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Abstract

In this paper, incompressible Newtonian flow is numerically studied by
approximating the solution of the steady Navier-Sokes equations in two dimensional case.
Computational Fluid Dynamics (CFD) simulations are carried out by using the finite
element method. Newton’s method is applied to solve the Navier-Sokes equations where
the finite element solutions of Stokes equations is considered as the initial guess to obtain
the convergence of Newton’s sequence. The numerical simulations are presented in terms
of the contours of velocity, pressure and streamline. All the meshes and simulations are
implemented on the general finite element solver FreeFent++. A two-dimensional
benchmark flow was computed with posteriori estimates. It has also been established that
the free access solver FreeFem++ can provide a reasonable good numerical simulations
of complicated flow behavior.

Keywords and Phrases. Navier-Stokes equations, CFD simulation, finite element method,
Newton-Raphson method.

Introduction:

The am of this work is to analyze numericaly and simulate
computationally the incompressible Newtonian flow which is modeled by the
steady Navier-Stokes equations in two dimensional case. CFD describes the fluid
flow in terms of mathematical models such as Navier-Stokes equations which
consist of congtitutive equations in the form of non-linear system of partial
differential equations . In the present paper, Newton’s method is applied to solve
the Navier-Stokes system which is discretized using the Hood-Taylor finite
elements. The numerica simulations are obtained computationally by the

implementation of the finite element method where the finite element solution of
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Stokes equations is chosen as the initial approximation of Newton’s method. It is
obtained that the Newton’s sequence converges quadratically to the unique
solution of Navier-Stokes equations for sufficiently small mesh size h and a
moderate Reynolds number Re which is in good agreement with the results
discussed by Kim et a. in [9], Ghia et al. [7] and many authors. In [9], Kim et al.
discussed theoretically the Newton’s method for the Navier-Stokes equations with
finite element initial guess of Stokes equations. We briefly discuss the
mathematical and numerical analysis, and analyze the approach problem in the
context of finite element method ([10], [5], [11]). All the numerical simulations are
implemented with our own script developed in FreeFem++ using the equivalent
iterative variational formulation of Navier-Stokes problem. The solutions are
obtained computationally and graphically in terms of velocity, pressure and
streamline contours. A two-dimensional benchmark problem is computed and
posteriori estimates for the rate of convergence is established. Finaly, we draw

some conclusions.
The Constitutive Equations and Problem Formulation: For a simple, isotropic,
incompressible fluid, the Cauchy stresstensor T can be expressed as
T=-pl +1,
where p is the hydrostatic pressure, T, is the extra stress tensor and | is the

identity matrix or Kronecker tensor. For a Newtonian fluid, the dissipative effects
of frictional forces can be described by alinear relation between extra stress tensor

and rate of strain tensor, i.e.,
T, =2nD(u) (Stokeslaw)

wherem> 0is the dynamic viscosity coefficient expressing the fluid’s resistance
which it offers to shear strain during the displacement ([m =Pas),

D(U)Z%[Vu-i-(VU)t]iS the symmetric part of the velocity gradient. So, the

Cauchy stresstensor can be written in the form
T =—pl +2nD(u) = —PIl + n{Vu +(Vu)']

(1)
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The Navier-Stokes equations for incompressible fluid is a system of non-linear
equations formed by the law of conservation of mass and the momentum
eguations. Considering T, asin (1), the Navier-Stokes equations which model the
incompressible Newtonian flow can be formed as

rZ—LtJ-Fr(U'V)UZV'T-‘rrf

V.u=0 N rg_l:+r(U'V)U+VD=V-ﬁ[Vu+(Vu)‘]+rf

T=-Pl+nm{Vu+(Vu)'] V-u=0

raa—?+r(u-V)u—mAu+Vp:rf

V-u=0 (2)

Considering r as a constant, we define the kinematic viscosity by n ::_n (m?s)

and the scaled pressure p =rB (m?/s%) still denoted by p and we obtain the Navier-

Stokes equations for steady flow as
r(u-Vu+vp-nAu=rf
{V -u=0
©)

The above equations are non-dimensionalized as follows:

X t Ut u pL fL?
=—, t:—:—’ u:—, p:—, f:
L T L ) muU muU
m n

where L is the characteristic length, U is the characteristic velocity, T is the
characteristic time and Re isthe Reynold’s number which is theratio of inertia to
viscous forces.

The non-dimensional governing equationsis of the form

Re(u - V)u + Vp—Au =f

V-u=0
The mathematical analysis of Navier-Stokes equations can be found in ([11], [12]).
Nomenclature:
Before discussing the boundary conditions and variational formulation, we
introduce some notations of different function spaces in the following table, details
of which can befoundin ([4],[1]).
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C°(Q) or C(Q)

The vector space of al continuous
functionson Q c R (d =2, 3)

C™(Q) Vector space of al functions, where all
the partia derivatives D* of order
0<Ja < are continuous on Q

C*(Q) The vector space of all infinitely
differentiable functions

Cl(Q) The space of al functions in C™(Q)
with compact support

LP(Q) The Lebesgue spaces

W™?(Q2), where m>0 be an integer| The standard Sobolev spaces

and 1< p<oo

s

Norms of W™P(Q)

H™(Q) W™P(Q), for p=2
L°(Q) W°P(Q)

Boundary Conditions:

To close mathematical formulation and obtain a well-posed problem, the
equations (3) need to be supplemented by some boundary conditions. For
simplicity, we consider the case in which the system of differential equations (3) is
equipped with the Dirichlet boundary conditions

u=gon oQ (adherence conditions)
For the incompressible fluids, the Dirichlet boundary condition g satisfies the
compatibility condition [3]
I g-n=0
oQ

where nis the outward unit normal to 0Q. We take the homogeneous Dirichlet
boundary conditions (no-dlip boundary conditions) which describes a fluid
confined into a domain with fixed boundary (the boundary is at rest). With the
homogeneous Dirichlet boundary conditions defined over Q, we can write the

steady Navier-Stokes problem as follows:

Given f e L*(Q), find (u, p) such that
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(u-VJu+Vp-nAu=f, in Q
V-u=0 in Q
u=0 on 0Q

(4)
If the velocity of the flow is small enough, then the non-linear convective term
(u-V)u is negligible. So, for slow viscous flows, we obtain the following Stokes
problem:
Given f e L*(Q), find (u, p) such that
Vp-nAu=f, in Q
V-u=0 in Q
u=0 on 0Q
®)

Variational formulation of Steady Navier-Stokes Problem: The variational
formulation of the Navier-Stokes equations consists of integral equations which is
obtained by taking integral over the domain of the scalar product of the momentum
equation and the continuity equation with appropriate test functions, and applying
the Green integration formula. Following Ladyzhenskaya (1959), we assume that

ueC3Q)NC%’Q) and peCHQ)NC’(Q) are the classica (or strong) solution
of (4). Consider two Hilbert spaces V=H;(Q) and Q=L%(Q) and let
v eV and gqe Qbe two arbitrary test functions. The variational formulation of the
Navier-Stokes problem (4) reads:

Given f e H(Q), find (u, p) € Hy(Q)x L2(Q) such that

J.(u-V)u.v—.fpV.v+nJ.Vu:Vv :If.v, YveV
Q Q Q Q
J'V-uqzo, vqeQ

Q

(6)
Problems (4) and (6) are equivalent.
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We reformulate the variational formulation of the previous problem in a general
abstract formulation that is suitable for many elliptic problems. We introduce

the continuous and coercive (V —édlliptic) bilinear form:
a(u,v) =n (Vu,Vv) :njVu 'V
Q

and continuous bilinear form
b(v, p) =—(p,V-v) == pV-v,
Q

And we also introduce continuous trilinear form
c(w;u,v) =((w-V)u,v) = I(W-V)U-V
Q
Taking into account the above forms, we can reformulate the variational
formulation of the Navier-stokes problem as abstract formulation which can be
written as follows:

Given f e H(Q), find ueV, peQ suchthat

a(u,v) +c(u;u,v)+b(v,p) =(f,v), YveV

b(u,q)=0, vgeQ
u=0 on oQ2

(7)

Existance and uniqueness of the solution: It can be proved [12] that the problem (7)
is well-posed and equivaent to (4). The existence and uniqueness of theorem for the
solutions of Navier-Stokes system can be found in (Galdi (1994) [6], Girault and Raviart
(1986) [11], Temam (1984) [12]).

Numerical Analysis for the Navier-Stokes Problem: We use finite element
method (FEM) to approximate the numerical solutions of Navier-stokes problem
(7).

Dividing the domain of solution into a finite numberof subdomains, the finite
elements, the approach variational problem is defined over a finite-dimensiona
subspace Vh of V (infinite-dimensional function space where theexact solution

exists) where h is a discretization parameter. The solution (u, p) of the problem (7)

lives in a space of infinite dimension. In this case, it is normaly impossible to
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calculate the exact solution. Rather we determine the approximate value u, and
p,, of u and p, each one defined in finite dimensional subspaces V,. These
spaces are formed by polynomials and for all function v, in V, (in particular u,

and p, for the appropriate spaces) we have

Vp=Yaj,aelRi=1L-,nwhere{jj,,-j,} isabasisof V.
i=1

LetT, be a non-degenerated triangulations of Q, with h> 0 the discretization
parameter and let V, and Q, be two finite-dimensional spaces for the velocity
and the pressure, respectively, such that V, e H'(Q) and Q, e L3(Q). We define

pair o discrete space V) =V, nH(Q)and M, =Q, N LA(Q) .
In these spaces, the discrete problem can be written as:

Find(u,, p,) € V. x M, such that

{a(uh,vh)+c(uh;uh,vh)+b<vh,ph)=<f,vh), W, e VY,
b(uh’Qh):O’ vq, EMh’

)
The existence and uniqueness of the problem (8) is generated by the fact that the

discrete space V? and M, verify a compatibility condition known as '‘consistency

condition’, 'inf-sup condition' or LBB-condition [11]. The next theorem deals with
the error estimate for the Navier-Stokes approximation of (8) using the Hood-
Taylor finite element method. Proof can be found in [11].

Theorem 1:
Let thesolution (u, p) of the Navier-Stokes system (4) satisfy

ue H ' (Q) NHL(Q), pe H (Q) N L3(Q), k=12

If the triangulation T,, isregular and it has no triangle with two edges on 0Q , then
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the solution (u,,, p,) of the problem (12) with Vv and M, satisfiesthe following

error estimates:

|u _uh|Hl(Q) +|p_ ph||_2(Q) < Clhk(|u|HM(Q) +|p|Hk(Q))’ k=1 Z'D

To make the problem (8) numerically stable, we add the additional term
1 1
E((V “Up)Uy, V) = EI(V “Up)uy - vy,
Q

to the equation (8), to make it consistent, since for the incompressibility condition

the above additional term reduces to zero. In that case the modification is
consistent and the modified approximate problem can be written as follows:

Find(u,, p,) € V. x M, such that

1
a(uh’vh)+C(uh;uh’vh)+§((V'uh)uh’vh)+b(vh’ Pn) =(.vy), Vv, EV:’

b(u,,q,)=0, vq, M, ,
u,=0

(9)

Algebraic System and Algorithm: We choose the Hood-Taylor finite e ements to
discretize the Navier-Stokes problem. Let dim(V’)=N, dim(M,)=M and

Vy =V xV,)and suppose {j },_,..,, ad{y .} .., betheLagrange bases of the
spaces VP and M, respectively. Let us write the approximate solutions

u,=(,.u,,) ad p, in the bass of V) ad Myas
N - N - -

uy :(ul,h’u2,h):(2(u1)j1j j!Z(UZ)j'J 1)1 Pr :Zpd |
j=1 j=1

Let  (Vi,0,) =(VyniVorsdy) =G 4 ;Y ()be the test functions.  Setting

Vi = (Vl,h’VZ,h) = },0) and (O4j;}) .fori=1---,N, and q, ={y |}|=1|~~,M )
we abtain the following system:
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1 a : ]
/ |}.«Trr|.’~ "'-_',-i+|.ll,f' T:I-u[,.l,,_,+}{'\? ""’l"l‘rr }“ J"Ir: =0, i= { iwai N
]. |i|
4 ]‘f'\?m} T i+ (- ";_'Iu_ f‘l]l;'—El:T r.u:]m,r.r, _." Y —0, ¢=1..
0
(Ve —0 f 1 -0 M

il

The above system of equations can be written as a non-symmetric matricial
equation:

nA 0 B, |lu c(u,) F,

0 nA B, ||u,|+|c(u,)]|=|F,

B, B, O||p 0 0
(10)

where u; :[uil,---,uiN],i =1, 2, for N noda velocities, P' =[p, ,-
M nodal pressure and

AZ[A”]NXN:J'aj KE aJ KB

-, py |, for

i j—]_'...’N
n OX X _ay oy
3,
BX_[BXI|]>< = _Iyl
o _i 6X 4 NxM

B, =Byl = [y | il NI =L M

g=1 &oouk=1
i N
! do; i [t
I T Wiy tr | 2 i =1 N
2 /r}ﬂ{ " B : fi'.r,rl ;[ Fik A)
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To solve the nonlinear system (10) we use the Newton-Raphson algorithm. For
this Navier-Stokes system, in fact, we want to solve the nonlinear vector field

function H(u, p) =0 , where

nA 0 B, ||lu, c(u,) F

X

H(u,p)=| 0 nA B, ||u,|+|c(u,)|—|F,

B. B, 0| p 0 0
(11)

X

Considering theinitial data u®, p°® are known, we obtain

n+1 n
{um} :{un}—\]l(u”, pHH(u", p"),n>0
Y p

Taking J‘l(U“,p“)H(U”,p“){jun} !
p

e o
pn+1 pn dpn

So, we can define the algorithm

we have

1. Given (u°%,p°)eVxQ
2. Repeat

n

Solve J[d“ }: HU", p")
dp"

n+1

u™ =u"—-du"

until |(du”,dp")| < TOL

Numerical Results: We developed our own script in FreeFem++ to implement the

Newton’s method applied to the non-dimensional Navier-Stokes problem
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Re(u-V)u+Vp-nAu=f, in Q
u=u,, on 0Q

To validate the solution, we fix the velocity and pressure

u(¥) = (0 = %%(y2 - )Ry -1, (0 = x)(y? - y)*(2x-1))
pO) = X+ (12)

and we evaluate externa force f =(f,, f,)to verify the Navier-Stokes equations
withRe=1.
We consider that the fluid is confined into a squared domain Q =[0,1]* and the

prescribed Dirichlet boundary conditions agree with the exact solution according
to (12).

To guarantee the quadratic convergence of Newton's method applied to Navier-
Stokes equations, we should choose an initial approximation nearby the exact
solution[11]. If we choose the initial approximation as the finite-element solution
of Stokes equations, then the Newton's sequence converges quadratically to the
unique solution to Navier-Stokes equations for sufficiently small mesh size h and
amoderate Reynolds number Re[9]. The problem has been solved using four grids
obtained by successive refinements dividing each triangle into four new triangles

starting with a coarse mesh with 32-elements.

We use the following four meshes
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(a) 32-elements (b) 128-elements (c) 512-elements  (d) 2048-
elements
Figure 1: Meshes over the square [0,1]°.

The characterization of the meshes through the diameter, number of elements and
degree of freedom:

God h No. of elements Fs nodes [y nodes
{imd]  [hdRSARY R Al a5
Grid2 0178777 138 280 =1
Gruld  [LOBR3883 513 10ED 238
Gridd 00441049 45 4295 10=0

Table 1: Characterization of the grids

In each case, we evaluate the error of the fluid velocity in H ! _norm and

L2(Q) )

pressurein L?-norm which are respectively defined by

2
HiQ) Zmui —Up;

i=1

err, =|u-u,

+ Hv(ui —Up;)

L*(Q)

1/2
and errp :”p_ ph|||_2(Q) :|:J’(p_ ph)2:| '
Q

The results obtained for uand p over different meshes are presented in the table 2.

The good convergence of results of all kinematics can be confirmed by the slope

value. We used the least square approximation to find the slope of the log-log plot
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of the error of the fluid velocity and pressure from which the good convergence of
results for all kinematics can be confirmed.

The error of the fluid velocity and the pressure and the slope of the log-log plot of
the errors:

Error Crrid Grid2 Grida Gridd Slope of the
Tow Jup ol

err, (000224426 | 0000377856 | 53710 % 1075 | 718023 ¢ 10-F  2.78008

ervy  OLONTEAISE | CLDODTSAT2E | 110408 % 1075 | 10202 % 1075 H4Ra4

Table 2: Error of the velocity field and pressure.

Thelog-log plot of the errors of the velocity and the pressure:

log e,
-6 1

L A e iy, B o, I Py Ly Py, Ay I =, ey B e, oY, | | n
F 25 20 -15 G0
L]

(8 Log-log plot of the error err,

logem,
T
_at
_af .
.‘||:|.
41t
.12.

- - - \ logh
25 20 -15 1.0

(b) Log-log plot of the error err,,
Figure 2: Log-log plot of the error of the velocity and pressure.
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Like our expectation, the rate of convergence (the slope) is positive (quadratic for
the velocity) for both of the errors, and since the errors approaches zero as htends

to zero, so, our approximation converges to the exact solution with respect to the
corresponding norms.

The exact and numerical solutions areillustrated graphically in the next figure.

W(Y)= (¢ =X)% Y2 = Y)(2y—1)  u,(xy) =~ = X)(y* - y)*(2x~1)

p(X,y) = x+y

Uh‘l(X, y) = U (X Y) Uh’z(X, y) 2 U, (X, Y
Pa(X.Y) = P(X, )

Figure 3: Exact and numerical solution for grid with 512 elements.
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The above solutions (the velocity and the pressure) are obtained from the mesh
with 512 elements. Here the contour of the first component of velocity is on the
left, second component of velocity is on the centre and pressure is on the right.
Here we observe that the behavior of the exact and numerical solutions is
approximately same.

Exact and numerical streamlines;

(a) Exact streamline (b) Numerical streamline
Figure 4: Streamlines
We can see by the plot of the stream function, the fluid is rotating inside the
domain with the same speed and also the qualitative behavior of the kinematics is
almost same.

We can conclude the posteriori-estimates as

)] The rate of convergenceis quadratic for the velocity.

i) The rate of convergenceis cubic for the pressure.

i) The errors approaches zero as h tends to zero (confirmed the theorem 1).
So, from al the above numerica and graphical results, we observe that the
approximate solution (Newton’s sequence) converges to the exact solution with

respect to the corresponding norms.

Conclusion:
In this paper, we have simulated incompressible Newtonian flow which is
governed by the Navier-Stokes equations in two dimensiona case. We obtained

the approximate solution of steady Navier-Stokes equations using finite element
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method with Newton’s algorithm implemented in FreeFem++. We observed that,
if we choose the finite element solutions of Stokes equations as initial guess, then
the Newton’s method converges to the exact solutions of Navier-Stokes problem.
The numerical results are obtained by considering the benchmark problem over
four different meshes. We have represented the solutions computationally and
graphicaly , and also have established the posteriori-estimates. From the
posteriori-estimates, we found that the approach solution converges to the exact
solution and we have a very good rate of convergence. From the simulations
results, it has also been established that FreeFem++ is capable to provide the

better approximation for the incompressible Newtonian flow.
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