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Abstract 

In this paper, a transversal vibration of an axially moving beam under the 

influence of viscous damping has been studied. The axial velocity of the beam is 

assumed to be positive, constant and small compared to wave-velocity. The beam is 

moving in a positive horizontal direction between the pair of pulleys and the length 

between the two pulleys is fixed. From a physical viewpoint, this model describes 

externally damped transversal motion for a conveyor belt system. The beam is 

assumed to be externally damped, where there is no restriction on the damping 

parameter which can be sufficiently large in contrast to much research material. The 

straightforward expansion method is applied to obtain approximated analytic 

solutions. It has been shown that the obtained solutions have not been broken out for 

any parametric values of the small parameter 𝜀. The constructed solutions are 

uniform and have been damped out. Even though there are several secular terms in 

the solutions, but they are small compared to damping.  

Keywords: Moving beam, Viscous Damping, Secular terms, Eigen functions, 

Straight-forward expansion method 

I.    Introduction 

The class of the oscillatory systems is generally accepting almost all the 

systems, such as physical, structural, and mechanical systems, of the physical world 

around us. Axially translating elastic systems are also one of them. These axially 

moving systems have received great importance and research attention for the last 50 

years. Axially translating systems have been observed in many practical and 

engineering applications. For example, magnetic tapes, conveyor belt systems, data 
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saving devices, pipes conveying fluids, and elevator cable systems, and all such kind 

of systems are bound to vibrations. Many factors such as the eccentricity of a pulley, 

non-uniform material properties, the irregular speed of the driving motor, and 

environmental disturbances influence the dynamics of these devices. The vibrations 

contributed by all these factors can lead to severe damage to the system. It is a 

common experience that many mechanical or physical structure's severe failures are 

caused by vibration. The Tacoma Narrows suspension bridge in Washington DC, 

United State of America, is a classic example of a structural collapse due to 42 mile-

per-hour wind. From this viewpoint, it becomes necessary to design systems where 

unnecessary noise and vibrations can be reduced by means of solid procedures. 

Damping devices can be used to control the vibrations in the mechanical systems, see 

for instance [I, II, III, IV, X]. In [V] authors studied the transversal vibrations of the 

string-like equation with non-classical boundary conditions. One end of the string 

was kept fixed and spring-dashpot system attached at other boundary and some 

specific initial conditions has been taken. The vertical displacement of the string 

under the effect of boundary damping has been constructed by a two timescales 

perturbation method with the conjunction of the method of characteristic coordinates. 

It has been found that the amplitude of oscillations suppressed due to boundary 

damping. In [VI] authors studied the string-like equation with the influence of viscous 

damping. Both ends of the string kept fixed and general initial conditions have been 

taken. A formal asymptotic approximation of the exact solutions has been constructed 

by the method of two timescales perturbation method with the conjunction of the 

Laplace transform method. It has been found that the truncation of modes is 

applicable for certain parametric values of damping. In [VII] authors studied the 

beam-like equation under the effect of boundary damping. One end of the beam is 

assumed to be simply supported and a spring-dashpot system attached at other 

boundary. Damping generated by the dashpot is considered to be small. A formal 

asymptotic approximation of the solutions has been obtained by the method of two 

timescales perturbation method. It has been shown how different oscillations modes 

are damped. A beam like equation under the effect of material damping has been 

studied in [VIII]. An asymptotic approximation of the Initial-boundary value problem 

has been constructed by the method of multiple scales perturbation method. It has 

been shown that all oscillation modes are damped out.  In [X] authors studied the 

transverse vibrations of the string and a beam on a semi-infinite domain.  To control 

the undesired vibration in the string (or beam) dampers are used at the boundary. The 

explicit solutions have been computed by the D-Alembert method and Laplace 

transforms method.  Reflection of waves for different types of boundary conditions 

has been visualized.  

In this paper,   a transversal vibration of an axially moving beam-like equation under 

the influence of viscous damping has been studied. From a physical point of view, 

this model describes the externally damped transversal motion of the conveyor belt 

system or band-saw blade. This mathematical model is a linear-homogeneous fourth-

order partial differential equation. The beam is assumed to be externally damped, 

where there is no restriction on the damping parameter. This external damping refers 

to the viscous medium such as chain moving in an oily engine or any other such 

viscous medium where viscosity plays its dominant role. The damping parameter can 
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have larger values instead of smaller values as has been done in a lot of research in 

literature. The axial velocity of the beam is assumed small as compared to wave-

velocity and to be positive. A formal asymptotic approximation of solutions has been 

constructed by the straightforward expansion method.  

II.     Governing equations of motion 

The equation of motion related to axially moving Euler-Bernoulli beam with 

the appropriate initial and boundary conditions will be studied. The beam is moving 

at the uniform constant axial speed 𝑉̅ between a pair of pulleys those are at distance 𝐿 

from each other, as shown in Figure 1. A stretched beam is simply supported at 𝑋 =
0 and 𝑋 = 𝐿. Consider 𝑈(𝑋, 𝑇) is the transverse displacement field variable, 𝑇 is the 

time, 𝐿 is the distance between two boundaries/supports, a cross-sectional area A of 

the beam, uniform axially moving beam of mass density 𝜌, flexural rigidity 𝐸𝐼, a 

moment of inertia 𝐼, damping coefficient 𝛿, and uniform tension 𝑃. The functions 

𝐹(𝑋) and 𝐺(𝑋) state the displacement and velocity at 𝑋 = 0, respectively. Assumed 

that 𝜌, 𝐴, 𝐸𝐼, 𝑃, 𝑉 and 𝛿 are positive. Gravity and other external forces are neglected. 

The equation which describes the displacement of the beam under viscous damping is 

given by: 
 

 
Fig.1: The schematic model of damped axially moving beam  

 

     𝜌𝐴(𝑈𝑇𝑇 + 2𝑉̅𝑈𝑋𝑇 + 𝑉̇𝑈𝑋 + 𝑉2𝑈𝑋𝑋) − 𝑃𝑈𝑋𝑋 + 𝐸𝐼𝑈𝑋𝑋𝑋𝑋 + 𝛿(𝑈𝑇 + 𝑉𝑈𝑋) = 0 (1)              

    BC′S:  𝑈(0, 𝑇) = 𝑈𝑋(0, 𝑇) = 𝑈(𝐿, 𝑇) = 𝑈𝑋(𝐿, 𝑇) = 0,           𝑇 ≥ 0                                                                                    (2)                     

    IC′S: 𝑈(𝑋, 0) = 𝐹(𝑋),   𝑈𝑇(𝑋, 0) = 𝐺(𝑋) (3)                     

It is significant to mention that the term 2𝑉̅𝑈𝑋𝑇 in Eq. (1) is the effect of the Coriolis 

acceleration affected by a beam element traveling with a velocity 𝑉̅ in a frame at the 

actual position of the element and revolving at an angular speed 𝑈𝑋𝑇 . This term is 

also known as the gyroscopic term. The term 𝑉̅2𝑈𝑋𝑋 is due to the centripetal 

acceleration affected by the element in the same revolving frame due to the tangential 

velocity 𝑉̅ on a way of estimate curvature 𝑈𝑋𝑋. 

To write the Equations of motion (1) to (3) in dimensionless form, we use the 

following transformations as under,  
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    𝑢(𝑥, 𝑡) =
𝑈(𝑋, 𝑇)

𝐿
, 𝑥 =

𝑋

𝐿
, 𝑡 =

𝑐𝑇

𝐿
, 𝑉∗ =

𝑣

𝑐

̅
, 𝛿∗ =

𝛿𝐿

𝜌𝑐
, 𝑓(𝑥) =

𝐹(𝑋)

𝐿
, 𝑔(𝑥) =

𝐺(𝑋)

𝑐
 

 

where 𝑐 = √
𝑃

𝜌
     is a wave speed. 

Based upon the above transformations the dimensionless form of initial-boundary 

value problem (1) to (3) is given as under:  

       𝑢𝑡𝑡 + 2𝑉𝑢𝑥𝑡 + (𝑉2 − 1)𝑢𝑥𝑥 + 𝜇𝑢𝑥𝑥𝑥𝑥 + 𝛿(𝑢𝑡 + 𝑉𝑢𝑥) = 0                              (4)                       

 

   𝑢(0, 𝑡) = 𝑢𝑥(0, 𝑡) = 𝑢(1, 𝑡) = 𝑢𝑥(1, 𝑡) = 0, 𝑡 ≥ 0                                            (5)                      

        𝑢(𝑥, 0) = 𝑓(𝑥),   𝑢𝑡(𝑥, 0) = 𝑔(𝑥),   0 < 𝑥 < 1                                                   (6)                    

In this study, we have assumed that the axial velocity of the beam is small in 

comparison to wave speed that is, 𝑉 ≪ 𝑐, thus it is reasonable to write 𝑉 = 𝑂(𝜀) =
𝜀𝑉0. Substituting this assumption in Eq. (4) – (6), it follows that: 

       𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝜇𝑢𝑥𝑥𝑥𝑥 + 𝛿𝑢𝑡 = −2𝜀𝑉0𝑢𝑥𝑡 − 𝜀𝛿𝑉0𝑢𝑥 − 𝜀2𝑉0
2𝑢𝑥𝑥 

 

(7) 

       BC′s: 𝑢(0, 𝑡; 𝜀) = 𝑢𝑥(0, 𝑡; 𝜀) = 𝑢(1, 𝑡; 𝜀) = 𝑢𝑥(1, 𝑡; 𝜀) = 0 

 

      IC′s: 𝑢(𝑥, 0; 𝜀) = 𝑓(𝑥),   𝑢𝑡(𝑥, 0; 𝜀) = 𝑔(𝑥) 

(8) 

 

(9) 
 

Where 𝜀 is small dimensionless parameter 0 < 𝜀 ≪ 1. 

III.    Straightforward expansion method 

It can be observed that the unknown function 𝑢(𝑥, 𝑡) does not only depend on 

independent variable 𝑥 and 𝑡, but also depends on the small parameter 𝜀, so that 

𝑢(𝑥, 𝑡) ⇒ 𝑢(𝑥, 𝑡; 𝜀). Therefore, it is reasonable to use a straightforward expansion 

method. To further investigate the initial-boundary value problem given in  Eq’s. (7) 

– (9), the straightforward expansion method is utilized, where 𝑢(𝑥, 𝑡; 𝜀) can be 

expanded into the asymptotic series as 

         𝑢(𝑥, 𝑡; 𝜀) = 𝑢0(𝑥, 𝑡) + 𝜀𝑢1(𝑥, 𝑡) + 𝜀2 ⋯ 

 

(10) 

Now, by utilizing Eq. (10) into initial-boundary value problem given in Eq. (7) to (9) 

and by comparing coefficients of 𝜀0 and neglecting 𝜀2 and higher-order terms, we get 

the following problem of 𝑂(1)-problem with associated conditions: 

The 𝑶(𝟏)-problem: 

       𝑢0𝑡𝑡
− 𝑢0𝑥𝑥

+ 𝛿𝑢0𝑡
+ 𝜇𝑢0𝑥𝑥𝑥𝑥

= 0 

 

(11) 

       𝑢0(0, 𝑡) = 𝑢0𝑥
 (0, 𝑡) = 𝑢0(1, 𝑡) = 𝑢0𝑥

(1, 𝑡) = 0 

 

(12) 
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           𝑢0(𝑥, 0) = 𝑓(𝑥), 𝑢0𝑡
(𝑥, 0) = 𝑔(𝑥) 

 

(13) 

and similarly by collecting the coefficients of terms of 𝜀1 , we have following 𝑂(𝜀)-

problem as under 

The 𝑶(𝜺)-problem: 

       𝑢1𝑡𝑡 − 𝑢1𝑥𝑥 + 𝛿𝑢1𝑡 + 𝜇𝑢1𝑥𝑥𝑥𝑥 = −2𝑣0𝑢0𝑥𝑡
− 𝛿𝑣0𝑢0𝑥

 

 

(14) 

       𝑢1(0, 𝑡) = 𝑢1𝑥 (0, 𝑡) = 𝑢1(1, 𝑡) = 𝑢1𝑥
(1, 𝑡) = 0 

 

(15) 

        𝑢1(𝑥, 0) = 𝑓(𝑥),   𝑢1𝑡
(𝑥, 0) = 𝑔(𝑥) 

 

(16) 

The solution of the 𝑶(𝟏)- a problem given in Eq. (11)-(13) 

The separation of variables method is useful to find the exact analytic solution of the 

initial-boundary value problem given in Eq. (11) to (13), where partial differential 

equation (PDEs) is linear and homogeneous with linear and homogeneous boundary 

conditions (BCs). The PDE is given in Eq. (11) can simply be remodeled into ODE, 

by using the separation of variables method, as follows as the product of the functions 

of the one variable: 

       𝑢0(𝑥, 𝑡) = 𝜓(𝑥)𝜙(𝑡) 

 

(17) 

Substituting Eq. (17) and its required derivatives into 𝑂(1)-problem and its 

associated conditions, it follows: 

      𝜙̈ (𝑡) + 𝛿𝜙̇(𝑡) + 𝜆𝜙(𝑡) = 0 

 

(18) 

Here negative sign (−𝜆) is employed for convenience, so the time depending part 

oscillates for 𝜆 > 0. 

and space-dependent part is a boundary value problem, given as: 

      𝜓(𝑖𝑣)(𝑥) −
1

𝜇
𝜓"(𝑥) −

𝜆

𝜇
𝜓(𝑥) = 0 

(19) 

       𝜓(0) = 𝜓′ (0) = 𝜓(1) = 𝜓′(1) = 0 

 

(20) 

Analysis of the time-dependent equation 

Let 𝜙(𝑡) = 𝑒𝛼𝑡 (where 𝛼 ∈ ℝ), be the solution of Eq. (18), therefore the 

characteristic equation is 

Solving Eq. (21), the roots are as follows 

       𝛼2 + 𝛿𝛼 + 𝜆 = 0 

 

(21) 
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          𝛼1,2 = −
𝛿

2
± √

𝛿2

4
− 𝜆 

 

(22) 

The nature of the roots in Eq. (22) depends on the discriminant 𝑏2 − 4𝑎𝑐. In this 

regard, the following are three cases. 

Case. 1: For  
𝛿2

4
− 𝜆 = 0, then 𝛼1,2 = −

𝛿

2
. Hence the roots are real and repeated, so 

the solution is, 

       𝜙(𝑡) = 𝑒−
𝛿
2

𝑡(𝑐1 + 𝑐2𝑡) 

 

(23) 

For 𝑡 to be sufficiently large, it can easily be observed that 𝜙(𝑡) ≡ 0. It means that 

the time-dependent part is bounded for large times t. 

Case 2:  For   
𝛿2

4
− 𝜆 > 0, 𝛿 > 2√𝜆, then the roots are real and distinct, that is. 

          𝛼1 =  −
𝛿

2
+ √

𝛿2

4
− 𝜆   ,    𝛼2 = −

𝛿

2
− √

𝛿2

4
− 𝜆 

Therefore, the solution of the time-depending part is given by 

      𝜙(𝑡) = 𝑒−
𝛿
2

𝑡 (𝑐1𝑒
(√𝛿2

4
−𝜆)𝑡

+ 𝑐2𝑒
(−√𝛿2

4
−𝜆)𝑡

) 

 

(24) 

If time is sufficiently large, then the time-dependent solution 𝜙(𝑡) ≡ 0. 

Note that 
𝛿2

4
− 𝜆 <

𝛿2

4
 for 𝜆 > 0. 

 Case 3:  For  
𝛿2

4
− 𝜆 < 0, ⇒ 0 < 𝛿 < 2√𝜆 ,  for 𝜆 > 0, then 

𝛼1 = −
𝛿

2
+ 𝑖√𝜆 −

𝛿2

4
 and 𝛼2 = −

𝛿

2
− 𝑖√𝜆 −

𝛿2

4
 

Hence, the roots are complex conjugate with real part negative, so the general 

solution is; 

 

       𝜙(𝑡) = 𝑒−
𝛿
2

 𝑡 (𝑐1 cos (√𝜆 −
𝛿2

4
𝑡) + 𝑐2 sin (√𝜆 −

𝛿2

4
𝑡)) 

 

   

(25) 

For 𝑡 to be sufficiently large, it can easily be observed that 𝑇(𝑡) ≡ 0. It means that 

the time-dependent part is bounded for large time t. 
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Analysis of the space-dependent equation 

Let 𝜓(𝑥) = 𝑒𝛼𝑥 (𝛼 to be determined), be the solution of Eq. (19). Therefore, the 

characteristic equation is: 

       𝜇𝛼4 − 𝛼2 − 𝜆 = 0 (26) 
  

If 𝜆 < 0 and 𝜆 = 0 then 𝜓(𝑥) ≡ 0 ⇒ 𝜆 < 0 and 𝜆 = 0 are not eigenvalues. The 

nontrivial solutions of Eq. (19) are obtained when 𝜆 > 0. If 𝜆 > 0, then the roots are 

as ±𝛼 and ±𝑖𝛽, where the nontrivial solution of Eq. (19) is given by 

    𝜓(𝑥) = 𝑐1 cosh(𝛼𝑥) + 𝑐2 sinh(𝛼𝑥) + 𝑐3 cos(𝛽𝑥) + 𝑐4 sin(𝛽𝑥)                       (27)                        

 

 

   𝛼 = √
1+√1+4𝜆𝜇

2𝜇
                                                                                                      (28) 

 

and  

𝛽 = √
√1 + 4𝜆𝜇 − 1

2𝜇
 

 

   

(29) 

 

Applying the boundary conditions, the following system is obtained into matrix form: 

      [

1 0 1 0
0 𝛼 0 𝛽

cosh(𝛼) sinh(𝛼) cos(𝛽) sin(𝛽)

𝛼 sinh(𝛼) 𝛼 cosh(𝛼) −𝛽 sin(𝛽) 𝛽 cos(𝛽)

] [

𝑐1

𝑐2

𝑐3

𝑐4

] = [

0
0
0
0

] 

(30) 

 

Letting det 𝐴 = 0, non-trivial solutions are obtained when 𝑐1, 𝑐2, 𝑐3, 𝑐4 ≠ 0: 

        𝜓𝑛(𝑥) = 𝛼 sin(𝛽𝑥) − 𝛽 sinh(𝛼𝑥) −
𝛼 sin(𝛽) − 𝛽 sinh(𝛼)

cos(𝛽) − cosh(𝛼)
(cos(𝛽𝑥) − cosh(𝛼𝑥)) 

 

(31) 

where 𝜓𝑛(𝑥) are the eigenfunction of the BVP 

         𝜓(𝑖𝑣)(𝑥) −
1

𝜇
𝜓𝑛

′′(𝑥) −
𝜆

𝜇
𝜓𝑛(𝑥) = 0 

 

(32) 

 

BCs: 

        𝜓(0) = 𝜓(1) = 𝜓′(0) = 𝜓′(1) = 0, 0 < 𝑥 < 1 

 

(33) 

         𝜓𝑚
(𝑖𝑣)(𝑥) −

1

𝜇
𝜓𝑚

′′ (𝑥) −
𝜆

𝜇
𝜓𝑚(𝑥) = 0 

(34) 

       𝜓𝑛
(𝑖𝑣)(𝑥) −

1

𝜇
𝜓𝑛

′′(𝑥) −
𝜆

𝜇
𝜓𝑛(𝑥) = 0 

(35) 
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The frequency equation is given as: 

          𝑓𝜇(𝜆) = 2𝛼𝛽(1 − cosh(𝛼) cos(𝛽)) + (𝛼2 − 𝛽2) sinh(𝛼) sin(𝛽) = 0 

 

(36) 

The frequency Eq. (36) is a nonlinear transcendental equation and cannot be solved 

exactly. From the frequency Eq. (36), the eigenvalues are determined numerically and 

are listed in the following table. 

Table 1: First five eigenvalues of the frequency equation (36) (fμ(λ) = 0) 

𝒏 𝝀𝒏 at 𝝁 = 𝟎. 𝟏 𝝀𝒏 at 𝝁 = 𝟎. 𝟎𝟏 𝝀𝒏 at 𝝁 = 𝟎. 𝟎𝟎𝟏 

1 61.8205 16.8038 11.3595 

2 426.3927 83.2918 46.7804 

3 1560.6132 244.5954 110.2646 

4 4165.9405 570.6941 208.408 

5 9177.5211 1155.1228 326.2054 

 

From these Table.1 it can be observed that, if 𝜇 → 0 then 𝜆𝑛 → (𝑛𝜋)2 (Beam tends to 

string). 

The general solution of the 𝑶(𝟏)-problem 

Case 3: 
𝛿2

4
− 𝜆𝑛 < 0 

By using the superposition principle, and combining the product solutions as given 

in Eq. (17), it yields 

     𝑢0(𝑥, 𝑡) = ∑ 𝑒−
𝛿
2

𝑡 (𝐴𝑛0 cos ((√𝜆𝑛 −
𝛿2

4
) 𝑡) + 𝐵𝑛0 sin ((√𝜆𝑛 −

𝛿2

4
) 𝑡)) 𝜓𝑛(𝑥)

∞

𝑛=1

 

 

(42) 

where 𝐴𝑛0 is same as mentioned in Eq. (38) and 

           𝐵𝑛0 =

∫ (𝑔(𝑥) +
𝛿
2 𝑓(𝑥)) 𝜓𝑛(𝑥)𝑑𝑥

1

0

√𝜆 −
𝛿2

4 ∫ 𝜓𝑛
2(𝑥)𝑑𝑥

1

0

 

 

 (43) 

  

The solution to the 𝑶(𝜺)-problem 

To solve the 𝑂(𝜀) − problem (14) - (16); an Eigen-function expansion method is 

used: 

             𝑢1(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑡)𝜓𝑛(𝑥)

∞

𝑛=1

 
 

(44) 

where 𝑦𝑛(𝑡) are unknown generalized Fourier coefficients. 
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Case 3: 
𝛿2

4
− 𝜆𝑛 < 0, 𝜆𝑛 > 0 

The solution of 𝑂(𝜀)-problem consists of a homogeneous solution and the particular 

solution is, 

         𝑢1(𝑥, 𝑡) = ∑ 𝑒−
𝛿

2
𝑡 [𝐴𝑛1 𝑐𝑜𝑠(𝜔𝑛𝑡) + 𝐵𝑛1 𝑠𝑖𝑛(𝜔𝑛𝑡) +∞

𝑛=1

2𝑣0𝜔𝑛

𝜎𝑚
2 (𝜆𝑚−

𝛿2

4
−𝜔𝑛

2 )
(𝐴𝑛0 𝑠𝑖𝑛(𝜔𝑛𝑡) − 𝐵𝑛0 𝑐𝑜𝑠(𝜔𝑛𝑡))𝜃𝑛𝑚] 𝜓𝑛(𝑥)  

 

 

 

(45) 

where 𝐴𝑛0, 𝐵𝑛0, 𝐴𝑛1 and 𝐵𝑛1 are the same as mentioned in Eqs. (38), (46) 

respectively. 

IV.    Results and discussion  

In this section the main focus on interpreting, commenting and explaining 

the obtained results in this paper. Complete analytic solution of the 𝑂(1) −problem 

has been used and discusses the influence of the small parameter 0 < 𝜀 << 1, and 

the parameter of the damping on the translating Euler-Bernoulli-beam moving 

system has discussed in detail. 

In this research work, we conclude that: 

i. The straightforward expansion method is applicable for the damped 

equation but will fail for the un-damped cases. 

ii. The solutions are bounded for all times t 

iii. The damping term dominates the linear and trigonometric functions and 

suppresses the oscillations 

iv. , 𝑢(𝑥, 𝑡; 𝜀) → 0 as 𝑡 → ∞ 

Case 3.  
𝛿2

4
− 𝜆𝑛 < 0, 𝜆 = 𝜆𝑛; is given in Table. 1 

 

𝑢(𝑥, 𝑡; 𝜖) = ∑ 𝑒−
𝛿
2

𝑡(𝐴𝑛0 cos(𝜔𝑛𝑡) + 𝐵𝑛0 sin(𝜔𝑛𝑡))𝜓𝑛(𝑥)

∞

𝑛=1

+ 𝜀 ( ∑ 𝑒−
𝛿
2

𝑡 (𝐴𝑛1 cos(𝜔𝑛𝑡) + 𝐵𝑛1 sin(𝜔𝑛𝑡)

∞

𝑛=1,𝑛≠𝑚

+
2𝑣0𝜔𝑛

𝜎𝑚
2 (𝜆𝑚 −

𝛿2

4
− 𝜔𝑛

2)

(𝐴𝑛0 sin(𝜔𝑛𝑡) − 𝐵𝑛0 cos(𝜔𝑛𝑡))𝜃𝑛𝑚) 𝜓𝑛(𝑥)) 
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In this case, the solution is bounded due to the dominance of the damping term 

𝑒−
𝛿

2
𝑡
. Solution 𝑢(𝑥, 𝑡) → 0 as 𝑡 → ∞. 

V.    Conclusion  

In this paper, the Beam-like equation under the influence of viscous 

damping has been studied. The general initial conditions are considered for 

displacement and velocity. To construct the solution of the initial-boundary value 

problem analytically, the straightforward expansion method together with the 

classical separation of variables method has been used. By the use of the separation 

of variables method the two ordinary differential equations have been obtained: the 

time-dependent ordinary differential equation and the space-dependent ordinary 

differential equation. The nature of the solution of the time-dependent part depends 

on the nature of the discriminant: discriminant < 0 means under damping, 

discriminant > 0 means over damping, and discriminant = 0 means critical 

damping. It is interesting to note that the solution of the space-depending part is a 

trivial solution for both cases when the separation constant 𝜆 < 0 or 𝜆 = 0, and is 

non-trivial or non-zero when 𝜆 > 0. The solution of the space-depending part 

(boundary-value problem) is constructed, whereas eigenvalues and eigenfunctions 

are obtained. The damped amplitude-response of the system is obtained under certain 

cases of damping. It is concluded that the response of the system remains bounded 

due to the dominance of the damping on all terms. 
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