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Abstract

In this paper, incompressible Newtonian flow is numerically studied by

approximating the solution of the steady Navier-Stokes equations in two dimensional case.

Computational Fluid Dynamics (CFD) simulations are carried out by using the finite

element method. Newton’s method is applied to solve the Navier-Stokes equations where

the finite element solutions of Stokes equations is considered as the initial guess to obtain

the convergence of Newton’s sequence. The numerical simulations are presented in terms

of the contours of velocity, pressure and streamline. All the meshes and simulations are

implemented on the general finite element solver FreeFem++. A two-dimensional

benchmark flow was computed with posteriori estimates. It has also been established that

the free access solver FreeFem++ can provide a reasonable good numerical simulations

of complicated flow behavior.

Keywords and Phrases: Navier-Stokes equations, CFD simulation, finite element method,
Newton-Raphson method.

Introduction:

The aim of this work is to analyze numerically and simulate

computationally the incompressible Newtonian flow which is modeled by the

steady Navier-Stokes equations in two dimensional case. CFD describes the fluid

flow in terms of mathematical models such as Navier-Stokes equations which

consist of constitutive equations in the form of non-linear system of partial

differential equations . In the present paper, Newton’s method is applied to solve

the Navier-Stokes system which is discretized using the Hood-Taylor finite

elements. The numerical simulations are obtained computationally by the

implementation of the finite element method where the finite element solution of
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Stokes equations is chosen as the initial approximation of Newton’s method. It is

obtained that the Newton’s sequence converges quadratically to the unique

solution of Navier-Stokes equations for sufficiently small mesh size h and a

moderate Reynolds number Re which is in good agreement with the results

discussed by Kim et al. in [9], Ghia et al. [7] and many authors. In [9], Kim et al.

discussed theoretically the Newton’s method for the Navier-Stokes equations with

finite element initial guess of Stokes equations. We briefly discuss the

mathematical and numerical analysis, and analyze the approach problem in the

context of finite element method ([10], [5], [11]). All the numerical simulations are

implemented with our own script developed in FreeFem++ using the equivalent

iterative variational formulation of Navier-Stokes problem. The solutions are

obtained computationally and graphically in terms of velocity, pressure and

streamline contours. A two-dimensional benchmark problem is computed and

posteriori estimates for the rate of convergence is established. Finally, we draw

some conclusions.

The Constitutive Equations and Problem Formulation: For a simple, isotropic,

incompressible fluid, the Cauchy stress tensor T can be expressed as

sp τIT 

where p is the hydrostatic pressure, sτ is the extra stress tensor and I is the

identity matrix or Kronecker tensor. For a Newtonian fluid, the dissipative effects

of frictional forces can be described by a linear relation between extra stress tensor

and rate of strain tensor, i.e.,

)(2 uDτ s (Stokes law)

where 0 is the dynamic viscosity coefficient expressing the fluid’s resistance
which  it offers to shear strain during the displacement ),]([ sPa

])([
2
1

)( tuuuD  is the symmetric part of the velocity gradient. So, the

Cauchy stress tensor can be written in the form

])([)(2 tPp uuIuDIT  

(1)
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The Navier-Stokes equations for incompressible fluid is a system of non-linear
equations formed by the law of conservation of mass and the momentum
equations. Considering T , as in (1), the Navier-Stokes equations which model the
incompressible Newtonian flow can be formed as
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Considering  as a constant, we define the kinematic viscosity by



  (m2/s)

and the scaled pressure

p

p  (m2/s2) still denoted by p and we obtain the Navier-

Stokes equations for steady flow as


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
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0
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(3)

The above equations are non-dimensionalized as follows:
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where L is the characteristic length, U is the characteristic velocity, T is the
characteristic time and Re is the Reynold’s number which is the ratio of inertial to
viscous forces.

The non-dimensional governing equations is of the form








0

)Re(

u

fuuu p

The mathematical analysis of Navier-Stokes equations can be found in ([11], [12]).
Nomenclature:
Before discussing the boundary conditions and variational formulation, we
introduce some notations of different function spaces in the following table, details
of which can be found in ([4],[1]).
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)(0 C or )(C The vector space of all continuous
functions on )3,2(  dRd

)(mC Vector space of all functions, where all
the partial derivatives D of order

m 0 are continuous on 

)(C The vector space of all infinitely
differentiable functions

)(0 
mC The space of all functions in )(mC

with compact support

)(pL The Lebesgue spaces

),(, pmW where 0m be an integer
and  p1

The standard Sobolev spaces

pm,
 Norms of )(, pmW

)(mH ),(, pmW for 2p

)(pL )(,0 pW

Boundary Conditions:

To close mathematical formulation and obtain a well-posed problem, the

equations (3) need to be supplemented by some boundary conditions. For

simplicity, we consider the case in which the system of differential equations (3) is

equipped with the Dirichlet boundary conditions

gu  on  (adherence conditions)

For the incompressible fluids, the Dirichlet boundary condition g satisfies the

compatibility condition [3]

0


ng

where n is the outward unit normal to  . We take the homogeneous Dirichlet

boundary conditions (no-slip boundary conditions) which describes a fluid

confined into a domain with fixed boundary (the boundary is at rest). With the

homogeneous Dirichlet boundary conditions defined over  , we can write the

steady Navier-Stokes problem as follows:

Given )(2 Lf , find ),( pu such that
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
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(4)

If the velocity of the flow is small enough, then the non-linear convective term

uu )(  is negligible. So, for slow viscous flows, we obtain the following Stokes

problem:

Given )(2 Lf , find ),( pu such that
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(5)

Variational formulation of  Steady Navier-Stokes Problem: The variational

formulation  of the Navier-Stokes equations consists of integral equations which is

obtained by taking integral over the domain of the scalar product of the momentum

equation and the continuity equation with appropriate test functions, and applying

the Green integration formula. Following Ladyzhenskaya (1959), we assume that

)()( 02  CC u and )()( 01  CCp  are the classical (or strong) solution

of (4). Consider two Hilbert spaces )(1
0  HV and )(2

0  LQ and let

Vv and Qq be two arbitrary test functions. The variational formulation of the

Navier-Stokes problem (4) reads :

Given )(1  Hf , find )()(),( 2
0

1
0  Lp Hu such that
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(6)

Problems (4) and (6) are equivalent.
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We reformulate the variational formulation of the previous problem in a general

abstract formulation that is suitable for many elliptic problems. We introduce

the continuous and coercive )( ellipticV bilinear form:

vuvuvu  


:),(),( a

and continuous bilinear form




 vvv pppb ),(),( ,

And we also introduce continuous trilinear form




 vuwvuwvuw )(),)((),;(c

Taking into account the above forms, we can reformulate the variational

formulation of the Navier-stokes problem as abstract formulation which can be

written as follows:

Given )(1  Hf , find Qp ,Vu such that










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

on

Qqqb
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0
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),,(),(),;(),(

u

u
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(7)

Existance and uniqueness of the solution: It can be proved [12] that the problem (7)

is well-posed and equivalent to (4). The existence and uniqueness of theorem for the

solutions of Navier-Stokes system can be found in (Galdi (1994) [6], Girault and Raviart

(1986) [11], Temam (1984) [12]).

Numerical Analysis for the  Navier-Stokes Problem: We use finite element

method (FEM) to approximate the numerical solutions of Navier-stokes problem

(7).

Dividing the domain of solution into a finite numberof subdomains, the finite

elements, the approach variational problem is defined over a finite-dimensional

subspace Vh of V (infinite-dimensional function space where theexact solution

exists) where h is a discretization parameter. The solution ),( pu of the problem (7)

lives in a space of infinite dimension. In this case, it is normally impossible to
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calculate the exact solution. Rather we determine the approximate value hu and

hp , of u and p , each one defined in finite dimensional subspaces hV . These

spaces are formed by polynomials and for all function hv in hV (in particular hu

and hp for the appropriate spaces)  we have





n

i
iih niIRv

1

,,1,,  where },,,{ 21 n  is a basis of hV .

Let h be a non-degenerated triangulations of  , with 0h the discretization

parameter and let hV and hQ be two finite-dimensional spaces for the velocity

and the pressure, respectively, such that )(1 HVh and ).(2
0  LQh We define

pair o discrete space )(1
0

0  HVV hh and )(2
0  LQM hh .

In these spaces, the discrete problem  can be written as:

Find hhhh Mp  0),( Vu such that
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(8)

The existence and uniqueness of the problem (8) is generated by the fact that the

discrete space 0
hV and hM verify a compatibility condition known as 'consistency

condition', 'inf-sup condition' or LBB-condition [11]. The next theorem deals with

the error estimate for the Navier-Stokes approximation of (8) using the Hood-

Taylor finite element method. Proof can be found in [11].

Theorem 1:

Let the solution ),( pu of the Navier-Stokes system (4) satisfy

.2,1),()(),()( 2
0

1
0

1   kLHp kk HHu

If the triangulation h is regular and it has no triangle with two edges on  , then
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the solution ),( hh pu of the problem (12) with 0
hV and hM satisfies the following

error estimates:

  .2,1,
)()(1)()( 121 
  kphCpp kk H

k

Lhh HH
uuu □

To make the problem (8) numerically stable, we add the additional term




 hhhhhh vuuvuu )(
2

1
),)((

2

1

to the equation 1)8( to make it consistent, since for the incompressibility condition

the above additional term reduces to zero. In that case the modification is

consistent and the modified approximate problem can be written as follows:

Find hhhh Mp  0),( Vu such that
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Algebraic System and Algorithm: We choose the Hood-Taylor finite elements to

discretize the Navier-Stokes problem. Let NVh )dim( 0 , MM h )dim( and

000
hhh VV V and suppose Nii ,,1}{  and Mji ,,1}{  be the Lagrange bases of the

spaces 0
hV and hM respectively. Let us write the approximate solutions

),( ,2,1 hhh uuu and hp in the basis of 0
hV and hM as
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Let ),,(),,(),( ,2,1 kiihhhhh qvvq v be the test functions. Setting

)0},({),( ,2,1 ihhh vv v and }){,0( i , for Ni ,,1 , and Mllhq ,,1}{   ,

we obtain the following system:
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The above system of equations can be written as a non-symmetric matricial
equation:
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where   ,2,1,,,1  iuu N
ii

t
i u for N nodal velocities,  M

t pp ,,1 P , for

M nodal pressure and
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The nonlinear 1N vector   is given as
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To solve the nonlinear system (10) we use the Newton-Raphson algorithm. For

this Navier-Stokes system, in fact, we want to solve the nonlinear vector field

function 0),( puH , where
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Considering the initial data 00 , pu are known, we obtain
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we have
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So, we can define the algorithm

1.  Given Qp Vu ),( 00 .

2. Repeat

Solve ),( nn

n

n

p
p

uH
u

J 











nnn uuu 1

nnn ppp 1

until TOLp nn ),( u .

Numerical Results: We developed our own script in FreeFem++ to implement the

Newton’s method applied to the non-dimensional Navier-Stokes problem
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


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To validate the solution, we fix the velocity and pressure

 


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
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yxp

xyyxxyyyxx

)(

)12())((),12)(()()( 222222

x

xu
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and we evaluate external force ),( 21 fff to verify the Navier-Stokes equations

with 1Re  .

We consider that the fluid is confined into a squared domain 2]1,0[ and the

prescribed  Dirichlet boundary conditions agree with the exact solution according

to (12).

To guarantee the quadratic convergence of Newton's method applied to Navier-

Stokes equations, we should choose an initial approximation nearby the exact

solution[11]. If we choose the initial approximation as the finite-element solution

of Stokes equations, then the Newton's sequence converges quadratically to the

unique solution to Navier-Stokes equations for sufficiently small mesh size h and

a moderate Reynolds number Re [9]. The problem has been solved using four grids

obtained by successive refinements dividing each triangle into four new triangles

starting with a coarse mesh with 32-elements.

We use the following four meshes
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(a) 32-elements (b) 128-elements (c) 512-elements (d) 2048-
elements

Figure 1: Meshes over the square 2]1,0[ .

The characterization of the meshes through the diameter, number of elements and
degree of freedom:

Table 1: Characterization of the grids

In each case, we evaluate the error of the fluid velocity in
1H -norm and

pressure in 2L -norm which are respectively defined by

 




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1
)(,)(,)( 221 )(

i
LihiLihihu uuuuerr

H
uu

and .)(

2/1

2

)(2 







 


 hLhp pppperr

The results obtained for u and p over different meshes are presented in the table 2.

The good convergence of results of all kinematics can be confirmed by the slope

value. We used the least square approximation to find the slope of the log-log plot
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of the error of the fluid velocity and pressure from which the good convergence of

results for all kinematics can be confirmed.

The error of the fluid velocity and the pressure and the slope of the log-log plot of
the errors:

Table 2: Error of the velocity field and pressure.

The log-log plot of the errors of the velocity and the pressure:

(a) Log-log plot of the error uerr

(b) Log-log plot of the error perr

Figure 2: Log-log plot of the error of the velocity and pressure.
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Like our expectation, the rate of convergence (the slope) is positive (quadratic for

the velocity) for both of the errors, and since the errors approaches zero as h tends

to zero, so, our approximation converges to the exact solution with respect to the
corresponding norms.

The exact and numerical solutions are illustrated graphically in the next figure.

)yy)((yx)(x(x,y)u 12222
1  )12222

2  x(y)x)(y(x(x,y)u

yxyxp ),(

),(),( 11, yxuyxuh  yxuyxuh ,(),( 22, 

),(),( yxpyxph 

Figure 3: Exact and numerical solution for grid with 512 elements.
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The above solutions (the velocity and the pressure) are obtained from the mesh

with 512 elements. Here the contour of the first component of velocity is on the

left, second component of velocity is on the centre and pressure is on the right.

Here we observe that the behavior of the exact and numerical solutions is

approximately same.

Exact and numerical streamlines:

(a) Exact streamline (b) Numerical streamline

Figure 4: Streamlines

We can see by the plot of the stream function, the fluid is rotating inside the

domain with the same speed and also the qualitative behavior of the kinematics is

almost same.

We can conclude the posteriori-estimates as

i) The rate of convergence is quadratic for the velocity.

ii) The rate of convergence is cubic for the pressure.

ii) The errors approaches zero as h tends to zero (confirmed the theorem 1).

So, from all the above numerical and graphical results, we observe that the

approximate solution (Newton’s sequence) converges to the exact solution with

respect to the corresponding norms.

Conclusion:

In this paper, we have simulated incompressible Newtonian flow which is

governed by the Navier-Stokes equations in two dimensional case. We obtained

the approximate solution of steady Navier-Stokes equations using finite element
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method with Newton’s algorithm implemented in FreeFem++. We observed that,

if we choose  the finite element solutions of Stokes equations as initial guess, then

the Newton’s method converges to the exact solutions of Navier-Stokes problem.

The numerical results are obtained by considering the benchmark problem over

four different meshes. We have represented the solutions computationally and

graphically , and also have established the posteriori-estimates. From the

posteriori-estimates, we found that the approach solution converges to the exact

solution and we have a very good rate of convergence. From the simulations

results, it has also been established that FreeFem++ is capable to provide the

better approximation for the incompressible Newtonian flow.
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