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Abstract

Pulsatile flow of blood in an elastic circular tube with  slip at the permeable
walls is investigated in the present analysis solutions for axial and radial velocity
has constructed. The volumetric rate of blood flow also measured in the axial
direction. The expression for flow characteristic, velocity profile are obtained.
Numerical results are shown in tabular form. The effect of slip velocity ,size of the
artery ,viscosity on the flow are shown graphically and discussed briefly.

1. INTRODUCTION :

Blood flow is the study of motion of blood through vessels. Any
disorder in the blood flow within artery causes problem in cardio –
vascular system . Also vascular fluid dynamics plays important role in
many arterial diseases. The fluid mechanics study of blood flow in the
artery so get great interest in Medical and Bio-engineering study.
Cardio Vascular system like other physiological system , has a
complicated three dimensional structure and composition .Its behavior
is time dependent and can be regulated. Blood flow is controlled by the
constriction or dilation of vessel walls, whose action is regulated by the
sympathetic nervous system and by local conditions within blood
vessels and surrounding tissues. Thus Blood flow in the artery
dominated by unsteady flow.

Pulsatile flow in a rigid body makes the fluid to oscillate in bulk.
That is with each pulse applied to the flow there is a uniform increase
and decrease in the flow for different position along the vessel . In
blood flow the diameter of the artery controlled the cardiac output.
Artery gradually becomes narrow and branches occur. The walls of the
arteries are elastic and stretched and recoil with each pulse of blood .
The present work is devoted to study the pulsatile flow of blood with a
slip in the permeable wall. The model used here allow one to observe
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the effect of slip on the motion of blood within artery, though it is
assumed that blood is a Newtonian fluid.

2. FORMULATION OF GOVERNING EQUATION

we consider the Pulsatile motion of a Newtonian incompressible
fluid in an axi -symmetric circular tube. Also we assume that the
arterial vessel is rectilinear, elastic, thick shell of isotropic
incompressible material not becomes narrowing and blood flow
restricted in an arterial region where no branching occurs and without
longitudinal movements. Also we consider the blood as incompressible
Newtonian fluid and the flow is axially symmetric. This assumption
allow us ( [1],[2] ) to use Navier-Stokes equations and continuity
equation in cylindrical coordinate ( r,ɵ.x) :
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Where  ( u,v ) are the velocity components. p is the pressure ,
 is magnetic permeability and  the constant density. Since
the pressure gradient  and velocities inside the tube are
function of both  x and  t wave motion exits within the tube .
Again we assume that the length of the propagating wave
length  L is much longer than the radius r , and wave speed is
much higher than  the  average flow velocity  then the
equations (2.1 ), (2. 2 )  becomes
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Taking the solution  of the form ( [3] )
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The  differential equations  (2.4 ) , (2.5) becomes
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Where
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The solution of the Differential  equation  (2.9 ) [ which is in the form
of Bessel’s  equation ]
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Since  U must be finite when  r = 0
So  B = 0 (2.13)
Again slip condition at the boundary  r = a   is
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The boundary condition (2.14 )  is the well known Beavers and Joseph
(1967 ) slip condition [5],Where  is the dynamic viscosity
coefficient ,  is the coefficient of sliding friction.

Using  (2.13 ) , from  (2.12 ) we get
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From  (7)
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The volumetric flow rate Q is given by
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Where    A is given by   (2.15)
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3. RESULT AND DISCSSTION

The pressure gradient and blood viscosity  being taken as 100 g
21  scm and 0.04g. 11  scm respectively

Considering the heart beats about 72 times a minute

sec /rad8  wor,
72

602







For blood we take  density   =  1.05  gm / sec. , the
coefficient  of  viscosity   =  0,04  gm / cm  sec  ,
pressure  gradient ( P ) = 100 2seccmgm/ .

Table I

 u v Q

1 4341.645 432.4216 1630.978

1.5 4699.957 414.4141 1763.604

2 4651.999 402.3283 1745.453

2.5 4447.353 394.081 1668.976

3 4147.605 388.1746 1557.189

3.5 3773.857 383.754 1417.978

4 3334.924 380.3284 1254.707

4.5 2835.017 377.5988 1069.115

5 2276.354 375.3793 862.4141
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Table  II

 a=.01 a=.02 a=.03 a =.04 a =.05 a=.06 a =.07 a =.08 a =.09 a =1.0

1 20.55 81.57 181.44 317.5296 486.29 683.21 902.87 1138.95 1384.29 1630.98

1.5 20.55 81.68 182.21 320.32 493.601 699.08 933.19 1191.816 1470.35 1763.71

2 20.53 81.55 181.75 319.22 491.44 695.31 927.13 1182.69 1457.2 1745.453

2.5 20.51 81.32 180.82 316.63 485.62 683.96 907.06 1149.65 1405.8 1668.98

3 20.48 81.04 179.6 313.13 477.594 668.02 878.48 1102.11 1331.189 1557.189

3.5 20.45 80.71 178.16 308.92 467.84 648.5 843.27 1043.29 1238.54 1417.978

4 20.42 80.34 176.52 304.09 456.5616 625.84 802.24 974.53 1130.02 1254.707

4.5 20.39 79.94 174.69 298.68 443.86 600.23 755.76 896.5 1006.71 1069.115

5 20.35 79.5 172.69 292.7 429.8 571.78 704.02 809.55 869.24 862.4141
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To investigate the problems of combined effect of wall slip and
magnetic field  on blood flow  in an artery we consider the pulsatile motion
of a Newtonian incompressible fluid in an axisymmetric circular tube with
slip at the permeable boundaries . The  results revealed that

1) The volumetric flow rate ( Q ) of blood  increases  steadily  as the  size
of the artery increases
when slip( coefficient of sliding friction  ) ,  coefficient of dynamic
viscosity  , remain constant

2) Fig.2 shows that Q  remain constant  as sliding friction  increases
when radius of the artery  a  lies within 01 < a < .04  . When  .04    < a <
.0.6  ,Q remain almost constant  and when   a  >  0.7 ,  Q increases when
 lies between  1 to 1.5  and then  decreases . If a > 0.6 then the curve is
always convex upwards

3)  Fig. 3 shows that as  ( dynamic viscosity  coefficient) increases (  , a
remaining the same  )  the  flux   decreases   rapidly and  approaches
zero as m approaches  1.

4)  Fig. 4  shows that  the horizontal  component of velocity along axial
direction  increases steadily when  1<  < 1.5  and then   decreases while
the  sliding   friction has no effect  on radial direction of the flow.

Reference:

1) Chandran  K.B. Cardiovascular Biomechanics , New York
University , 1992

2) Kathleen Wilkie  Human blood flow 2003
3) An Introduction to Mathematical Physiology & Biology,

Cambridge  University Press, P. J. MAJUMDER 1999
4) Mathematical Biology    J . D . Murray  Springer  3rd. Edition P.147

153 2004
5) MHD Steady flow in a channel .With slip at the permeable

Boundaries Old Makinde , E. Osalusi Rom. Journ. Phys. Vol 51
P 319-328, Bucharest 2006


