^{\perp}$.

Hence $A^{\perp\perp\perp} \subseteq A^{\perp}$. Since by (vii) $A^{\perp} \subseteq (A^{\perp})^{\perp\perp} = A^{\perp\perp\perp}$. Therefore we have $A^{\perp} = A^{\perp\perp\perp}$.

Hence the proof is completed. \Box

Theorem 2: R is a meet congruence on S.

Proof: It is clearly an equivalent relation.

Let
$$a \equiv b(R)$$
 and $t \in S$

Then $(a]^{\perp} = (b]^{\perp}$, so by using Lemma 1, we have $(a \wedge t]^{\perp} = (a \wedge t)^{\perp \perp \perp}$ $= \{(a)^{\perp \perp} \wedge (t)^{\perp \perp}\}^{\perp}$

$$= \{(b)^{\perp \perp} \wedge (t)^{\perp \perp}\}^{\perp}$$
$$= (b \wedge t)^{\perp \perp \perp} = (b \wedge t)^{\perp}$$

This implies $a \wedge t \equiv b \wedge t(R)$, and so R is a meet congruence on S.

A meet semilattice S with 0 is weakly complemented if for any pair of distinct elements a, b of S, there exists an element c disjoint from one of these elements but not from the other. In particular, if a < b, then there exists $c \in S$ such that $a \wedge c = 0$ but $b \wedge c \neq 0$.

Theorem 3: If S is weakly complemented. Then R is an equality relation.

Proof: Suppose $a,b \in S$ with $a \neq b$. Since S is weakly complemented, so there exist $x \in S$, $a \land x = 0$ but $b \land x \neq 0$. This implies $(a,b) \notin R$. Hence R is an equality relation.

Theorem 4: For any meet semilattice S. $\frac{S}{R}$ is also a meet semilattice. Moreover S is directed above if and only if $\frac{S}{R}$ is directed above.

Proof: For $[a], [b] \in \frac{S}{R}$, define $[a]R \wedge [b]R = [a \wedge b]R$. Thus $\frac{S}{R}$ is a meet semilattice.

Now let $a, b \in S$. If S is directed above, then there exists $d \ge a, b$.

Now,
$$[a]R \wedge [d]R = [a \wedge d]R = [a]R$$
 and $[b]R \wedge [d]R = [b \wedge d]R = [b]R$

Implies $[d]R \ge [a]R, [b]R$. Thus, $\frac{S}{R}$ is also directed above.

Conversely suppose $\frac{S}{R}$ is directed above. Let $a, b \in S$

Then $[a], [b] \in \frac{S}{R}$. Since $\frac{S}{R}$ is directed above, so there exists $C \in \frac{S}{R}$

such that $C \ge [a]R, [b]R$. Then there exists $d \in C$,

such that [d] = C and $d \ge a, b$. So S is directed above.

A meet semilattice S is called a distributive semilattice if $w \ge a \land b$ implies that there exist $x \ge a$, $y \ge b$ in S such that $w = x \land y$.

Following result gives some characterizations of distributive meet semilattices which are due to [4, Theorem 1.1.6], also see [6].

Lemma 5: For a meet semilattice S, the following conditions are equivalent.

- *i)* S is distributive.
- ii) $w \ge a \land b$ implies that there exists $y \in S$ such that $y \ge b$, $y \ge w$ and $y \land a = a \land w$.
- iii) $a \wedge b = b \wedge c$ implies that there exists $y \in S$ such that $y \geq b$, $y \geq c$ and $y \wedge a = a \wedge c$.

Theorem 6: For any meet semilattice S, the quotient meet semilattice $\frac{S}{R}$ is weakly complemented. Furthermore, S is 0-distributive if and only if $\frac{S}{R}$ is distributive.

Proof: First part: For any meet semilattice S, when A<B in $\frac{S}{R}$, there exists a in A and b in B such that a
b, and by the definition of R, there is an element c such that $c \wedge a = 0$ and $c \wedge b \neq 0$. Since the minimum class of $\frac{S}{R}$ has the only element 0, the class C of c satisfies $A \wedge C = [0]$ and $C \wedge B \neq [0]$. Therefore, $\frac{S}{R}$ is weakly complemented.

For second part: Let S be 0-distributive. Suppose $B \ge A \land C$ in $\frac{S}{R}$. So there exists $b \in B$, $a \in A$, $c \in C$ such that $b \ge a \land c$ and B = [b]R, A = [a]R, C = [c]R. Suppose $a \land b \land x = 0$. Then $a \land c \land x = 0$. Since S is 0-distributive, so there exists $d \ge b, c$ such that $a \land d \land x = 0$. On the other hand, for any $d \ge b, c$, $a \land d \land x = 0$ implies $a \land d \land x \land b = a \land b \land x = 0$. Therefore, $a \land b = a \land d(R)$ for some $d \ge b, c$. In other words, $A \land B = A \land D$ where $D = [d] \ge B, C$. Therefore by [4, Theorem 1.1.6 (ii)], $\frac{S}{R}$ is distributive.

Conversely, suppose $\frac{S}{R}$ is distributive. Let $a,b,c\in S$ with $a \wedge b = a \wedge c = 0$. Then $[a] \wedge [b] = [a] \wedge [c] = [0]R$. Since [0] contains only the element 0, so $A \wedge B = A \wedge C = 0$, where A = [a], B = [b], C = [c]. Then $B \geq A \wedge C$. Since $\frac{S}{R}$ is distributive, so $B = A_1 \wedge C_1$ for some $A_1 \geq A$, $C_1 \geq C$. Moreover, $B = A_1 \wedge C_1$ implies $C_1 \geq B$. Thus $0 = A \wedge B = A \wedge A_1 \wedge C = A \wedge C_1$.

Now $C_1 \ge B$, C implies $C_1 = [d]R$ for some $d \ge b$, c. Therefore, $a \land d = 0$ for some $d \ge b$, c and so S is 0-distributive.

We conclude the paper with the following result.

Theorem 7: Let S be a meet semilattice. Then the following conditions are equivalent

- (i) S is 0-distributive.
- (ii) (0] is the kernel of some homomorphism of S onto a distributive semilattice with 0.
- (iii) (0] is the kernel of a homomorphism of S onto a 0-distributive semilattice.

Proof: (i) \Rightarrow (ii). Suppose S is 0-distributive. Then by Theorem 1, the binary relation R defined by $x \equiv y(R)$ iff $(x]^{\perp} = (y]^{\perp}$ is a congruence on S. Moreover by Theorem 5, $\frac{S}{R}$ is a distributive meet semilattice. Clearly the map $a \to [a]R$ is a homomorphism. Now let $a \equiv 0(R)$. Then $0 \land a = 0$ implies $a = a \land a = 0$. Here [0]R contains only 0 of S. That is, (0] is a complete congruence class modulo R.

- (ii) \Rightarrow (iii) is obvious as every distributive semilattice with 0 is 0-distributive.
- (iii) \Rightarrow (i). Let " be a congruence on S for which (0] is the zero element of the 0-distributive semilattice S/". Then $x \wedge y = 0 = x \wedge z$ imply $[x]_{"} \wedge [y]_{"} = [x \wedge y]_{"} = [x \wedge z]_{"} = [x]_{"} \wedge [z]_{"}$. Thus, $[x]_{"} \wedge [y]_{"} = (0] = [x]_{"} \wedge [z]_{"}$. Hence by the 0-distributivity of $\frac{S}{"}$, $[x]_{"} \wedge [d]_{"} = (0]$, for some $[d]_{"} \geq [y]_{"}$, $[z]_{"}$. This implies $x \wedge d \in (0]$ and so $x \wedge d = 0$, where $d \geq y, z$. Therefore, S is 0-distributive. \square

References

- P. Balasubramani and P. V. Venkatanarasimhan, *Characterizations of the 0-Distributive Lattices*, Indian J. Pure appl.Math. 32(3) 315-324, (2001).
- 2) Momtaz Begum and A.S.A. Noor, *Semi prime ideals in meet semilattices*, Indian J. Pure appl.Math.Vol.1, No.2, 2012, 149-157.
- 3) H.S.Chakraborty and M.R.Talukder, *Some characterizations of 0-distributive semilattices*, Accepted in the Bulletin of Malaysian Math. Sci.Soc.
- 4) Azmal Hossain, Title: A study on meet semilattices directed above, Ph.D. Thesis, RU (2004).
- 5) Y. S. Powar and N. K. Thakare, *0-Distributive semilattices*, Canad. Math. Bull. Vol. 21(4) (1978), 469-475.
- 6) Rhodes, J.B. Modular and distributive semilattices. Trans. Amer. Math. Society. Vol.201(1975), P.31-41.
- 7) J. C. Varlet, A generalization of the notion of pseudo-complementedness, Bull.Soc.Sci.Liege, 37(1968), 149-158.