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Abstract 

In this article, we consider the space-time fractional coupled modified 

Korteweg-de-Vries (mKdV) equations and the space-time fractional coupled 

Whitham-Broer-Kaup (WBK) equations which are important mathematical model to 

depict the propagation of wave in shallow water under gravity, combined formal 

solitary wave, internal solitary waves in a density and current stratified shear flow 

with a free surface, ion acoustic waves in plasma, turbulent motion, quantum 

mechanics and also in financial mathematics. We examine new, useful and further 

general exact wave solutions to the above mentioned space-time fractional equations 

by means of the generalized -expansion method by using of fractional 

complex transformation and discuss the examined results with other method. This 

method is more general, powerful, convenient and direct and can be used to establish 

new solutions for other kind nonlinear fractional differential equations arising in 

mathematical physics. 

Keywords:  Coupled mKdV equations; coupled WBK equation; nonlinear evolution 

equations; fractional differential equations. 

I.    Introduction 

Nonlinear fractional differential equations (FNLDEs) are generalizations of 

classical differential equations with integer orders. Now-a-days, FNLDEs in 

mathematical physics perform an important role in different fields, as for instance, 

physics, signal processing, control theory, fractal dynamics, medicine, polymer 

rheology, aerodynamics, hydrology,  pharmacy, material science, the modeling of 

earthquake, electricity, optical fibers, chemical kinematics, biology and so on. The 

fractional order models are more useful than integer order models in many cases of 

above fields. Therefore, obtaining exact solution to the fractional differential 

equations is an important task. Recently nonlinear fractional differential equations 

have been concerned much importance and it has gained reputation to the researchers.  

Jumarie’s modified Riemann-Liouville [XIX] derivative and Caputo [IX] derivative 

of definitions of fractional derivative are in common. Exact solutions of NFDEs are 

very much significant to identify the internal structure of intricate tangible events. 

Hence, for this demand some useful and effective methods have been created and 
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enhanced for determining exact solution to the fractional evolution equations, for 

instance, the modified simple equation method (MSE) [XXI, XXXIV], the -

expansion method [I, II, VI, XXXIII], the differential transformation method 

[XXVII], the finite element method [X], the exp-function method [XXXVI], the 

fractional sub-equation method [XXIX], the Adomin’s decomposition method [XII], 

the Jacobi elliptic method [XXXVII], the variational iteration method [XVIII], the 

modified trial equation method [VIII], the fractional Riccati equation transformation 

method [XXII], the homotopy analysis method [V], the modified Kudryashov method 

[XI], the first integral method [XXIII, XXXII], the tanh-function method [XVII], etc. 

In current literature, the space-time fractional coupled mKdV equations [XXIV, 

XXVIII ] and the space-time fractional WBK equations are examined through the 

extended fractional sub-equation method [XXXI],  the modified extended tanh-

function method [IV, XXXV], the modified Kudryashov method [XXV], the 

variational iteration method [XXVI], the homotopy analysis method [XIV, XX], the 

exp-function method [VII, XIII], the Riccati equation transform method [XXX], the 

Adomin’s decomposition method [III], and etc. So far of our knowledge the space-

time fractional coupled mKdV equations and the space-time fractional coupled WBK 

equations have not been investigated by using the generalized -expansion 

method. 

Therefore, our aim is to establish the further general and new exact wave solutions of 

the space-time fractional coupled mKdV equations and the space-time fractional 

coupled WBK equations by using the generalized -expansion method and 

provide the physical explanation of the obtained solutions for its definite values in 

graphically to analyze for both the evolution equations. The generalized -

expansion method is more powerful, efficient, and rising method to determine new 

wave solutions to the FNLDEs. Its finding results are easy, more general, potential, 

useful, and no need to use the symbolic computation software to operate the algebraic 

equations. 

The rest of the article is executed as follows: In section 2, we describe the Jumarie’s 

modified Riemann-Liouville derivative. In section 3, we explain the outline of the 

generalized -expansion method. In section 4, we search the new and further 

general solutions to the fractional evolution equations which are mentioned above. In 

section 5, we argue the results and discussion and in section 6, we represent our 

conclusions. 

II.   Modified Riemann-Liouville Derivative 

The Jumarie’s modified Riemann-Liouville derivative of order  is defined as 

follows [XIX]: 
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          (2.1) 

Some properties for the proposed modified Riemann-Liouville derivative are listed as 

follows: 

                          (2.2) 

                      (2.3)

    

                (2.4) 

                  (2.5) 

Remark 2.1: We will derive effective way for solving fractional partial differential 

equations using above formulae. In the above formulae (2.2)-(2.5), (2.2) is non-

differentiable function and the function  is non-differentiable in (2.3) and (2.4) 

and differentiable in (2.5), also  is non-differentiable in (2.4), and  is 

differentiable in (2.4) but non-differentiable in (2.5). In this article, we apply 

formulae (2.3) and (2.5) to examine the solutions of mentioned fractional differential 

equations base on the generalized -expansion method. The above thoughts 

exposed that the use of the generalized -expansion method allow us to 

examine new exact close form solutions from the known seed solutions. To convert 

NFDEs into its differential partner easily, He et al. introduced the fractional complex 

transform in [XV, XVI]. 

Hence, above formulae take part an important role in fractional calculus and also 

fractional differential equations. 

III. Delineation of the Method 

We consider a general nonlinear fractional differential equation in the form: 

                       (3.1) 

where  is an unidentified function,  is a polynomial in 

 and its fractional derivatives, which include the highest order derivative 

and nonlinear terms of the highest order wherein  are non-integer and the 

subscripts denote the partial derivatives. To obtain the solution of Eq. (3.1) by using 

the generalized -expansion method, we have to execute the subsequent steps: 
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Step 1: We consider the following traveling wave variable 

                        (3.2) 

for real fractional differential equations and 

 (3.3) 

for complex fractional differential equations, permits us to transform the Eq. 

(3.1) into the following ordinary differential equation (ODE): 

  ,                            (3.4) 

where  is a polynomial in  and its derivatives, wherein  . 

Step 2: According to the possibility of Eq. (3.4) can be integrated term by 

term one or more times, yields constant(s) of integration. The integral constant 

may be zero for simplicity. 

Step 3: We assume that the traveling wave solution of Eq. (3.4) can be written 

in the form: 

              (3.5) 

where either  or   may be zero, but both  and  cannot be zero at a 

time,  and   and  are arbitary 

constants to be evaluated and   is given by 

                 (3.6) 

where  satisfies the following auxiliary nonlinear ordinary 

differential equation:             (3.7) 

where the prime stands for derivative with respect to  and  are real 

parameters.  

Step 4: The positive integer N  arises in Eq. (3.5) can be determined by 

homogeneous balancing the highest order nonlinear terms and the derivatives 

of highest order occur in Eq. (3.4). 

Step 5: Inserting Eqs. (3.5), (3.6) and (3.7) into Eq. (3.4) with the value of   

obtained in Step 4, we attain polynomials in  and 
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. Then, we collect each coefficient of the resulted 

polynomials to zero gives a set of algebraic equations for , 

,  and . 

Step 6: Suppose that the value of the constants , 

,  and   can be found by solving the algebraic equations 

obtained in Step 5. Since the general solution of equation (3.7) is well known 

to us, putting the values of , ,  and  into 

Eq. (3.5), we attain more general type and new exact travelling wave solutions 

of the nonlinear fractional differential Eq. (3.1). 

Using the general solution of Eq. (3.7), we attain the following solutions of 

Eq. (3.6): 

Family 1: When  and ,  

             (3.8)  

Family 2: When  and ,  

            (3.9) 

Family 3: When  and ,  

              (3.10) 

Family 4: When  and  ,  

           (3.11)  

Family 5: When  and  ,  

           (3.12) 

IV.    Formulation of the solutions 

In this section, we evaluate the new, useful and further general effective 

solutions to the space-time fractional coupled mKdV equations and the space-

time fractional coupled WBK equations.  
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IV. I:    The coupled mKdV equations 

In this sub-section, we determine some useful close form traveling wave 

solutions to the space-time fractional coupled mKdV equations by making use 

of the generalized -expansion method. Let us suppose the space-time 

fractional coupled mKdV equations of the form: 

 

         (4.1.1) 

where  is fractional order derivative and  are arbitrary constant. 

The coupled mKdV equations are mathematical equations that describe as 

mathematical model of motion in shallow water wave under gravity and wave 

propagation with different dispersion relations, ion acoustic waves in plasma, 

hydrodynamics, turbulent motion, quantum mechanics and also in financial 

mathematics. The travelling transformation (3.2) is used to convert the 

equation (4.1.1) into the following nonlinear ODE: 

  

       (4.1.2) 

Now, balancing the linear term of the highest order derivative term and the 

nonlinear term of the highest order occurring in (4.1.2), yields . 

Then the solution of Eq. (4.1.2) is of the form:   

               

            (4.1.3) 

where   and  are arbitrary constants to be determined, such 

that either  or  may be zero, but both  and  cannot be zero at a time 

and also either  or may be zero, but both  and   cannot be zero at a 

time. 

Inserting Eq. (4.1.3) together with Eqs. (3.6) and (3.7) into Eq. (4.1.2), the left 

hand side is converted into polynomials in  and 

. We collect each coefficient of these resulted 

polynomials and setting them zero yields a set of simultaneous algebraic 

equations (for simplicity the equations are not present here) for 

. Solving these algebraic equations with the help of 

symbolic computation software, such as, Maple, we obtain the following 02 

(two) sets of solutions: 
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Set-1: 

  

and    

           (4.1.4) 

Set-2: 

 

  

and 

             (4.1.5) 

where and  are free parameters.  

For simplicity we have discussed only on the solutions Set-1 of the mentioned 

equations is arranged in Eq. (4.1.4) as follows and other sets of solutions are 

omitted here.  

When  and , substituting the 

values of the constants arranged in Eq. (4.1.4) into Eq. (4.1.3) and simplifying, 

we attained the travelling wave solutions 

    (4.1.6) 

 ϕ      (4.1.7) 

where  

. 

Since  and  are integral constants, so we might choose arbitrarily their 

values. If we pick  but , then the solutions (4.1.6) and (4.1.7) is 

simplified as  
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Again if we pick  but , then the solutions (4.1.6) and (4.1.7) is 

simplified as 

 

 

When  and , inserting the values 

of the constants arranged in Eq. (4.1.4) into Eq. (4.1.3) and if we choose 

 but  and simplifying, we obtained the travelling wave solutions 

as 

 

 

Again if we pick  but , then we obtained the travelling wave 

solutions as 
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When  and , inserting the values 

of the constants arranged in Eq. (4.1.4) into Eq. (4.1.3) and if we pick  

but  and simplifying, we obtained the travelling wave solutions as 

 

 

But if we pick  but , then we attained trivial solution, which is 

not recorded here. 

When  and  , inserting the values of the 

constants arranged in Eq. (4.1.4) into Eq. (4.1.3) and if we pick  

but  and simplifying, we obtained the travelling wave solutions as 

 

 

Again if we pick  but , then we obtained the travelling wave 

solutions as 

 

 

When  and , inserting the values of the 

constants arranged in Eq. (4.1.4) into Eq. (4.1.3) and if we pick  

but  and simplifying, we obtained the travelling wave solutions as 
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Again if we pick  but , then we obtained the travelling wave 

solutions as 

 

 

Where 

 . 

It is remarkable to see that the traveling wave solutions , and  

of the space-time fractional coupled mKdV equations are fresh and further 

more general and have not been familiar in the previous solutions. Obtained 

solutions occur to be convenient to search the demandable mathematical 

model of motion in shallow water wave under gravity and wave propagation, 

optics and  ion acoustic waves in plasma, model of the fractional fluid 

mechanics system, model of wave particle duality is noteworthy, model of 

turbulent motion and also in financial mathematics. 

IV.II:      The Whitham-Broer-Kaup equations 

In this sub-section, we evaluate some appropriate close form traveling wave 

solutions to the space-time fractional coupled Whitham-Broer-Kaup (WBK) 

equations by making use of the generalized -expansion method. Let us 

consider the space-time fractional coupled WBK equations of the form: 

    

         (4.2.1)    
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where  are fractional order derivative and   and  are arbitrary constants 

and also  and  are stand for in different diffusion powers. The WBK 

equations are mathematical equations that describe the propagation of shallow 

water waves with different dispersion relations, internal solitary waves in a 

density and current stratified shear flow with a free surface, ion acoustic 

waves in plasma, turbulent motion and also in financial mathematics. The 

traveling transformation (3.2) is used to convert the equation (4.2.1) into the 

following nonlinear ODE:  

 

    

             (4.2.2) 

Now, balancing the linear term of the highest order derivative term  and the 

nonlinear term of the highest order occurring in (4.2.2), yields  and  

. Then the solution of Eq. (4.2.2) is the form: 

     

   

  (4.2.3)

  

where   and  are arbitrary constants to be determined,  

such that either  or  may be zero, but both  and  cannot be zero at a 

time and also either  or may be zero, but both  and   cannot be zero at 

a time. 

Inserting Eq. (4.2.3) together with Eqs. (3.6) and (3.7) into Eq. (4.2.2), the left 

hand side is converted into polynomials in  and 

. We collect each coefficient of these resulted 

polynomials and setting them zero yields a set of simultaneous algebraic 

equations (for simplicity the equations are not present here) for 

. Solving these algebraic equations with the help 

of symbolic computation software, such as, Maple, we obtain the following 04 

(four) sets of solutions. 

Set-1. 

 

  (4.2.4) 
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Set-2. 

, ,

, = 

, 

      (4.2.5) 

Set-3. 

, 

,

     (4.2.6) 

Set-4. 

, ,

, ,

, 

   (4.2.7)  

where   

   

 

 and are free parameters. 
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For simplicity we have discussed on the solution Set-1 of the mentioned 

equation, arranged by Eq. (4.2.4) as follows and other sets of solutions are 

omitted here. 

When  and , inserting the values 

of the constants arranged in Eq. (4.2.4) into Eq. (4.2.3) and simplifying, we 

obtained the travelling wave solutions 

  (4.2.8) 

(4.2.9) 

where  

. 

Since  and  are integral constants, so we might choose arbitrarily their 

values. If we pick  but , then the solutions (4.2.8) and (4.2.9) is 

simplified as  

  

 

 

Again if we pick  but , then the solutions (4.2.8) and (4.2.9) is 

simplified as 
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When  and , inserting the values 

of the constants arranged in Eq. (4.2.4) into Eq. (4.2.3) and if we pick  

but  and simplifying, we obtained the travelling wave solutions as 

 

 

 

 

Again if we pick  but , then we obtained the travelling wave 

solutions as 

 

 

 

When  and , inserting the values 

of the constants arranged in Eq. (4.2.4) into Eq. (4.2.3) and if we pick  

but  and simplifying, we attained the travelling wave solutions as 
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But if we pick  but , then we attained trivial solution, which is 

not recorded here. 

When  and  , substituting the values of the 

constants arranged in Eq. (4.2.4) into Eq. (4.2.3) and if we pick  

but  and simplifying, we obtained the travelling wave solutions as 

 

 

 

Again if we pick  but , then we obtained the travelling wave 

solutions as 

 

 

 

When  and , inserting the values of the 

constants arranged in Eq. (4.2.4) into Eq. (4.2.3) and if we pick  

but  and simplifying, we obtained the travelling wave solutions as 
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Again if we pick  but , then we obtained the travelling wave 

solutions as 

 

 

 

In the above obtained solutions,  and   we want to use 

  but for simplicity we have omitted here, where 

. 

It is prominent to see that the traveling wave solutions  and  of 

the space-time fractional coupled WBK equation are fresh and further more 

general and have not been familiar in the previous solutions. Obtained 

solutions occur to be convenient to search the demandable model of the 

propagation of shallow water waves, internal solitary waves in density and 

current stratified shear flow with a free surface, periodic wave, combined 

formal solitary wave, ion acoustic waves in plasma, model of turbulent 

motion, model of the fractional fluid mechanics system, model of wave 

particle duality is noteworthy and also in financial mathematics. 

V.    Results and Discussion 

It is remarkable to mention that some of the examined solutions attain good 

agreement with the already published solutions. A comparison between Zayed 

et al. solutions [XXXV] (investigate by the modified extended tanh-function 

method) and our obtained solutions of the space-time fractional coupled 

mKdV equations and the space-time fractional coupled WBK equations are 

shown in the following tables. 
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Table 1: Comparison between Zayed et al. solutions (see appendix A) and 

our obtained solutions of the space-time fractional coupled mKdV equations. 

Zayed et al. solutions Solutions obtained in this article 

1.  
1. If 

 

then the solution is  

 

2.  
2.  If 

 

then the solution is 

 

3.   
3. If 

 

then the solution is 

 

4.  
4. If 

 

then the solution is 

 

5.  
5. If  

then the solution is 

 

6.  
6. If  

then the solution is  

 

7.  
7. If  

then the solution is 

 

8.  
8. If  

then the solution is 

 

In addition in the table 1, we obtain further new exact solution 

solutions ,  and  which are not reported in the 
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Zayed et al. solutions. When the arbitrary constants assume particular values 

the obtained solutions reduce to some special functions (see table 1).  

Table 2: Comparison between Zayed et al. solutions (see appendix B) and  

 

our obtained solutions of the space-time fractional coupled WBK equations. In 

addition in the table 2, we see that only 04 (four) solutions , ,  and  of 

the Zayed et al. which are not reported in our obtained solutions but it is 

remarkable to see that we are obtained 14 (fourteen) further new exact 

solutions  , , , ,  and  which are not reported in the Zayed et 

al. solutions. When the arbitrary constants assume particular values the 

obtained solutions reduce to some special functions (see table 2). 

 Here it is noticed that, we have obtained more new wave solutions using by 

the generalized -expansion method which have not been reported in the 

previous literature. Hence, compare between our obtained solutions and their 

Zayed et al. solutions Solutions obtained in this article 

1.If   then 

 

1. If 

 

then  

2.If   then 

 

2. If  

 

then  

3. If  then 

 

3. If 

 

then  

4. If   then 

 

4. If 

 

then  



  

 

 J.Mech.Cont.& Math. Sci., Vol.-13, No.-2, May-June (2018) Pages 1-23 

19 
 

solutions, we state that our solutions are more general and huge amount of 

new exact travelling wave solutions. 

VI.    Conclusion 

In this article, we have examined the new, useful and further general solutions 

to the space-time fractional coupled mKdV equations and the space-time 

fractional coupled WBK equations by means of the efficient and powerful 

technique known as the generalized -expansion method. These 

solutions are attained in general form and definite values of the included 

parameters yield diverse known soliton solutions. The obtained solutions 

might be useful to the analyzed the fluid flow, ion osculate waves in plasma, 

signal processing waves through optical fibers, fractional quantum mechanics, 

internal solitary waves in a density and current stratified shear flow with a free 

surface,  and  water wave mechanics specially shallow water waves under 

gravity and propagation for the both equations. We also have shown that the 

generalized -expansion method over the modified extended tanh-

function method offers more general form and have established huge amount 

of new exact travelling wave solutions. The established results also show that 

the generalized -expansion method is more general, powerful, and 

efficient which can be helped for many other nonlinear fractional differential 

equations to obtain exact travelling wave solutions and the new solitary wave 

solutions in mathematical physics. 
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Appendix-A 

Zayed et al. solutions (investigated by the modified extended tanh-function 

method [XXXV]) for the space-time fractional coupled mKdV equations are 

as follows: 

        (A.1)  

        (A.2)  

        (A.3) 

        (A.4) 

                   (A.5) 

                   (A.6) 

                   (A.7) 

                   (A.8) 

 

 

Appendix-B 

Zayed et al. solutions (investigated by the modified extended tanh-function 

method [XXXV]) for the space-time fractional coupled WBK equations are as 

follows: 

    (B.1) 

    (B.2) 

       (B.3)

        (B.4) 

       (B.5)

       (B.6) 

 


