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Abstract

The xim of this paper is (o investigate the distribution of siresses due 10 expansion of a sprerical cavity
at the centre of & nob-hamogensaus metallic sphere of Onile radios for an elasto-plasic solid with effect of
work-nanlening ender an incressing internal pressure, the extemal pressare remaining constant. The non-
homageneity of the elestic material is charecterised by supposing that the Lame constants vary wiponeni ity
s the function of tadin] distence. The case of ideal plastic solid has elso been deduced from this general

st
1, INTRODUCTION

The redizlly symmetrie pravlems for small elesso-piastic determenons have been consicerad by 2 numhber
af investigators. By appiving Soile deformation theory HILL (1) has presenled the problen: of expacsion of
a zpiesical sheli under the action of intemal pressure only. Radially symmelrie deformation and ¢arresponding
siresy 1noa spherical shell of isotrapie solid under the influence of inlemal and satemal pressures ars
determined by LAME and given in LOVE. {2) The prablese for a spherieally anisowepic material was solved
oy SAINT-VENANT (3} and presented in the standard book of LEKHMITEELL {2, HOPEKINS [(5) studied
the problem of cynamic expansion of cavitics in ductile metals of infivite dimensions. The problems of
ruidial delormations of noo-hemogenecus spheres and spherical shells of elasbz selids with concenlric
sphenical imelusions were also levestipaled by SENGUPTA (G ROY {7) calculated the siresses dus io
cxpansion of a spherical cavity at the sentre of a homegeneous sphere under internel] and exlamal pressures
meiuding the elleel ol work-hardenmg of a matenal i which the theneal effect on the elastic pararetsrs
Aoand W was ignored.

In <his paper, the acthors have investigaled the disiribulion of slresses due to expansion of @ sphenca;
coviy at the gentre of a non-homogensous. medallic sphere of finite radius under intermal and external
pressures including the effes u!’xh'ﬂrk-ha.'d&-ning of the material, considerizig the Lare constants asc variable

guanlitics and vary exponentially as the [unelion ol rudis] distanee ol the cavity. Tls problem witl be a
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vealistic one if it is supposed that an explosion takes place at the centre of the cavity of a sphere immersed
m a liquid or placed in @ high pressure atmosphiere. The liquid or atmosphere will then exert constant equal
pressure on the external surface of the sphere while due to explosion at the centre of the cavity, the internal
surfuce will be under a continuous incresing pressure,

2. MATHEMATICAL FORMULATION OF THE PROBLEM AND BOUNDARY CONDITIONS :

We consider a sphere of radius “b" under constant external pressure p.. A small cavity of radius “a” is
considered at the centre of the sphere. The cavity is supposed to be formed under the action of high
explosive ¢harge placed at the centre of the sphere and this surface of the small sphere 15 under constanl
INCreasing pressure.

It should be noted that there are some similarities and at the same time important differences between
the cognate problems of explosions in varicus media, such as soils, metals, water and air, The problem of
radially symmetric cavity formation due to an explosion taken place inside a large block is of course one
uf interaction, involving an exchange of energy between the explosion gas products and the surrounding
mass of metal, It is supposed that initiation oceurs at the centre, the explosion products are confined initially
to the velume originally occupied by the solid explosive charge,

Taking spherical polar co-ordinates (r, 8, ¢} and the corresponding displacement components (u, v, w),
we suppose for radislly symmetric deformation

U=ufrh, v=0, Wm0 e rervrmrermssssssrmsmssscnf 2. 1)

A5 the Lame constanis vary exponentially as the function of radial distance, we suppose
=
A= Age™and po= pge" where & and u, ere Lame constants when the radizl distance = 0 and "-I":u

With these walue of & and p, the non-vanishing components of stress are

i u
Te = (ho + 2o)e™ =¥ 2hge™ =

cerenrerennen(222)

&u e
0, =g, =A,e" =+ (A, +pgke™ =
The only equation of equilibrium in absence of the body forces is
dg, 2
-§f+:h,—ﬂJ=Uhmwmmmmmmmmmmmmmmmmmmmmmmmmmmmmmwmmmmmmmwﬁzn

Mow eliminating o, and g from equations (2.2) and (2.3}, we obtain a differential cqualtion satisficd by
the displacement component u as

o’ :r—':+{'1" +2r}l—u+(s Ot s S S e ()

24,
Ao+ 2y,

where
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The boundary concitions for the problem are as follows :
B O [ T e .1

p' >> p® and p' being the yielding pressure
3. SOLUTION OF THE PROBLEM :

The solution of the differential equation (2.4) s

B
U=MPmH+FﬂﬁmJmemwmmmmwmmmwuﬂ
Where
o(s+1)  al(s+l}{s+2) 5 o’(s+D(s+D(s+D) ,
= 1= - FER T
ps) & T 1245 123456 * o
3
_ ats-ms-l}s,[l [ IJ
1] _1_ B o g e P
T4 8 72l le-2 s=1's 3)°
e'is—2)(s—1)s(s+1} , [ l SRS B | 1 I]
+ LW . PO, .. |
Bt il a=l s sl 3 4
) a’[s-zj{s-1}s{s+1;{s+1;|r,[ Lo ool ol o T}_i_l_l_l],r
2145 g2 g=] 5 541 5+2 2 3 4 5

a®(s-2)(s-D)s(s+ (s +2)(s+3) L L, r vt _.'._i_l-.‘.ul].-
P23 456 e s-2+s-I+s+s+I+s+2+s+3 I 2 3 4 35 0

_ a'{s—2s=1)s{s+ {5+ s+ {5+ 4) o
1%.2°.3 4% 5.6.7

el L ko Vo -3--‘-l-l]+
*le=2 5=1 8 s+l s+2 2+3 s+d 35 6 7

e s—2)(s—1)s(s+1){s+ 2){s+ F(s+ 4}{s+5) »
P23 458678

1 1 .. 1 1 1 | 1 = A I | ]]
| ——F—t - —t + + g e o e e e e e = eamaa ioa
$5=2 £=1 5 s+l 5+2 s5+3 s+4 s5+8§ 3 58T 8
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A and B being constants to be determined. Therefore the non-venushing components of storess are

g, =Lir.s)e™ A=M(r.5)e™ B }

oo 3.2)
a wo, =L (rae” A-M, (rse™ B

where

L {r, sy={3p(r,s) + p'(r, s} A, + 2{p(r.s)+ mp'(r.s) ) 1,

4 ] .
M (s, ) ={—q Lo ";r,‘S}}a, -3 {—q-mu:’ (59408 {:'sj}ﬁ-u-

i T

1:-. iros) e [3pirsh+mp'(r.s) i, + 2pep (. 8)

'{r,5 A
M, (r, ill:{q{: j?‘-u""zl-lu q[rjs}l}
r r

p (r, s} and q (r, ) being the derrvauves of p (r, 5} end g (r, ) respectively worLr

The constants A and B can be determind with the help of the Boundary conditions (2.5). Determining
these constants, the non-vanrishing components of stress and displacement become

o = LB OM(r.5)~ L(r,5) M(b,5) - aqi-
" Lia,s)M{b,s}— L{b,s) M(a,5

IF+

2 L{r, s (a,8) = M(r,s) Lia,s)
L(a.5)M(b,5) = L(b.5) M(a,5)

mir-}

air-a] 4

oy =0, = -pi L (r, shM(b,s} + M, (r,5) Libs)
L{a,s)M{b,s)= L{b,5) M{a,.s5)
LLET. spMia,s)+ M, {r.5) L{a,s) glr=bi
Lia,shM(b,s) — Lib,s) Ma.s)

M= Mib.s)pir,s) r' + L{b,s) g{r.s) o=
“r'{L(a,s) M(b,s) - L(b,s) M (a,s)}

5 Mz, siplr,s)r! + Lia,s) q(r.s) emob
* fH{L{a,%) M{b,s)~ L{b,s) M(a,s)} ——

According to Hencky and Von-Mises, the yielding commences when the mazimum of |oy — o, | reaches

o critical value Y where Y 15 matenal constant.

Mo

dg (r,5). 2q (r.5) 2q'(r,5)
|5u_¢ri=[ qu g : 3 ot s F]

}ctl' B— zl-lan' [f,s:.l:‘"ﬂ
r r

5 moximum at r = a
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From physical standpoint, due to explosion ot the centre of the cavity, pressure 15 excried on the cavity
surface and this préssure increases conlially. This consideration also shows that yielding beging at r = a.
Hence, yielding begins at r = a and the comesponding pressure pi is given by

a[L{a,s)M{b,8) —Ma,s1L{b,s)
Zu M, s)atp'ia, s - (4h, = 2u, L, s)qa.8) — 2 L(b.s}ag (a, s]

pi=Y

[2p,M (2,5)a"p'(3.5) = (4} = 2115) L(a,5)q (8,5) ~ 21, L.(a,5)aq'(a,5)] gulat)

212, M (5,58 "P'(8,5) — (4hg — 2110 L(5,5)8 (2.5) ~ 2oL (0,5)3q'(2,5)] =)

P

With incressing pressure o plastic region spreads into the shell, For ressons ol symumelry, the plastic
boundary must be a spherical surface. Let its radius at any moment be donated by c. Hence the region
o = r = ¢ must be plastic and the region ¢ = 1 < b be elastic. In the elastic region the siresses and displacement

are sill of the form :
g, =L (rs)e™ A ~Mi(rs) e B
Gg=0g =L, (r,s) e™ Aj + M, (r, 5} e By TR )

B
=Ayrp(ns)+ —alns)

Where A and B are constants 1o be determined.

Mow the material just on the elastic side of the plastic boundary must be on the point of yielding and
satisfy the condition |Gg— o, | = Y on r = ¢ and the boundary condition o, =mp. onr=bh.

Uising the conditions the ocmsmms'.&l and B, arc'calculated and then we obtain the stresses and displacement
in the region ¢ < r = b as follows :

=y M{h,s}]’_,l{r,;}-NL (b,=) M{r,g) gl

a

[, (e,87+ M {c,8)] Lir.s)+[L,{¢.s)—L {c.50] M (r.5) eI
, M

v M(b,) L(r.s) + L (bis) M, (r18) agrme) _

O =0, =

p M M) Ly (r9)- [y (e8) - L (.M, (15) agesy
. N

¥M(b,s) rp(r,s y Y L(b,s) q(r.s)
N Me?

1e™-

=1

[{M1{c.s}+Mic.$}}rp{r.ﬂ {L,{c.s}H-{c.s}}qir.s]l] i
—P = 3 e
s | Mr

Where
M=L,(c,s) M (b s)—L {c.5) M (b s} + M, (g g} L (b, s)+ M (c, &3 L (b, s)
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4. EFFECT OF WORK-HARDENING OF THE MATERIAL :

Let us now consider the plastic solid of work hardening material in the region a = r < .

The equilibrium equation is

fg, 2 e
e et U g BTSRRI PO Ote |

The stresses must satisfy the compressibility equation

g 2u )
o, + 20, =3k, [3;- + TJ R ¢ T3

where

ky =4y +2—:°‘ is the bulk modulus at r = 0 and k = kye™ is the same at any radial distance r

Following Hill [1] the stress-sirain curve for a work-hardening material in uniaxial compression is of the
farm

a=% %

whigh are compressive stress and strain (both taken as +ve), Y is the mnitial yield stress, H is the degree
of hardening expressed as a function of total strain. Evidently in a radial symmetric deformation, any
element of the material is subject to & uniaxial, radial compression stress state, logether with hydrostatic

1=2u
- n‘dl

tensile stress dy . The latter siress by sell produces a positive elastic strain of amount

Recollecting the sign convension for o and £ the appropriate general yield criwerial is

wr

-2
Ty —a, :hY+H {—E,+]E e‘inq}
il

If there is no Bauschinger effect, then H (g} =-H {—&) i.z. H(g) is an odd function of strain. Thus the

general yield criteria for a work hardening material is

1-2u
E =™

gp-o.=a'Y+ H{_‘r + ﬂ'u} wherpe (€ ® & L. L3}

In case of linear work-hardening, H is the function of total strain and en analytic discussion is possible.
In such case the rate of work-hardening is constant and we supposc the yield criteria as

E%e™ fr 1-2
gy —F, =Y[1‘“E G., ]* E/e™ {_E+_ﬁ-‘§' Uu}{44}
Q@

o

Where H (£) = E%¢™ = Gradient of the stress-strain curve in the positive range.
Solvimg-t42Famdtid) we oblain the stress-strain relation in the region a <1 < ¢ as follows :

Ko™ [1- B p=EL
o ik, [au B 1u] Y Ey 2E%e™  du
g.= e i e e -
1 Eh ar r) 3 B’ Lf,_E’)er
9k, 9k, 9k,
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Q
. K,e™ I_Eﬁ_
Oy =0, = £ ﬂ 2u Y E, E° c*' du
1= Pt ar +T ? E R .E [+ TBT ................1..4..,.................[4.5]
9k, l-——  3|1-=L
9k, 5k,

Substituting (4.5) in 4. ) we obtain a differential equation satisfied by u as

E"
I " P il S
F——ar’ +2r) — 4+ (Qtar —2) = ——2 0L e G
dr? ( }dr ) 3k, + E% = :
h P jﬁa_Enl
b

The solution of the differential equation - (4,6)

D
u=Crg (r,t)+ ey )+ PAr ) s 7
where

_u{21+1}r+a’[2:+1}{25+2}r2_u‘uun{zuzuzuaj .
14 12.3.4 12.3.4.5.6 o

g (=1

. u‘{2t+I.jf2t1-2}{2t+3}[21+4]|r¢_u"l:IH1}(2[+2}|{2t+3]{2t+4}{21+5} s
1.2.3.4% 5.6 1.2.3.4°.5.6.7 :

L PACRRTARPRERTAARS 1+ 1 # 8

g:[r.l}gl_u’{z:-z;{zt-n11{ LI S |]

2.3 -2 21 26 3
et (2t=2)(2t-1) 242t +1) ,( 1 ] 1 1 1 1
¥ 12.22.3.4 i [21-2+21-1+E+ 2+l _5_74_}-

@’ (2t=2)(2t=1) 22t +1)(2t+2) ,
1'.2%,3.4.5 B

X

x( i S S LN T N W
t=2 2t=1 It 2t+1 2142 7 3 4 5) T 00
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ianid

-]
GY(I—%'-—]G, (r,i)e™p
Pir,t)=G,(r. 2

=t ”IGL n) Ga . )-GLenG. () 7t

1
E-Y[I—EE'—]G. (rt) ™
g

y (r,td G;'UJ}"'E,_{I".I}G'J {r.t})

G

- ,{r.ujc,
in which

Gy .ty =rg (r, 1) Gy (r, th = E"%

Cand D being constants to be determined. Now substituting (4.7) in (4.5) we obtain the siress components
in the region a =1 < ¢,

=Vt e™ C+Ht)e™ D+F(rt)

PR (3¢
Og=C=V, (D e¥C+H (rnt)e™ D+F, (r, 1) } k
Where

(9K, =E") g (r. 1) + 3K, + E°) rg', (r,0)
3{1— E% }
9K,
£3K0 + Eln] rgfh(n ) -4E g, (r,0)

E™t 1
Il=m—
(-]

(9o —E°) g, (r, 1) + (3K, —E,°) 7@, (1,1)

Vilnt= E°
3 1=
9K,

Vo t) =

H(r, t) =

(3Ks+E.°) r g3 (r. 0+2E g, (r,)

J[E—E—u'] ¢

9K, )

H, (r. t) =

0 T = D
L 3[1— Eu']r
9K,
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and
[{JKq +E":}r P r,t)+ 3K, l'-'{:r,l]] e™ —Y{I— F;'] r
Fi(r,)= - 2
E%
3[|— gKng

The constants C and D are caleulated with the help of the following centinuety condition which the
normal component of the stress and the displacement must satisfy at the interface r = c.

,[IJ' L—II i LH:I
{u] s =Pl i d9)

Hence, we obtain the stress components and the displacement in the region a < r < ¢ as follows

o, = Vir, 1) &~ [F el g (et}
Hic,t)e gy (e.t)e™ ——‘—J-(-Et-]s,h-(—‘Eﬂc"’ e’

W e, S]-s; (e, I}+Z{c 5) Ho(e, I:,&uc _p[c t) Hig, tje™ ]+

H{r.t)e™ [ -
" (c.5hc g, (ct)—
Hie,t) e g, (e,1) e™ - HE_.}_}:%. [

= Fz,thog (e,1)—Z (e.8) Ve, t) ™ + P (c,1) Vic,t) c“"] i

+F (5, )
e Vilr, 1) e™ [F{mﬂg,&,n_
L  V(e0g; (.0 " e

Hie,t)e g, {c,t)e™

Fl
c

- EM% (€,5) H (e71) €* = P(c,t) H(e, uc“]+

H{r,t)e™
+ ! = [ W8 e g (e,1) =
H(e,t) c g, (e.1) € = Vie.) E::{EJ] - ’

—Fle,t)ep (e.t)—Z{e;s) ".-’ (e, )™ + P {c,t) V{c,t) :"]+

+ Fi Er! t}

rg (rt) [ Fle.t) g, (et}

u = - :
Hi{eticg, (c,t)e®™ - Vi) gtlf,;_l} " c
€
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- m-—-‘si'tfiﬂ+ Z (c,5) H (e,1) 6™ - P(c.1) Hic, l}c“:|+

&2 (r.t)
r’[H {c,tyeg e )e™ -

-
Vie.t) By (e} e
ol

1 [ Wies) g, (e.t)—

~Fletheg, (c,t)=2Z (c,53 V (e, 1) e® + P {c,1) V{c,t) ::""] +

+ P (r, t)
where

W (c,5) =% { M(b,5) L{c, s)= L(b,s) M (c, £)} -%!-[{MI {c,5)+

+M e, b)} Lic,s)+ {L(es)—L (g s} M (c,s)) elc=b
and

Ze.s) {m (b.s)cp (e.8). YL(b,s) q[c.s}]c_u .

M . et

_ [{MJm}wM(c.s}}m{ms} :Llic,s}-uc.s}}q{cis}} -
Pa = e
N Me?

The internal pressure in this needed to produce a plastic flow to a radius c is given by

 HE R [ ) RN | o« |

Now takinge =0, p, =0, E, =0 and tending b 1o infinity, the results obtatined are in agreement with
the results obtained by HOPKINS (5)
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