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Abstract

A numerical algorithm is presented for studying laminar convection flow and
heat transfer over an isothermal horizontal plate. By means of similarity transformation,
the original nonlinear coupled partial differential equations of flow are transformed to a
pair of simultaneous nonlinear ordinary differential equations. Subsequently they are
reduced to a first order system and integrated using Newton Raphson and adaptive
Runge-Kutta methods. The computer codes are developed for this numerical analysis in
Matlab environment. Velocity, and temperature profiles for various Prandtl number are
illustrated graphically. Flow, and heat transfer parameters are derived as functions of
Prandtl number alone. The results of the present simulation are then compared with
experimental data in literature with good agreement.

Keywords: Free Convection, Heat Transfer, Isothermal Horizontal Plate, Matlab,
Numerical Simulation.

List of Symbols

a1, a2 initial values eq (25)
cp specific heat capacity, J/Kg.K
Cf,x friction coefficient, dimensionless
f   function defined in eq (6)
g   gravitational acceleration, 9.81 m/s2

h     heat transfer coefficient, W/m2.K
k    thermal conductivity, W/m.K
L  length of the plate, m
Nux Nusselt number at x, dimensionless
NuL Nusselt number at L, dimensionless
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Pr  Prandtl number, dimensionless
Qw Total heat flux of the plate, W/m2

qw heat flux of the plate, W/m2

Rex Reynolds number at x, dimensionless
ReL Reynolds number at L, dimensionless
T   temperature, K
Tw surface temperature, K
T1 free streams temperature, K
u velocity component in x, m/s
u1 free stream velocity in x, m/s
v  velocity component in y, m/s
x  coordinate from the leading edge, m
y  coordinate normal to plate, m
z1, z2, z3, z4, z5 variables, eq (22)

Greek Symbols
θ  function defined in eq (18), dimensionless
 coefficient of thermal expansion, 1/K
δ  boundary layer thickness, m
μ     dynamic viscosity, N.s/m2

α thermal diffusivity, m2/s
 kinematic viscosity, m2/s
η   similarity variables, eq (7)
τ   shear stress, N/m2

ψ stream function, m2/s
ρ  density, kg/m3

1. Introduction

There have been a number of studies on natural convection over an isothermal
horizontal plate due to its relevance to a variety of industrial applications and naturally
occurring processes, such as solar collectors, pipes, ducts, electronic packages, airfoils,
turbine blades etc. The earliest analytical investigation was a similarity analysis of the
boundary layer equations by Blasius [1]. Many other methods of attack are chronicled in
the text books by Meksyn [2] and Rosenhead [3]. The problem is also discussed in
several text books [4-10].

In the present numerical investigation, a simple accurate numerical simulation of laminar
free-convection flow and heat transfer over an isothermal horizontal plate is developed.
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The paper is organized as follows: Mathematical model of the problem, its solution
procedure, development of code in Matlab, interpretation of the results, comparison with
experimental data.

2. Mathematical Model

We consider the flow of a fluid of velocity u1 over an isothermal horizontal plate
having temperature Tw. We assume the natural convection flow to be steady, laminar,
two-dimensional, having no dissipation, and the fluid to be Newtonian with constant

properties, including density, with one exception: the density difference    is to be
considered since it is this density difference between the inside and the outside of the
boundary layer that gives rise to buoyancy force and sustains flow, known in the
literature as Boussinesq approximation. We take the direction along the plate to be x, and
the direction normal to surface to be y, as shown in Fig 1.

Fig 1. Physical Model and its coordinate system

The equations governing the flow are
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The boundary conditions on the solution are:

At y=0: u=v=0,   T=Tw

For large y: u→u1, T→T1 (4)
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The continuity equation (1) is automatically satisfied through introduction of the stream
function:
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A similarity solution is possible if
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where, η is the similarity variable
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The basic form of the velocity profiles at different values of x, as shown in Fig 2, are all
the same.

Fig 2. Velocity profiles at various positions in the boundary layer over a flat plate

The velocity profiles at all points in the boundary layer are assumed as follows:
u
u

function y
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The boundary layer assumptions indicate that:

x

o
x

 (
Re

)1

(9)
Therefore, the similar velocity profile assumptions given in Eq(8) can be rewritten as
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Hence, the velocity profile can be uniquely determined by the similarity variable η, which
depends on both x and y.
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From equations (5) through (7), we get
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By differentiating the velocity components, it may also be shown that
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Substituting these expressions into eq(2), we then obtain (with a prime denoting
differentiation with respect to η)

2 0   f ff (16)
Hence the velocity boundary layer problem is reduced to an ordinary differential
equation. This confirms the assumptions that velocity profiles are similar. The
appropriate boundary conditions are:

at y = 0: u = 0 i.e., at η = 0:  f 0

at y = 0: v = 0 i.e., at η = 0: f = 0
for large y: u→ u1 i.e., for large η:  f 1 (17)
To solve eq (3), we nondimensionlize the temperature according to the following
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The assumptions that the temperature profiles are similar is equivalent to assuming that θ
depends only on the similarity variable, η, because the thermal boundary layer thickness

is also of the order
x

xRe .
The energy eq (3) can be written in terms of θ as (Tw, T1 are constants)
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The boundary conditions are then
y = 0: θ = 0

y large: θ→ 0 (20)

Using the relations for the velocity components previously derived, eq (19) gives
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d
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dx xu

f f d
d

d
dy u

d
d

d
dy




 





  


[ ( )]
Pr

[ ]1
2

1

1 1

2

2
2

After rearrangement, it becomes
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0Pr f
(21)

with the following boundary conditions

η = 0: θ = 0
η large: θ→1 (22)

Thus the energy eq (3) has been reduced to an ordinary differential equation. This
confirms the assumptions that temperature velocity profiles are similar.

3. Solution Procedure

Eqs (16) and (21) are nonlinear ordinary differential equations for the velocity and

temperature functions, f and θ, and are independent of each other. Eq (16) is solved first
and then eq (21). No analytic solution is known, so numerical integration is necessary
[11]. There are two unknown initial values at the wall. One must find the proper values of
f ( )0 and  ( )0 which cause the velocity and temperature to their respective free stream

values for large η. The Prandtl number is a parameter in the second case.

3.1 Reduction of Equations to First-order System
This is done easily by defining new variables:
z f1 
z z f2 1   
z z z f3 2 1    

          z z z f ff z z3 2 1 1 3
1
2

1
2

z4  
z z5 4   

       z z f5 4
1
2

 Pr
(23)
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Therefore from eqs (16) and (21), we get the following set of differential equations
  z f1

   z z f2 1

          z z z f ff z z3 2 1 1 2
1
2

1
2

  z4 

     z f5
1
2

 Pr
(24)

with the following boundary conditions:

z f1 0 0 0( ) ( ) 
z z f2 10 0 0 0( ) ( ) ( )    
z z f2 1 1( ) ( ) ( )       
z4 0 0 0( ) ( ) 

z4 1( ) ( )    (25)

Eq (16) is third-order and is replaced by three first-order equations, whereas eq (21) is
second-order and is replaced with two first-order equations.

3.2 Solution to Initial Value Problems

To solve eqs (24), we denote the two unknown initial values by a1 and a2, the set of initial
conditions is then:

z f1 0 0 0( ) ( ) 
z z f2 10 0 0 0( ) ( ) ( )    
z z z f a3 2 1 10 0 0 0( ) ( ) ( ) ( )      
z4 0 0 0( ) ( ) 

z z a5 4 20 0 0( ) ( ) ( )     (26)
If eqs (24) are solved with adaptive Runge-Kutta method using the initial conditions in eq

(26), the computed boundary values at    depend on the choice of a1 and a2

respectively. We express this dependence as

z z f f a2 1 1 1( ) ( ) ( ) ( )       
z f a4 2 2( ) ( ) ( )    (27)

The correct choice of a1 and a2 yields the given boundary conditions at    ; that is, it
satisfies the equations
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f a1 1 1( ) 
f a2 2 1( )  (28)

These nonlinear equations can be solved by the Newton-Raphson method. A value of 6 is
fine for infinity, even if we integrate further nothing will change.

3.3 Program Details

This section describes a set of Matlab routines for the solution of eqs (24) along with the
boundary conditions (26). They are listed in Table 1.

Table 1. A set of  Matlab routines used sequentially to solve Equations (24).

Matlab code Brief Description

deqs.m Defines the differential equations (24).
incond.m Describes initial values for integration, a1 and a2 are guessed

values, eq (26)
runKut5.m Integrates as initial value problem using adaptive Runge-Kutta

method.
residual.m Provides boundary residuals and approximate solutions.
newtonraphson.
m

Provides correct values a1 and a2 using approximate solutions from
residual.m

runKut5.m Again integrates eqs (24) using correct values of a1 and a2.

The final output of the code runKut5.m gives the tabulated values of f , f , f as
function of  η for velocity profile, and  and  as function of  η for various values of
Prandtl number.

4. Interpretation of the Results

4.1 Dimensionless Velocity and Temperature Profiles
Physical quantities are related to the dimensionless functions f and  through eqs (7),
(11) and (12). f and  are now known. The complete numerical solution of eq (24) is
given in Table 2 and Table 3. From this we can find all the flow parameters of interest to
flat plate.
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Table 2 Computed parameters from eqs (24)

η f f f
0 0 0 0.3326

0.1000 0.0017 0.0333 0.3326
0.7064 0.0829 0.2344 0.3293
1.3108 0.2839 0.4293 0.3125
1.9050 0.5923 0.6049 0.2751
2.4914 0.9913 0.7504 0.2185
3.0892 1.4750 0.8611 0.1514
3.5750 1.9091 0.9220 0.1004
4.0103 2.3187 0.9573 0.0634
4.4487 2.7436 0.9788 0.0364
4.8572 3.1459 0.9900 0.0200
5.2529 3.5390 0.9959 0.0103
5.6481 3.9332 0.9988 0.0049
6.0000 4.2849 1.0000 0.0024

Table 3 Values of f(Pr) for various values of Pr

Pr f (Pr)   
 0 0 3321 0 3402. Pr .

0.6 0.277 0.279
0.7 0.293 0.294
0.8 0.307 0.308
0.9 0.320 0.320
1.0 0.332 0.332
1.1 0.343 0.343
1.4 0.373 0.372
2.0 0.442 0.420
2.5 0.456 0.454
3.0 0.485 0.483
5.0 0.577 0.574
7.0 0.646 0.644

10.0 0.728 0.727
15.0 0.834 0.834
20.0 0.918 0.920
50.0 1.247 1.257

Fig 3 shows a plot of   f f and f, , and Fig 4 compares of the profile f with the
experiments of Liepmann [12]. The agreement is excellent.
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Fig. 4 Comparison of f with experiments of Liepman [12]

Some typical variations of θ with η for various values of Pr obtained from the code are
shown in Fig 5.



1531

J.Mech.Cont.& Math. Sci., Vol.-10, No.-2, January (2016) Pages 1521-1534

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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Fig 5. Solution of θ

4.2 Flow and Heat Transfer Parameters

Besides the velocity and temperature distributions, it is often desirable to compute other
physically important quantities (for example, shear stress, drag, heat-transfer-rate)
associated with the convection flow.
The boundary layer thickness,  ,  is defined as the value of y at which u=0.99u1. Fig 3

shows that u=0.99u1, i.e., f =0.99 when   5 . From (7)
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From eq (14), wall shear stress may be expressed as
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Hence from Table
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 0 3326 1
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(31)
The local friction coefficient is then
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The heat transfer rate at the wall is given by

q k T
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Hence, using eq (18)
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i.e.,

Nux x  
 0 Re

(35)
Nux and Rex being, of course, the local Nusselt and Reynolds numbers based on x.

Because θ depends only on η for a given Pr,  
 0 depends only on Pr and its value can be

obtained from the solution for the variation θ with η for any value of Pr. So, we can write
eq (35) as

Nu fx x (Pr) Re (36)
Over the ranges of Prandtl numbers covered in the Table, it has been found that f(Pr)
varies very nearly as Pr0.340 and from the table it can be represented by the following
relation

f (Pr) . Pr . 0 3321 0 3402
37

Hence eq (36) can be written as

Nux x 0 332 0 332 0 5. Pr Re. .
38

The total heat transfer rate Qw is related to the local heat transfer rate qw by

39

But eq (34) gives the local heat transfer rate as

q f k T T u
xw w (Pr) ( )1
1
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Substituting this result into eq (38) then gives on carrying out integration

Q f k T T u L
w w 2 1

1(Pr) ( )


Therefore the mean heat transfer rate for the whole plate, h , is

h Q
L T T

f k
k

u Lw

w





( )

(Pr)

1

12
 (40)

The mean Nusselt number for the whole plate, NuL is therefore, given by

Nu fL L 2 (Pr) Re

i.e., NuL L 0 664 0 332. Pr Re.
(41)

where Re L is the Reynolds number based on the plate length, L.

The results (38) and (41) are in reasonably good agreement with experimental results
available in the literature [5,7,8,12].

5. Conclusion

In the present numerical simulation, laminar convection flow and heat transfer
over an isothermal horizontal plate is presented.  Details of the solution procedure of the
nonlinear partial differential equations of flow are discussed. The computer codes are
developed for this numerical analysis in Matlab environment. Velocity profile, and
temperature profiles for Prandtl numbers of 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.4, 2.0, 2.5, 3.0,
5.0, 7.0, 10.0, 15.0, 20.0 and 50.0 are computed using these codes. The computed and
experimental velocity and temperature distributions are in very good agreement with
results published in literatures. Flow and heat transfer parameters (giving physically
important quantities such as shear stress, drag, heat-transfer-rate) are derived. The
computed results of the present simulation are compared with frequently used semi
empirical heat transfer correlation and find a good agreement. A good agreement between
the present results and the past indicates that the developed numerical simulation as an
efficient and stable numerical scheme in natural convection.
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