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ABSTRACT:

A two dimensional problem of electrostriction with a hole in the shape of Pascal's
limacon is solvcd by complex variable method. The distibutions of stresses inan
infinite dielectic plate when the hole is filed up by air and is subjected to an electrc
field unrfom at infinity as wel as t is acted on by apoliec twe dimensional tractions at
infinity. The hoop stress s calculated on the boundary of the hole.

INTRODLUCTION:

It is known that a dielectric mediom is deformed when it is placed hafore an e ectric
ficld and thc accompanyng =strains arc dircctly proportional o the cven powers of the
components of the electric intensity vector. A systematic development of this theory
and its applicatons to different types of problems can be found in the lteraure
[1,2]. Knoos [3] developed the comrplex vanable method for solving bwo dimensional
problems of electrostriction. This method of Knops is largely expository in character
and admits of wids appiication to different problems of electrostriction. Maikap and
Szngupia [4] also applied the theory fo scme specific problems of electrosticion.

In the present paper, it is proposed to find out the distnbuton of stresses in an
infinite dielectnc plate containing a hole in the form of Limacon filled up by ar and =
subjected to an electnc field unifomm at infinity. Moreover, at infinity there also acis
tensions alcng the coordinate axes. |ne results obtained are round to be in good
agreement in the absence of dielectric [5] . The hoop stress s obtained and 1s shown
graphically.

FUMDAMEMTAL EQUATIONS:

Consider a homogeneous isotropic dielectric medium subjected to an electric field
uniform at infinity. Then the deformation of the medium is called electrostrictive
defomation or electrostriction. We also suppose that the geometry of the medium is
such and the condiions ot the problem are so imposed that £ 15 0 a state of ether
plain strain or plane stress.

Mow the relation between the electric deplacement vector D and the electric intensity
veclur E fora linear homcgeneous isobiopic diglechic rredium € as ils penneabilily is
D = € E. As in classical plane theory of electrostatics, we define an analvic complex
potential function Wiz) of the complex vanable = whose real part = single valued
elecluslabe pulenlial so Uil
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H=H + i =—W(z) (1]
IMollowing Knops [3] and using the complex potential function, we have the following
relations o determine the components of stress and displacemsnt;

1, 41, = LKW(W(Z) ~ 48 (=) + (2], )
Tpe — Tyy + 207, = 4EW"(ZIW(2) + 4[Z¢" (2] + ¢ (2] , (3
plu+10) = leplz] — e () — () — KW (20 () + %uﬁ, ()

Where . is the matenal shear modulus, ¢(2) and @z are arbitrary functions of = bar
represents the conjagatz vaable and pome demoles differzniztion wilh respecl ils
argument. Moreover the plene strain and plane stress K and & spoeanng in the
refations (2) | (3) and {4) have respectively the following pair of values:

11 = =
Plare al_r:ain[k =i, S, (5)
E=3—4dv,
k=—{2(1-2v)b+ (1 - e},
Plarc sircss e (B}
T

v baing the Poizson's ralic 2nd a, b are constants givenin |4) . Also
(2} =203 ()
Where the symbnl [ I rdenotes the cnange of funchion inside the bracket as its

argumant moves from a peint P to a point G alerg 3 cordour PO Then the complex
resultant foree and the moment on a contour PO is gven by

¥ +i¥ = —Zi[KW(ZIW (2] + ¢(=) + z¢'(z) + =) |°, ()
M= [KW(zIW(z) + 2Relk{z) — zp(z) — zZp(e) — KzWiz)W'(2)}]2 )
\Where K'(z) — i{z).

THF PROBIFR AND TS 500 HTION

Let us suppose tal an minite diglectne medivm of pernesabilily € conlains = Hole in
form of Pascals Limacon and the hale & filled up by the arr. The medium s subjected
to an electinc fie £ =E, +iE, unform at infiniy.Moreover at infinity there act
tensions T, and T, in the drechions of x and y axes respectvely.

We consider tre fransformaticn
z:g{{j:R[;'+m§:},R:>[r.l]£m£f.q’:Je" [0y

Which mags the region cutside the hole in e = —plane on fa the region extencr io the
unit circle in e { — plane.
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The tangzntial comporent of the electncal mtensty vector and the nommal component
of the electrical displacement vector are cortinuous at the interface. These boundary
conditions lcac to the complex potential to assume in the form

= B¢ | ABT- L] » 1
Wic)] =1 24yl 11
—0BET §] <1 (1
With
4="5 p=2 (12}
L+E J.-:E

Again since the stresses and displacements are single valued and the holz is free from
extemnal stresses, @l (] and () can be taken as

$(2) =RTT +6,(7)
YiZ) = ALY +4,i{) 13

Where 4,.7) and 4,({) are holemorphic for || =1 and where one can
assimed, (eo) =0 Moreower T and M are constanis refated to the conditions at
Infinity.

The boundary condition satisfied by o) #nd gl At the interfac=

{—=— w2 is given by

4

KW(e) 550+ §lal + gl@) ",}':; +yda) —F 14)

&"i:j ¢a“]

EW '[ﬂ\]

—@lal +g(a} =+ v =r1 (18]
Cutting (73] in the equations (14) and (15) w= nole that ¢,(7) and () satisfying the
pocundary conditions {14) and {18), the only diffcrence being that £ must be replacceo
by [ wherc

T'n

fo=f— E]"[ +_"",“‘_] (16)

a

Since the hclz is from stresses |, F =0,

Thus we hiave: Nilly

O rae) tola) S %52+ Yala) - —Rr(a+22) I (17)

tal, a

Ard its conjugate is

Fi'#(al—+¢aiai +g{ J

—I"Ba (18)

Multiply'ng both sides of {17) and [1E] by ﬁ :—E and integrating around the unit crcle
we get

X A
&i+Im

b () = ~T'R<, (19)
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{+m K AE? K(1—AT)EE
¢2(1+ 2m) R(3{1+2mﬂ R{(1+2m))

5 ) o ® (0,

B kL—_m{ i+Im

5o = —fr’e% v

Substivtng these values of ¢,({) and y, () In (13) we cbiain

K Azt

¢({) = RI{ +—

RAiC+Zm)

-T'R (1)

{+m K AE® K(1—A%EE
Z(1+2md) RG(1+2m{) R{(1-2mi

il o
W(7) = RI"¢ — fR-—TR

F=of ; 1 'rTm P - iy
+:!E LLyamd -!.+3m_} EB{l—tmﬁil E'{I;‘] ti"

The corditions at infinity lead to

r=F=ir+n)-%  r=r=@-n). (23!

2ps 7

Substifuting these values of T' and I'in (21) and (22) , we have

6@) =22t 2+ (¢ ) i (24)

¢/ 2R 2 ([+im}

i

Y(E) =

RTL[ = 4 ft+m 3 BTa( c+m
il gt SA J Wty 3 S4B )
g | { (1+2m)) 8 { 1+2md

+R‘EE{1+ {+m } E AE K(1-4)EE
{1+ 2mi)

2R TRE(+2m]) RI1+2md)
%F_ [11-;«,' = %) = f’ii :'nﬂ tﬁaa({} (ZE}

The stresses can be obtained from (2) and (3).

Now the crcumferential stress on the boundary of the hole is of great inferesi and is
given by

H._f-.,-i"u ra'[:l IR

Accordingly we have for vanous angles

~ [(1-Zeos28M1i-2meos€)+dm sind sin 2 E‘} LT {{1+:-:c3'39}i1+1mrusﬂ?—nnsinl!i ;jnﬂﬂ}
T+is =

e J I
toe B LamEtaneosd L+4m> +amensd
4rEE (242m m.s;"l 4% amaEt o6 draz?

- - + {cos28(1 +4m* +

B? 14amP-4mzmaze B2 L-amPpameosd B l-smiyamensd®
dmeos6 ) — 2{(cos9 4 2m)* — sin*6}(1 + 2meosd) + Bmsin 8 cosd + )} 27
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To find the nature cf the circumferential stress numercally we consider the following
twe cases:

CASE 1.

Let the pole ke subjected to longitudinal tension T along the direction of Y-axis only,
s0 that T, = 0and T, = T Then we from (27)

B-EJ' _Tgg {u-:—:mzﬂ;u+z.mcasﬂ;+4m gin 8.5 :E} 4xEE (242meosf+a?)
RE L+4mB4amoesd RIT L+4mB+4monsd
AXAER 2og8 aAgAE?

RIT L44mi4dmeosE  ROT(14+4mI4smeoed)s [EﬂSZEl:'l +am? + 4'”1{:':'58}3 - E'Z{EDSE v
2m)* —sim" {1+ 2mcosB) + Bmsin®Bcosd + m)] (28)

3 =2
For numerical results, we choosem = 0.25,e =058 = 1.% = % =&

The values of 8@ for difierent values of d are plotted in Fig-1 by confinuous curve. It
is seen that the circumferantial stress is harmenic in nature ataining its maximum  at

& =z and minimum atg =2 ,Z |

o

CASE 2.

Suppase that the plate is subjected to transverse tension T.n this case T, = T and
T, = 0 and we have from (Z7)

S T8 {1-Zpez2? (1+Zmeosd )44 ain & sin 26 {{;+2 cosZ0) 14+ 2meos8)+4msin @ sin 28
88=—= +T; = e
T L44m3timees? £ i. L#4m=smenat
AREE 2+imeosfa”) SEAER cosé 4TAER p ; .
- o e {cos26(1 +4m* +
RZ 14amP4amcosé FY 1-amP-dmeesd  RE(1-4mS-dmeosd)® -

dmcosf)” — 2{(cosé + 2m)* — sin*BH1 + 2mcos8) + 8msin”B(cosd + m)}

The circumrferential siress € is shownin Fig-1 by dottad curve and itis also seen that
the stress is harmonic in nature attaning its maximum t 8 = m and minimum at

T oom
F=-,—.
505

Comparing the above two paricular cases, it follows for longitudinal tension, 88 is
grzater for lengitudinal tension than that for transverse tension in theregion 0 < 8 < =

gmj"s_”a:s < 2w and lower for= <6 <=
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