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Abstract
In this paper, we have developed an inventory model for deteriorating items with

price and time dependent demand considering inflation effect on the system. Shortages if
any are allowed and partially backlogged with a variable rate dependent on the duration
of waiting time up to the arrival of next lot.  The corresponding problem has been
formulated as a nonlinear constrained optimization problem, all the cost parameters are
crisp valued and solved. A numerical example has been considered to illustrate the model
and the significant features of the results are discussed. Finally, based on these examples,
a sensitivity analyses have been studied by taking one parameter at a time keeping the
other parameters as same.
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1. Introduction

Due to highly competition in marketing policy permissible delay in payment is

one of the important factors to increase their business. As a result, wholesalers/suppliers

offer different types of facilities to their retailers to promote their business. In that case,

wholesalers/suppliers offer a certain credit period to their retailer. In this period, no

interest is charged by the supplier to their retailer. However, after this period, a low rate

of interest is charged by the supplier to the next credit period and after this time period, a

high rate of interest is charged by the supplier under certain terms and conditions. This is

known as inventory problem with permissible delay in payments. It is also known as

trade credit financing inventory problem. This type of idea was first introduced by Haley

and Higgins [1]. Thereafter, Goyal [2] formulated an EOQ model under the conditions of
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permissible delay in payments. Then, Aggarwal and Jaggi [3] extended the Goyal’s
model for deteriorating items. Shortages are not considered in their model. Jamal et al.
[4] developed the general EOQ model, considering fully backlogged shortages. After
Jamal et al. [4], a number of works have been done by several researchers to their
research. The detailed of some of the works have been shown in Table 1.

Table 1: Summary of related literature for inventory model with permissible delay in
payments

Author(s) and year Deterioration
Demand

Rate
Shortages

Level of permissible
delay in payments

Inventory
policies

Hwang and
Shinn[5]

Yes Constant No Single --

Chang, Ouyang
and Teng[6]

Yes Constant No Single --

Abad and
Jaggi[7]

No
Linearly

time
dependent

No Single --

Ouyang, Wu
and Yang[8]

Yes Constant No Single --

Huang [9] No
Linearly

time
dependent

No Two level ---

Huang[10] No Constant No Single --
Huang[11] No Constant No Two level --

Sana and
Chaudhuri[19]

Yes
Selling
price

dependent
No Single --

Huang and Hsu
Yang[20]

No Constant No
Two level partial

trade credit
--

Ho and Ouyang
[21]

No Constant No Two level --

Jaggi and
Khanna [24]

Yes
Inventory

level
dependent

Complete
backloggi

ng
Single IFS

Jaggi and
Kausar [25]

No
Selling
price

dependent

Complete
backloggi

ng

Single partial trade
credit

--

Jaggi and Mittal
[29]

Yes Annual
Complete
backloggi

ng
Single IFS

Shah, Patel and
Lou[37]

Yes
Inventory

level
dependent

No Single --
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Das, Maity and
Maiti[12]

No
Inventory level

dependent
No Single --

Niu and Xie[13] Yes Constant
Complete

backlogging
Single IFS

Rong, Mahapatra
and Maiti[14]

Yes
Selling price
dependent

Partial and
complete

backlogging
Single IFS

Dey, Mondal and
Maiti[15]

No Dynamic No Single --

Hsieh, Dey and
Ouyang[16]

Yes Constant
Complete

backlogging
Single IFS

Maiti[17] No
Inventory level

dependent
No Single --

Jaggi and Verma
[18]

No
Selling price
dependent

Complete
backlogging

No --

Lee and Hsu [22] Yes
Linearly time

dependent
Jaggi, Aggarwal
and  Verma[23]

Yes
Selling price
dependent

Partial
backlogging

No IFS

Bhunia and
Shaikh[26]

Yes
Price and time

dependent
Partial

Backlogging
No IFS

Bhunia, Pal and
Chattopsdhyay[27]

Yes
Inventory level

dependent
Partial

backlogging
No IFS

Jaggi, Khanna and
Verma[28]

Yes
Linearly time

dependent
Partial

backlogging
No IFS

Yang [30] Yes Constant
Partial

backlogging
No IFS&SFI

Bhunia, Shaikh,
Maiti and  Maiti
[31]

Yes
Linearly time

dependent
Partial

Backlogging
No IFS

Bhunia, Shaikh and
Gupta[32]

Yes
Linearly time

dependent
Partial

backlogging
No IFS&SFI

Yang and Chang
[33]

Yes Constant
Partial

backlogging
Single SFI

Chung and Huang
[34]

Yes Constant No Single --

Liang and Zhou
[35]

Yes Constant No No --

Bhunia, Jaggi,
Sharma and
Sharma [36]

Yes Constant
Partial

backlogging

Alternative
approach

Single
IFS

Present paper Yes
Selling price

dependent demand
Partial

Backlogging
Single IFS
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Assumptions
The following assumptions and notations are used to develop the proposed model:

(i) The entire lot is delivered in one batch.
(ii) Inflation effect of the system.
(iii)The demand rate ( , )D p t is dependent on time. It is denoted

by ( , ) , , , 0D p t a bp ct a b c    .
(iv) The deteriorated units were neither repaired nor refunded.
(v) The inventory system involves only one item and one stocking point and the

inventory planning horizon is infinite.
(vi) Replenishments are instantaneous and lead time is constant.
(vii) The replenishment cost (ordering cost) is constant and transportation cost does not

include for replenishing the item.

Notations:
 q t Inventory level  at time t

S Highest stock level at the beginning of stock-in period
R Highest shortage level
 Deterioration rate ( 0 1  )

oC Replenishment cost per order

 Backlogging parameter

pC Purchasing cost per unit

p Selling price per unit of item
( )D t Time dependent demand

hC Holding cost per unit per unit time

bC Shortage cost per unit per unit time

lsC Opportunity cost due to lost sale

M Credit period offered by the  supplier

eI Interest earned by the retailer

pI Interest charged by the suppliers to the retailers

T Time at which the highest shortage level reaches to the lowest point
r Inflation rate

(.)Z The total average cost

Inventory model with shortages

In this model, it is assumed that after fulfilling the backorder quantity, the on-
hand inventory level is S at t=0 and it declines continuously up to the time 1tt  when it
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reaches the zero level. The decline in inventory during the closed time interval 10 tt 
occurs due to the customer’s demand and deterioration of the item. After the

time 1tt  shortage occurs and it accumulates at the rate   1
1 ,T t


    ( 0  ) up to the

time t T when the next lot arrives. At time ,t T the maximum shortage level is R.
This entire cycle then repeats itself after the cycle length T.

Let  q t be the instantaneous inventory level at any time 0t  .  Then the

inventory level  q t at any time t satisfies the differential equations as follows:

  1
( )

( ) , , 0
dq t

q t D p t t t
dt

     (1)

1
( ) ( , )

,
[1 ( )

dq t D p t
t t T

dt T t


  
 

(2)

with the boundary conditions

 q t S at 0t  , ( ) 0q t  at 1t t . (3)

and  q t R  at .t T (4)

Also, ( )q t is continuous at 1t t .
Using the conditions (3) and (4), the solutions of the differential equations (1)-(2) are
given by

 
Ttt

bT
R

bttTTba

tte
bat

b
a

tq tt







 











 







  

12

1
)(

22

,
)(1log)1(

0,
1

)( 1








Now the total inventory holding cost for the entire cycle is given by

dttqeCC
t

rt
hhol )(

1

0
 

Again, the total shortage cost ShoC over the entire cycle is given by

 dttqeCC
T

t

rt
bsho  

1

)(

Cost of lost sale OCLS over the entire cycle is given by

2

1
1 ( )

1 ( )

T
rT

ls

t

OCLS C e D t dt
T t

  
    

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Interest earned and interest charged depends upon the length of the cycle and allowable
credits time M. The flowing two cases arise:
Case 6.1: 10 M t 
Case 6.2: 1t M T 
Now, we shall discuss all the cases in details.
Case 6.1: 1M t
In this scenario, the total interest earned during the period  0, M is given by

1

1

0 0

1 ( )
t t

e eIE pI Ddudt pRI T t   
Again, the interest paid during the period  1,M t is given by

1

1 ( )
t

p p

M

IP C I q t dt
    
  


Hence, in this case, the average cost  1 1,Z t T is given by

 1 1,
X

Z t T
T


where X= <setup cost> +  <inventory holding cost> + <deterioration cost> +<Interest
paid>-<Interest Earn>

11 IEIPCeC hol
rT

o  

Case 6.2: 1t M T 
In this scenario, the total interest earned during the period  0, M is given by

1

1

0 0

1 ( )
t t

e eIE pI Ddudt pRI T t   
In this case, there is no interest charge
Hence, in this case, the average cost  2 1,Z t T is given by

 2 1,
X

Z t T
T


where X= <setup cost> + <inventory holding cost> + <deterioration cost> -<Interest
Earn>

1IECeC hol
rT

o  

4: Numerical Example

To illustrate the model with partially backlogged shortages, a numerical example with the
following data has been considered.
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$1.5hC  per unit per unit time, Cb=$15 per unit per unit time, 30pC per unit,

300oC per order, 0.05  , a = 45, b =0. 5, c=15,M=60/365,p=45,

15,12.0,09.0,5.1  lspe CII .

According to the solution procedure,  the optimal solution has been obtained with
the help of LINGO software for different values of m. The optimum values of 1t , T, S and

R along with maximum average profit are displayed in Table 1.

Table 1: Optimal solution for different cases
Cases S R T t1 Z

Case6.1 45.804 33.66 1.8436 0.1643 2396.241
Case6.2 49.28 25.44 1.7521 0.1523 2274.737

5: Sensitivity Analysis

For the given example mentioned earlier, sensitivity analysis has been performed to study
the effect of changes (under or over estimation) of different parameters like demand,
deterioration, inventory cost parameters. This analysis has been carried out by changing
(increasing and decreasing) the parameters from – 20% to + 20%, taken one or more
parameters at a time making the other parameters at their more parameters at a time and
making the other parameters at their original values. The results of this analysis are
shown in Figures.

Fig-1: %change of parameter Co w.r.t T, t1, S
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Fig-2: %change of parameter Co w.r.t R,Z

Fig-3: %change of parameter a w.r.t T,t1,S
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Fig-4: %change of parameter a w.r.t R,Z

Fig-5: %change of parameter b w.r.t T,t1,S



1544

J.Mech.Cont.& Math. Sci., Vol.-10, No.-2, January (2016) Pages 1535-1550

Fig-6: %change of parameter b w.r.t R,Z

Fig-7: %change of parameter c w.r.t T,t1,S
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Fig-8: %change of parameter c w.r.t R,Z

Fig-9: %change of parameter p w.r.t T,t1,S
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Fig-10: %change of parameter p w.r.t R,Z

Fig-11: %change of parameter cp w.r.t T,t1,S
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Fig-12: %change of parameter cp w.r.t R,Z

Concluding Remarks

This paper deals with a deterministic inventory model for deteriorating items with

variable demand dependent on price and time inflation effect of the system.

The present model is also applicable to the problems where the selling prices of

the items as well as the advertisement of items affect the demand. It is applicable for

fashionable goods, two level and single level credit policy approach also.
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