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Abstract 

This research analyzes the design and simulation of a mobile robot using an 

Extended Kalman Filter (EKF) and an Unscented Kalman filter (UKF). The mobile 

platform has a differential configuration, where each track of a wheel is associated 

with an encoder. The EKF and UKF methods are used to integrate the measurements 

of a novel odometric system based on the optical mice and the measurements of a 

localization system based on a map of geometric beacons. Two different types of 

simulations have been performed for validating the results, either using the 

mouse-based odometric system or using the conventional wheel encoder-based 

odometric system, to compare and evaluate the errors made by each system. 

Keywords: Extended Kalman Filter, Unscented Kalman Filter, localization, 

odometry, encoder, optical mouse sensor. 

I.  Introduction 

To understand the issue of sensor fusion information for the navigation and 

localization of the differential-drive mobile robots, it is important to know the 

navigation and localization of the mobile robots together with the Extended and 

Unscented Kalman Filters [XVIII]. Mobile robots are designed and simulated with 

various applications, performing one or several tasks simultaneously. In general, 

robots navigate in the environment, exploring or following a path with the help of 

programming. They must avoid possible obstacles until they reach their destination 

point and communicate with neighboring robots to coordinate their movements or 

maintain the desired formation [VI]. All these tasks must be carried out autonomously 

in most cases, for which a control system is implemented at different levels to 

establish the speeds of the robot wheels necessary to follow the planned trajectory 

and to reach the destination point.  

The estimation of an autonomous mobile robot its localization, position and 

orientation at every moment constitutes an essential condition for its navigation. 

Traditionally, differential drive robots are located using incremental methods, such as 
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odometry. Its main drawback lies in the accumulation of errors along the path, being 

necessary to develop systems correction, which acts periodically at certain points of 

an environment [XVIII]. Such correction methods may consist of the use of 

localization systems that are integrated with incremental odometry. 

The process of localizing a mobile robot through a beacon system requires 

prior knowledge of the positions in which the emitters are located within the map. 

The integration of the localization system and the odometry system has been carried 

out through the extended and unscented Kalman filters [III] [XXII] [VII] in the 

present work. A recursive method which allows us to obtain an estimated value for 

the minimum variance of the state based on inaccurate observations. 

The following describes the test platform on which the filters are intended to 

be implanted, as well as the odometry and localization systems used in the simulation. 

In general, the EKF and UKF are presented in equations for the characteristics of the 

mobile platform to the odometry and the localization data provided by the 

corresponding systems. 

II.  Description of the Platform Test 

The platform on which the simulation tests have been performed to present 

the differential-drive mobile robot position and direction. Its locomotion system is 

formed by diametrically opposite wheels located on an axis perpendicular to the robot 

[XXIII]. Each of the rear wheels has a motor equipped so that the turns are made by 

giving different speeds to each of the wheels. To keep the system in its direction, the 

wheels, with the help of optical mice and encoders, are used anonymously [VIII]. The 

structure of the locomotion system is shown in Figure 1. Two 12 voltage batteries 

power the motor, and the two encoders are attached to the wheel motors, which could 

be used to implement the odometric system. However, the odometric information is 

provided by another less conventional system that uses two optical mice that measure 

the increases in displacements that the robot experiences. The localization of the 

differential drive mobile robot is done through a set of beacons located along with the 

environment of the robot, and a beacon decoding system is also equipped with the 

same platform [XX]. 

In the following sections, each of the systems is described in detail. 

Odometric System 

An optical mouse sensor allows us to know its position and movement 

direction relative to some axes associated with the mouse and coincide with its 

longitudinal and transverse axis, i.e. q and r as given in Figure 2. The odometer 

system is made up of two optical mice that will calculate the increases in the position 

of the platform, referred to as a fixed reference system, i.e. x and y axes. But being 

an incremental system, the accumulation of errors throughout the movement can 

produce a considerable error when estimating the global position of the platform 

[XIV]. In Figure 2, you can see a scheme in which the increments measured by each 

mouse are represented in case of changing position and its direction. 
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On the platform, the position of the mouse 1 coincides with the position of 

the location system. Therefore, we are interested in knowing the position of point 1 in 

the global reference system given by the odometry system. This position is calculated 

by integrating the different measures that the mouse placed at that point, which 

performs. Thus the position is calculated with Eq. (1), (2) and (3) with the help of a 

global reference system. 

𝑥1
′ =  𝑥1 + (√∆r1

2 + ∆q1
2) 𝑐𝑜𝑠(∅𝑘 +  𝑎𝑟𝑐𝑡𝑎𝑛(

∆𝑟1

∆𝑞1
))                                               (1)  

 

𝑦1
′ =  𝑦1 + (√∆𝑟1

2 + ∆𝑞1
2) 𝑠𝑖𝑛 (∅𝑘 +  𝑎𝑟𝑐𝑡𝑎𝑛 (

∆𝑟1
∆𝑞1

))                                     (2) 

The orientation of the robot will be: 

∆∅ =  𝑎𝑟𝑐𝑠𝑖𝑛 (
∆𝑟1 −  ∆𝑟2

𝐿
)                                                                                    (3) 

 

 

Fig 1. Real system differential structure of a mobile robot. 
 

 

Fig 2. Measurement of Odemetry system 
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Localization System 

The localization system consists of a series of beacons that are distributed 

throughout the environment in which the robot moves; the position of each of them is 

being known. The beacons, when excited by a rotating laser located in the robot, emit 

a code that is known by the decoder [IX]. Upon receiving the code of the beacon, the 

decoder calculates the angle with which said beacon is seen and sends all this 

information by the serial port to the PC along with the instant at which the 

measurement was made. Accelerations are measured using two encoders placed on 

each robot wheel, as in the previous case. 

Upon receiving this information, the PC searches the history of received 

beacons for the two closest beacons at least 90 degrees from the angle of the received 

beacons, in figure 3 beacons 2 and 3 are used to triangulate so that the position of the 

platform with reference to the global system is obtained. A scheme that summarizes 

the triangulation process appears in Figure 3. The way to obtain the position of the 

robot through triangulation, when a beacon is received, In Figure 3(a) the angle at 

which the beacon is seen from the robot, and the history of received beacons is used 

to find the beacon closest to one of the orthogonal angles to the received one [V], 

[XV]. The angular difference in figure 3(b) with which both beacons are seen defines 

a capable arc on which the actual position of the robot is known. Repeating the same 

process with the other orthogonal angle is another capable arc which is shown in 

figure 3(c). The intersection of both defined two points, one of which is the mobile 

robot position and the other is the new received beacon position where shown in 

figure 3(d).  

Once the measurements of the localization system and the odometry system 

have been obtained, they must be integrated through the extended and unscented 

Kalman filters, whose formulation is described in the following section. 

 

        (a)                             (b) 
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(c)                           (d) 

 

Fig 3. Localization system estimations (a) the beacon angle and the robot (b) the 

angular difference of both beacons and the actual position of the robot (c) orthogonal 

angle process (d) mobile robot and the new beacon position 

III.  Extended and Unscented Kalman Filters 

The discrete EKF [IV] is used to link the position measurements of the 

ode-metric and localization system. The general equations of the EKF are 

particularized to the mobile platform that has been described below. 

In general, it is based on a non-linear system that responds to equation (4) 

and a measurement system. According to equation (5), where xk and zk represent in 

the state vector and the measurement of that vector at the moment k,f(. ) and h(. ) 

are non-linear functions; that model the operation of the real system and the 

measurement system, uk is the input of the system, wk −1represents the system error, 

and yk −1 the input disturbance and vk −1 the measurement noise: 

𝑥𝑘 =  𝑓( 𝑥𝑘−1,𝑢𝑘,𝑤𝑘−1,𝛾𝑘−1 )                                                                              (4) 

𝑧𝑘 =  ℎ( 𝑥𝑘,𝑣𝑘−1)                                                                                                  (5) 

By eliminating the noise from the previous equations and representing them 

in terms of their probability, the estimated state and localization system measurement 

equations (6) and (7) are obtained as:  

𝑥𝑘 = 𝑓( 𝑥𝑘−1,𝑢𝑘,0, 0 )                                                                                         (6) 

𝑧̂𝑘 = ℎ( 𝑥𝑘,0 )                                                                                                       (7) 
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The system error, the input disturbance and the noise measurement are 

supposed to have zero mean and covariance matrix Gaussian distribution Q ,Γ 
and Respectively, therefore its probability distribution will be given by the normal 

distribution [II]. 

𝑝(𝑤) = 𝑁(0, 𝑄)                                                                                                        (8) 

𝑝(𝛾) = 𝑁(0, 𝛤)                                                                                                          (9) 

𝑝(𝑣) = 𝑁(0, 𝑅)                                                                                                      (10) 

The extended Kalman filter predicts the following system status x̂k
−

 based 

on the available information of the f(. )Model and the expected covariance matrix Pk
−. 

To make this estimate, the propagation equations (11) and (12) are used. 

𝑥𝑘 = 𝑓( 𝑥𝑘−1,𝑢𝑘,0, 0 )                                                                                         (11) 

𝑃𝑘
− =  𝐴𝑘,𝑃𝑘−1,𝐴𝑘

𝑇 +  𝐵𝑘𝛤𝑘−1𝐵𝑘
𝑇 + 𝑄𝑘−1                                                        (12) 

Once the zk measures are available, you can proceed to the update stage and 

calculate the earnings matrix of the Kalman kk,filter (13). 

The measure can be incorporated into the estimated state x̂k, besides the 

value of the covariance matrix (15) is updated according to the following equations: 

𝐾𝑘 =  𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑃𝑘
−𝐻𝑘

𝑇  + 𝑅𝑘−1)−1                                                                     (13) 

𝑥𝑘 =  𝑥𝑘
− + 𝐾𝑘(𝑧𝑘 − ℎ(𝑥𝑘

−, 0))                                                                         (14) 

𝐾𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
−                                                                                            (15) 

On the base of UKF, the Unscented Transformation (UT) is used the 

mathematical process by calculating the estimation of the mean and covariance of the 

probability distribution of a random variable to which a non-linear transformation has 

been applied [IV], [X]. To do this, using (sigma points) a series of samples that are 

generated by the non-linear function we have used [XIII]. The placement of these 

sigma points is carried out so that, when transforming them, their mean and 

covariance are as close as possible to those of the original distribution.  

Below we have described the method for calculating the sigma points and 

some weights that helped us in later weight; the extension of these points contributed 

to the final result [XVII]. We started by defining the sigma points as, 

  𝑥𝑘−1|𝑘−1
0 = 𝑋𝑘−1|𝑘−1                       (16)  

𝑥𝑘−1|𝑘−1
𝑖 = 𝑋𝑘−1|𝑘−1 + (√(𝐿 + 𝜆)𝑃𝑘−1|𝑘−1)𝑖,     𝑖 =  1, . . . , 𝐿                    (17) 
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𝑥𝑘−1|𝑘−1
𝑖 = 𝑋𝑘−1|𝑘−1 + (√(𝐿 + 𝜆)𝑃𝑘−1|𝑘−1)𝑖−𝐿,  

i.e. 𝑖 =  𝐿 + 1, . . . ,2𝐿                                                                                           (18)  

Where L is the number of variables that are defined the state of our system, 

or in other words, the length of vector X, and λ is known as a scale factor and is 

defined as: 

𝜆 =  𝛼2(𝐿 +  𝑘) −  𝐿                                                                                            (19) 

α determines the dispersion of the sigma points and usually takes a small 

value, in our case α = 10−3, and k is a second scale parameter that usually takes the 

value 0. the formula (√(L + λ)Pk−1|k−1)i represents the column i of the square root 

matrix of (L + λ) Pk−1|k−1. This matrix is commonly calculated using the so-called 

Cholesky factorization that allows us to obtain a matrix L from a matrix A so that 

A = LLT. This is possible to the fact that P is defined as positive and hermetic in case 

of real and symmetric. In C++, we carried out this decomposition as L = chol(A). It 

is important to transpose because the program returns LT. To calculate the weights 

mentioned above we used the following formulas: 

𝑊𝑠
0  =  

𝜆

𝐿 +  𝜆
                                                                                                      (20)     

𝑊𝑐
0  =  

𝜆

𝐿 +  𝜆
 + (1 − 𝛼2 − 𝛽)                                                                        (21)     

𝑊𝑠
𝑖  = 𝑊𝑐

𝑖 =
𝜆

2(𝐿 +  𝜆)
,    𝑖 = 1, . . . . . ,2𝐿                                                       (22) 

Where the Ws
i  are the weights for the calculation of the state estimate and 

the measure, Wc
i  are the weights for calculating the covariance matrices. Additionally, 

β is a parameter for integrating prior knowledge of X's distribution. In the case of 

Gaussian distribution, β = 2 is the optimum [XI].   

IV.  Simulations and Results 

After obtaining the mathematical expressions of all the equations involved in 

the filters, we proceed to the next stage in the design of the EKF and UKF. This new 

stage consists of simulating the filters according to similar operating conditions to 

those found in the real system [XXI]. The simulation stage must be before the 

implementation in the real system to debug and adjust the possible problems that the 

filter presents. [XXIII] To simulate the mobile, it is necessary to define a series of 

characteristics, such as: 1) An error in the localization system in a maximum position 

of 4.5 cm is assumed. 2) The maximum error of the orientation localization system is 

approximately 1.6°. The maximum error of the odometric system is 3 mm. It is 

assumed that 5 measurements of the odometric system are taken before having a 

measurement of the localization system. From these assumptions, the simulation is 
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performed. The results show that the filters are capable of adjusting the position of 

the robot as shown in Figure 4, making a small error from the odometry and 

localization data.  

The figures showed how the position of the robot calculated through the 

EKF and UKF practically coincides with the robot's real position accordingly. In 

Figure 5, the estimated error better over performed and made by the filters, where it 

can be seen that the maximum error made in position measurement is about 15 cm., 

And as an average, the error in absolute value is about 3.64 cm in x and 4.26 cm 

in y respectively. The position error is around 0.50°, and the absolute value for the 

average error is about 0.127°.      

 

X-location 

Fig 4. The orientation and real position (blue) moving path versus position and 

orientation (red) of the estimated path. 
 

 

 

Error in X 
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Error in y 

 

  Orientation errors 

Fig 5. Errors made by the EKF and UKF 

 

These errors are being seen from the localization system, which shows in 

figure 5 is around 20 cm, and the mean of its absolute value is 8.22 cm in x, 13.2 cm 

in y and the orientation is about 0.376° accordingly. Comparing these data with the 

errors made by the filters, it can be seen how the errors decrease the localization 

system when integrating its measurements with those of the odometric system. 

Odometry data is used to calculate the position at those times when the beacon 

system does not provide the measurement. Once a location measurement is obtained, 

and the odometric position is corrected, thus eliminating the accumulation of error 

inherent to the integration of its displacements. 

To analyze the positioning system as a whole, the filters will be compared 

with another localization system that uses traditional odometry, that is, based on 

encoders placed on the wheels. In this case, the equations of motion of the system 

change slightly [XVI], [XIX] concerning equations (19), (20) and (21). 

𝑥𝑘+1
      ′ =  𝑥𝑘 +  (∆𝐷)𝑐𝑜𝑠(∅𝑘 + ∆∅)                                                                     (23) 

     𝑦𝑘+1
      ′ =  𝑦𝑘 + (∆𝐷)𝑠𝑖𝑛(∅𝑘 + ∆∅)                                                                       (24) 

∆∅𝑘+1 = ∅𝑘 + ∆∅                                                                                                  (25) 

With, 

 ∆D =  
∆wr + ∆wl

2
 and ∆∅ =

∆wr − ∆wl

l
  

Where ∆wr and ∆wl is the displacement of the right wheel and the left 

wheel, respectively, and l is the separation between the driving wheels. To compare 
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these results, the errors made with both odometric methods are compared in Figure 6. 

The mean error in x,y is 19.15 cm, 15.36 cm, respectively, and the orientation is 1°. 
In this case, the EKF and UKF in Figure 6 are used together with the non-linear 

transformation to estimate the robot position, i.e. x, y, θ. This scheme merges the 

optical mice and encoders by using a complex model that requires a large matrix 

inversion to calculate the filters gain and the state estimation. Also, it has the 

advantage that it directly propagates the uncertainty to the position.  

 

 

 

Fig 6. Errors of the system with traditional odometry (green) versus the errors made 

by the system with odometry implemented through optical mice(red). 
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Fig 7. Trajectory system estimations of EKF and UKF 

As a result of this comparison, it is concluded that the odometric system is 

implemented with two optical mice leads to smaller position errors than that used by 

traditional encoder-based odometry. The trajectory estimations of extended and 

Unscented Kalman filters show the two wheels' mobile robot [II]. We illustrated the 

approximated and targeted position for the available measurements of the evaluated 

performance of EKF and UKF in Figure 7. Furthermore, it outperforms EKF and 

reveals based on UKF. Therefore, it is justified in that figures that UKF is better than 

the EKF, the filters show in figure 6 identifies the error comparison. EKF estimated 

parameters show the values in figure 7. it can be achieved that the UKF is more 

trusted with the better result in case of nominal values than the EKF. 

V.  Conclusion 

In this article, the results of the simulations carried out on the movement of a 

real platform that integrates an odometric system based on the use of optical mice 

have been presented. Localization of the system is performed through integration 

with the EKF and UKF of localization and odometry measurements. Simulating the 

system gives results that reflect the errors made by the localization system are within 

the admissible margins. The mean of the absolute value of the error is 8.22 cm in x, 

13.2 cm in y and 0.376° in orientation. These errors, within the admissible margins, 

are smaller than those made by the odometry or localization system separately. To 

validate these results, they are compared with the results obtained with those of 

another identical system that works in parallel, but which integrates a traditional 

odometry system formed by encoders associated with the wheels. In this case, the 

mean error in x is 19.15 cm, in y is 15.36 cm and 1°in orientation. These errors are 

greater than those that occurred with the new odometric system, so it seems logical to 

think that the design and implementation of the filters in the real system produces 

better results than the simple use of odometry or localization separately. On the other 

hand, the new odometric system based on the use of optical mouse sensors presents 

fewer errors than the traditional encoder-based odometry system.  
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