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Abstract 

Numerical modeling of brick masonry behaviour under different performance 

conditions has always remained a challenging task. Several modeling strategies have 

been developed for masonry, in general, through the course of time that have been 

simplified to speed up modeling and analysis duration. This ranges from a simplified 

strut model to a highly discontinuous micro-scale nonlinear model. With the current 

advent of high-speed computing and modeling tools, more realistic numerical modeling 

of masonry is now possible. In this paper, the strategy adopted is based on macro-scale 

modeling, where isotropic material properties are considered for the homogenous 

continuum. ABAQUS is used as a state-of-the-art finite element-based analysis and 

modeling tool. The Concrete Damage Plasticity (CDP) model is used for simulating 

inelastic material behaviour of brick and mortar, which is available in the ABAQUS 

library. This material model can be used in both implicit and explicit schemes of 

integration but the explicit procedure is highly preferred as it overcomes the 

convergence issues. Various parameters required for CDP modeling of brick and 

mortar are adapted from literature. The model is assembled in two parts, first part is 

modeled for masonry with both elastic and plastic properties, while the other part 

simulates a rigid beam at the top of the masonry part to create a uniform in-plane shear 

loading effect. The masonry part has been fixed at the bottom with free vertical ends, 

while horizontal in-plane displacement was applied to the top rigid beam. The load-

displacement curves were generated from these models for monotonic push, to compare 

them with the envelopes of experimental results, loaded similarly. Since brick masonry 

is a highly disjointed material, it is a complicated procedure to develop an exact model 
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and predict its exact behaviour. However, the overall representative load-displacement 

curve developed numerically was in good agreement with the ones produced 

experimentally. 

Keywords : Macro-Scale, Masonry, Numerical Model, Squat Pier, Tension Stiffening 

I.    Introduction 

Masonry is the oldest and most commonly used construction techniques for 

residential buildings. It may be used as load-bearing or non-load-bearing (architectural, 

partition, etc.) applications. In general, masonry is a composite of two different 

materials i.e. unit blocks (clay, concrete, etc.) and mortar (cement, lime, etc.). Mortar, 

by default, adds weak zones that have a high tendency to crack under extreme in-plane 

as well as out-of-plane loading conditions, for example, earthquake, blast, vehicle 

impact etc. These complexities in masonry make it significantly challenging to predict 

its failure modes, in any computational framework, about other conventionally use 

structural materials (concrete, steel, etc.). 

There are several numerical models [I], [II], [III], [IV], based on different 

assumptions and characterized by different levels of details have been developed. The 

simplest method that is used to describe masonry comes from the mechanics of solids 

and allows the study of collapse through the limit equilibrium analysis. It assumes a 

masonry panel as a kinematic chain of rigid blocks that is described with Lagrangian 

displacement magnitude at one point [II]. Another possible approach for modeling 

masonry is the equivalent strut method (see Figure 1), which considers deformation in 

the elastic range possibly followed by inelastic. A method called POR [IV] was 

proposed, where the primary objective was to permit manual calculus to verify the 

masonry structure. This method was based on the shear resistance of plain masonry and 

simulating the story mechanism only. Masonry panels are also modeled with an 

approach of using macro-elements [V], for example, piers and lintels. This procedure 

was further improved [VI] and a kinematic nonlinear macro-element was proposed, 

shown in Figure 2. 

 

 

 

 

 

 

Fig 1. Masonry panel modeled through an equivalent strut [II][III] 
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                         Fig 2. A kinematic model for the macro-element [VI] 

With the recent developments of computational structural analysis mainly 

based on finite element method, that takes into account the composition of masonry, 

different micro and macro modeling techniques exists. These computational methods 

are mainly categorized into three groups, namely, detailed-micro, simplified-micro and 

macro models, illustrated in Figure 3 [VII]. The detailed micro-modeling is the one in 

which each component of the masonry wall is modeled separately in detail. This 

consequently provides a high level of accuracy but also increases the computational 

demand. In simplified micro-modeling, also known to be meso-scale modeling, brick 

units are assembled with an interface element of negligible thickness having properties 

that of mortar. This procedure is somewhere between micro and macro scale modeling 

with less computational demand relative to micro scale modeling. It has been suggested 

that the interface element between bricks can be modeled using a yield surface defined 

by tension and shear only [VIII]. This model has further modified [VII] by adding a 

compression cap to the yield surface. A two-dimensional meso-scale numerical model 

using rigid brick units was also developed [IX], to simulate the crack propagation in 

brick masonry. This study was further extended to a three-dimensional model [X] as 

well. 

 

 

 

 

 

 

   

                                 Fig 3. Modeling approaches for masonry 

In the case of macro-modeling, the brick units and the mortar joints are smeared 

out in the continuum. The constituents are either handled mathematically by locating 

material within the geometry or the constitutive laws of structural elements are directly 
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provided in terms of internal forces. Material properties necessary for macro-scale 

modeling may be isotropic or anisotropic depending on the level of required accuracy. 

In this research, a brick masonry pier has been modelled as a simplified macro-

scale three-dimensional continuum. A similar comparison [XII] has been done in the 

past for stone masonry walls. The material properties used in this research are isotropic 

and a Damage Plasticity Model has been used in ABAQUS to predict the behaviour 

under in-plane laterally loaded conditions. The primary aim was to validate the 

developed macro numerical model, by comparing its monotonic load displacement 

behaviour with the experimental envelope of cyclic load displacement curve of similar 

arrangement [XIII] by the same approach as used for stone masonry [XII] discussed 

earlier. 

II.    Numerical Model of Brick Masonry 
The numeric model is based on the geometric and material model. Where, the 

material model has furthermore, different behaviours depending upon whether the 

straining is within elastic or inelastic range. This section highlights different parameters 

required to develop a numerical model. The loading scheme and method of analysis 

required to perform this study are also discussed in this section. 

Geometric Model 

The acquired experimental data [XII] including, geometry and material 

properties along with cyclic load-displacement curve have been used to develop and 

validate the macro numerical model. The experimental brick masonry panel was 

labeled as PII, and its dimensions were 1.36m x 1.28 m x 0.235 m (4.46 ft x 4.20 ft x 

0.77 ft), with an aspect ratio of ℎ𝑝 𝑙𝑝⁄ = 0.94. In the ABAQUS CAE modeling 

environment, two parts were assembled, as shown in Figure 4, one is a rigid beam at 

the top, modeled with high stiffness and the second one is a brick masonry wall, 

modeled with typical masonry properties discussed below. Both parts are connected 

through tie constraints at the surface. 

  

                           Rigid beam 

 

              Brick masonry wall 

 

 

 

 

Fig 4. The assembled masonry model 
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Both, rigid beam and brick masonry are modeled with linear (first order) brick 

element with reduced, designated by C3D8R in ABAQUS. With the testing of both 

fine and coarse meshed models, the global seed size of 0.0762 m (3 in) is used to mesh 

this model 

III.     Material Model 

Elastic Properties 

Elastic modulus of the top beam was assumed to be very high Eb=20 GPa 

(2900.76 ksi) to account for a stiff shear transferring system (i.e., RCC Beam) at the 

top of the masonry wall. Although various material properties for the brick masonry 

are available from [XII], these models were not used because they were based on linear, 

bi-linear or trilinear models while Concrete Damage Plasticity (CDP) model, used in 

ABAQUS, requires the tabulated no-linear stress-strain history for masonry. Therefore, 

the compressive strength and modulus of elasticity were estimated using empirical 

relationships illustrated by Hemant et al.[XIII].  

Hemant et al.  presented a generalized relation to estimating the compressive 

strength of masonry𝑓′𝑚, as follows. 

                             𝑓′𝑚 = 𝑘 𝑓𝑐𝑏
𝛼  𝑓𝑐𝑗

𝛽
                                                      (1)    

Where k, α and β are the constants based on experimental data. From the 

available experimental results [XII] the values of 0.63, 0.49 and 0.32 are adopted, for 

k, α and β respectively. Using equation 1 the compressive strength for our model is 

estimated to be 4.78 MPa (694.5 ksi) which is a close estimate of the experimentally 

[XII] measured value of 4.54 MPa (658.1 psi). 

The modulus of elasticity has been calculated using equation 2 provided by 

Tomazevic [XIV]. 

                                            𝐸𝑚 =  𝑘 𝑓𝑚                                                       (2) 

Where k is an empirical constant with a value ranging from 200 to 2000 for 

clay brick masonry [XIV]. Hamant et al. [XIII] used k=550 for their study. In this study, 

the value of k=850 has been numerically selected for the model, using the back analysis 

approach. An elastic comparison is shown in Figure 5 and Figure 6 for different values 

of k value of k. 
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                       Fig 5. Elastic comparison with results of PIIb[XII] 

 

 

 

 

 

 

 

Fig 6. Elastic comparison with results of PIIc[XII] 

The elastic parameter used for the numerical model is summarized in Table 1, 

where density and Poisson’s ratio are acquired from the literature [XXII]. 

Table 1: Elastic Properties 

 Concrete Top Beam Masonry Wall 

Density (kg/m3) 2400 1887 

Modulus of Elasticity (MPa) 20000 4070.39 

Poisson’s Ratio 0.15 0.2 

Inelastic Properties 

The Concrete Damaged Plasticity (CDP) material model is used to model the 

inelastic behaviour of masonry. CDP plasticity parameters are also assumed from the 

literature [XXV] and are summarized in Table 2. 

Table 2: Plasticity Parameters 

ψ 𝜖 fb0/fc0 Kc Viscosity Parameter 

45 0.1 1.3 0.5 0 
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Where, where ψ (in Degrees) is the dilation angle, 𝜖 is the eccentricity defining 

the hyperbolic flow potential behaviour. fb0/fc0 is a factor by which equal biaxial 

compressive yield stress varies from initial uniaxial compressive yield stress. Kc 

parameter is based on the stress invariant in a three-dimensional stress state. 

For compression stress-strain behaviour of masonry is based on the theoretical 

method [XV] by using Eq. 3 and Eq. 4, which are used to find 𝑓𝑚
1 , the pre-peak stress 

profile in masonry and 𝑓𝑚
2, the post-peak stress profile in masonry, shown in Figure 7. 

                       𝑓𝑚
1 = 𝑓𝑖 + (𝑓′𝑚 − 𝑓𝑖) (

2𝜀𝑚

𝜀′𝑚
−

𝜀𝑚
2

𝜀′𝑚
2 )

0.8

                            (3) 

                         𝑓𝑚
2 = 𝑓′𝑚 + (𝑓𝑚𝑖𝑑 − 𝑓′𝑚) (

𝜀𝑚−𝜀′𝑚

𝜀𝑚𝑖𝑑−𝜀′𝑚
)

2
                (4) 

In Eq. 3 and Eq. 4,  𝑓′𝑚 is the ultimate strength, 𝑓𝑖 is the initial stress that starts 

from zero. 𝑓𝑚𝑖𝑑 is half of the ultimate strength. 𝜀′𝑚 is the peak strain at crushing 

strength while 𝜀𝑚𝑖𝑑 is the strain corresponding to 𝑓𝑚𝑖𝑑, i.e. is assumed to be 2.25 times 

𝜀′𝑚 according to [XIII]. Figure 7 is the acquired stress-strain from equations which was 

used to define compression behaviour in ABAQUS. 

 

 

       

 

 

 

 

                        Fig 7. Empirically estimated compressive curve 

The tensile strength of masonry is estimated from the equation provided by 

Tomazevic [XIV], which suggests that the tensile strength of masonry is 5.5% of its 

compressive strength. Backes [XXIII] has experimentally studied the post cracking 

stiffening behaviour of unreinforced masonry, wherefrom we can develop an approach 

to use tension stiffening property. Belarbi et al. [XVIII] and Ghiassi et al. [XIX], 

presented a mathematical expression for tensile behaviour of masonry and other quasi 

brittle material as illustrated by Eq. 5 and Eq. 6.  

                               𝜎𝑡
1 = 𝐸𝑐𝜀𝑡                                (5) 

                               𝜎𝑡
2 = 𝑓𝑐𝑟 (

𝜀𝑐𝑟

𝜀𝑡
)

𝑐
                    (6) 
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Where 𝑓𝑐𝑟 is the cracking strength, 𝜀𝑐𝑟 is the strain at fracture strength and c is 

the stiffening parameter that defines the post cracking sharpness of the model curve. 

Here c=0.2 is used for this study to represent the experimental curve presented by 

Backes [XXIII].  

 

 

 

 

 

 

                                   Figure 8: Empirically estimated tensile curve 

The mathematical relationships for estimation of crushing and cracking strains 

of masonry, proposed in ABAQUS documentation [XX] and [XXI], were used to 

evaluate and input crushing and cracking strains for our model. 

Analysis of Procedure 

Among the two major analysis procedures available in ABAQUS, the explicit 

dynamic analysis procedure is the most used procedure for highly discontinuous 

numerical models. It can be used to solve the equation of motion either in dynamic or 

quasi-static problems. As compared to implicit procedures, the explicit methods require 

no iterations and hence demand less computational time. This procedure is derived 

from a central difference integration scheme where the time increment is the only 

constraint that must be controlled. To have a conditionally stable central difference 

operator, the time increment (Δt) should be less than the stability limit (Δtmax). The 

stability limit for the operator is given in terms of the highest eigenvalue in the system 

as 

 ∆𝑡 ≤ 2
𝜔𝑚𝑎𝑥

⁄  when damping is neglected and 

 ∆𝑡 ≤ 2
𝜔𝑚𝑎𝑥

⁄  . (√1 + 𝜉𝑚𝑎𝑥
2 − 𝜉𝑚𝑎𝑥) when damping is considered. 

Where 𝜉 is the fraction of critical damping in the highest mode. In this research, 

an explicit dynamic analysis procedure has been used with the value of Δt=0.2582 

msec. 

III.    Loading and Boundary Conditions 

The explicit analysis method requires the load to be defined in the time domain. 

Initially, the masonry wall was preloaded under constant compression from the top 

through the rigid beam, afterwards, lateral in-plane shear is induced in the form of 

displacements applied horizontally at the top rigid beam. These pre-compression and 
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lateral displacements are applied in two distinct steps. A pre-compression load of 0.421 

MPa (61 psi) is applied at the top with a ramp amplitude up to 30sec, as shown in Figure 

9, to damp any dynamic effects. 

 

 

 

 

 

 

Fig 9. Amplitude applied to pre-compression 

The total lateral in-plane monotonic displacement of 8 mm (0.32 in) was 

applied on a top rigid beam using the ramp function shown in Figure 10 for the duration 

of 272 sec. The loading rate was kept at 0.03mm/sec which was according to the tests 

performed by Tomazevic [XXII].  

 

 

 

 

 

 

Fig 10. Amplitude applied to lateral displacements 

The base of the masonry wall model was assigned an ENCASTRE (fixed) 

boundary condition. This boundary condition was applied along with the pre-

compression step, before the application of displacement in the lateral direction. 

IV.     Results and Discussion 

The load-displacement results obtained from ABAQUS are compared with two 

results i.e. PIIb and PIIc In [XII], three piers were tested for the type labeled as PII. and 

are illustrated in Figure 11 and Figure 12 respectively. Wherefrom the overall trend of 

behaviour was found in good agreement with the envelopes of experimental results. 
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Fig 11. Comparison of numerical results with PIIb experimental envelopes. 

 

 

 

 

 

 

 

Fig 12. Comparison of numerical results with PIIc experimental envelopes. 

From experiments, in PIIb the first significant crack was observed at a lateral 

load of 123.6 MPa (17.94 kips) in the negative direction while the diagonal cracks were 

observed at 159.8 MPa (23.16 kips) in the positive direction. The maximum lateral load 

was 173.7MPa (25.18 kips) in a positive direction and 143.6 MPa (20.82 kips) in a 

negative direction. In the case of PIIc, lateral load at the first significant crack and the 

diagonal crack was the same i.e. 18.84 kips and the maximum lateral load was 151.8 

MPa (21.94 kips) in a positive direction and 131.4 MPa (19.04 kips) in a negative 

direction. 

Numerically it can be observed from Figure 11 and 12 that the maximum lateral 

load is 155 MPa (22.46 kips). Since the model is macroscale therefore damages in the 

section can be observed in terms of maximum principle plastic strains, see in Figure 

13. 
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Fig 13. Maximum Principle plastic strains at maximum lateral load 

V.   Conclusion 
 

This manuscript described a three-dimensional macroscale numerical strategy 

for brick masonry under in-plane shear. Model from Javed [XII] was selected and was 

simulated for a lateral load in a monotonic direction. Numerical load-displacement 

results were compared to experimental envelope curves and the overall behaviour was 

found in good agreement. From the study, it was revealed that the stress-strain curve 

for tensile behaviour played an important role and that the diagonal damage is greatly 

dependent on it. A tension stiffening analogy was developed and used to model 

diagonal damage behaviour of brick masonry. The model also showed certain levels of 

plastic damages at two alternate corners showing flexural cracks. Furthermore, the 

explicit procedure was found very helpful for a highly discontinuous material model 

like the one used in this study i.e. Concrete Damaged Plasticity. The modeling strategy 

offers efficient and a relatively reduced computational demand. More work, however, 

is still needed to further enhance the computational efficiency of the developed 

numerical modeling strategy. 
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