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Abstract 

The permeability of the soil is one of the most important properties of an 

unlined earthen canal or river bed. Using fine plastic particles has experimentally 

proven to reduce soil permeability, but the experimental study of the effect of a variety 

of types of plastic fines and their percentages in riverbed soil is tedious work to do. 

Estimation of permeability of riverbed soil by altering it with plastic fines using 

Artificial Neural Networks (ANNs) may reduce this effort. Particle size distributions 

(PSDs) have a significant influence on the permeability of bed soils. Being able to 

predict the permeability of bed soil by knowing the PSDs may provide an easy 

approach to know the loss of water by percolation. This study has investigated the 

quantitative relationships between permeability and PSD indices using ANNs. The aim 

was to build a mathematical model capable of predicting the permeability of bed soil 

by PSD indices of choice. A model was built using ANNs including PSD indices as 

input and permeability as output. The model stated that the coefficients of curvature 

and uniformity (Cc) and (Cu) and effective particle size (D50) may be used to predict 
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the bed permeability. The computational model was able to predict 

the effect of variation of PSD indices on bed permeability, thus allowing increasing the 

efficiency of the river bed, to ensure maximum downstream water supply, lesser 

seepage and percolation and better productivity. The test result has confirmed 

the efficiency of the developed ANN tool in predicting the bed permeability for different 

PSD combinations. 

Keywords: River, permeability, plastic fines, neural network 

I.    Introduction 

Particle Size Distribution (PSD) indices have been used for many years to develop 

empirical equations to predict the permeability of soils, such as those of Hazen (1892), 

Kozeny (1927), Carmen (1956), Terzagi and Peck (1964), Kenney et al., (1984), 

Alyamani and Sen (1993) because the in-situ and laboratory test methods have 

limitations; like its variation in both vertical and horizontal directions (Jabro, 1992), 

quality of undisturbed soil samples (Holtz et al., 2011), how well the natural state of 

the soil in the field is represented by laboratory samples (Degroot, Ostendorf and Judge, 

2012), time-consuming and costly field pumping tests (Shepherd, 1989), in situ 

methods that generally measure horizontal permeability (Degroot, Ostendorf and 

Judge, 2012). 

Linear and non-linear empirical equations, such as those based on PSD characteristics, 

have been widely used to determine the permeability of soils (Hazen, 1892; Kozeny, 

1927; Carman, 1956; Alyamani and Şen, 1993; Terzaghi and Peck, 1997). The Kozeny-

Carmen equation is globally accepted and used the equation of permeability that 

involves easily measurable and readily available soil properties (Odong, 2007). The 

equation, however, is limited because of the inability to produce correct results when 

effective size is greater than 3 mm or clayey soil (Carrier, 2003). Errors were caused 

by grains of extreme size in the whole sample that produce erroneous predictions of 

soil permeability (Arkin and Colton, 1956). Moreover, a general correlation equation 

between permeability and gradation incorporating a wide range of soils is not yet 

available (Boadu, 2000). Even though many predictive and empirical models; that 

determine key parameters of the soil, have been proposed in the past decades, models; 

that predict key parameters for fine media, are scarce and a general correlation between 

the sorting condition/PSD, K and incorporating a wide array of soil is still not available 

(Qi et al., 2015). Furthermore, these equations do not consider the influence of the 

entire PSD as well as the effect of soil density on permeability (Onur, 2014). 

Recently, there has been an interest in developing models that simulate soil 

properties since they have been found to improve our understandings of soil processes 

and evaluate engineering problems (Sarmadian, Mehrjardi and Akbarzadeh, 2009). 

Particularly, they have been applied to predict permeability and cation exchange 

capacity (CEC) (Sarmadian, Mehrjardi and Akbarzadeh, 2009), which have shown 

better predictive performance than multiple regressions (Amini et al., 2005). The 

advantage of ANNs over traditional regressions pedo-transfer functions (PTFs) is, 
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partly because of their better adaptability, flexibility and greater generalization 

capabilities (Benardos and Vosniakos, 2007) and their easy application in 

computational devices; both in the soft and hard form (Hunt et al., 1992; von Twickel, 

Büschges and Pasemann, 2011). They have been used with great success, for predicting 

soil parameters; like water percentage at field capacity, CEC and permanent wilting 

point (Sarmadian, Mehrjardi and Akbarzadeh, 2009). All in all, these characteristics 

make them a powerful and unique tool for predicting non-linear relationships among 

variables. 

The permeability of soil can be predicted indirectly with great success under certain 

conditions, using available empirical equations that involve easily measurable and 

readily available soil properties like PSDs (Ishaku, Gadzama and Kaigama, 2011), 

making them ideal to assess the potential of ANNs to model/evaluate the soil response 

at different combinations of mentioned soil properties and to understand important soil 

processes. An ANN is an approach to create a mathematical model that works 

analogously to the human brain (Sarmadian, Mehrjardi and Akbarzadeh, 2009). PSD, 

as a physical property, has a great impact on key soil parameters like permeability and 

various ANNs have been developed to understand its dynamics (Khanlari et al., 2012; 

Tizpa et al., 2015)Linear and non-linear empirical equations are famous, but, are 

limited because of the inability to produce correct results when effective size is greater 

than 3 mm or clayey soil (Carrier, 2003). These limitations provide the necessary 

motivation/push for testing and validating ANNs; as an effective alternative for those 

empirical equations, for modeling and predicting key parameters of soil. 

The aim of the research was threefold: first to develop a correlation of permeability 

with a particle size of the river bed, second to write a simple neural network that can 

be easily defined mathematically and third, to develop a generalised ANN tool for 

prediction of permeability from the river soil bed particle size information. To solve 

these problems, the response; predicted permeability, of ANN models, were compared 

with experimental results as well as single and multiple inputs were measured. 

II.    Materials and Methods 

II.i.  Properties of Riverbed Soil Samples 

In this research work, a database of 45 datasets has been compiled through 

laboratory testing. The database contains properties of riverbed material from three 

different river sources in Pakistan; Lawrencepur, Chenab, and Ravi.  The distribution 

of collected and prepared samples is shown in table 1. The specific gravity of all 

samples was obtained according to ASTM D854 specifications. The standard proctor 

test was performed on all samples in accordance with the ASTM D698 specifications 

to obtain maximum dry density and optimum moisture content. Sieve analysis and 

hydrometer analysis according to ASTM D422 specifications were used to obtain 

particle size distribution for all samples. Index properties (liquid limit and plastic limit) 

were obtained as per ASTM D4318 specifications and were used along with the 

characteristics of the particle size distribution curve to obtain the class of each sample 
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as per the Unified Soil Classification System (USCS). Permeability tests were 

performed on constant head permeability apparatus ASTM D2434 specifications and 

falling head permeability apparatus ASTM D5084 specifications. 

Table 1. Riverbed soil samples and their alterations 

Sr. 

No. 

Sample types Samples River Total Nos of 

samples 

1. Undisturbed 1 
1. Lawrencep

ur 

2. Chenab 

3. Ravi 

3 

2. With varying % of plastic 

fines 

7 21 

3. With varying % of non-

plastic fines 

7 21 

   Total Samples 45 
 

The processed properties of these riverbed soil samples i.e., coefficients of curvature 

and uniformity (Cc) and (Cu) and effective particle size (D50) are plotted against 

permeability and shown in fig 1. An attempt has been made to correlate the recorded 

permeability of these riverbed samples (listed in table 1) with particle size properties, 

using cubic and trigonometric functions, as shown in fig 1. It is clear from the 

correlation function (Rsqr<<1) that this relationship is not straightforward and requires 

a more rigorous method (like ANN) to define any relationship.  
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Fig. 1. Permeability of riverbed material plotted with the coefficient of curvature (Cc), 

coefficient of uniformity (Cu) and effective particle size (D50). Coloured circles only help 

graphically in differentiating between clustered points. 
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II.ii.    ANNs for the permeability of river bed soil 

A static multi-layer artificial neural network, based on a Feed-Forward Neural Network 

(FFNN) has been developed to predict riverbed soil permeability. This type of network 

uses back-propagation, which compares the output values with obtaining experimental 

values to compute the value of some pre-defined error-function. Later, by optimization 

techniques, the error is fed back into the network. Using this information, the 

optimization algorithm adjusts the weights of each connection to reduce the value of 

the error function by some small amount. After repeating this process for a sufficiently 

large number of training cycles, the network will usually converge to some state where 

the error of the calculations is smallest. To adjust weights properly, a general method 

for non-linear optimization, called generalised reduced gradient (GRG) has been used. 

With GRG, the network calculates the derivative of the error function with respect to 

the network weights and changes the weights such that the error decreases.  

The architecture of the developed ANN includes 2 layers; hidden, and output layer, 

each of which was formed by a determined number of nodes. Additionally, the input 

layer has three nodes (effective particle size (D50), coefficient of curvature (Cc), and 

coefficient of uniformity Cu). The output layer has one node (the permeability of 

riverbed soil). In the developed network the hidden and output nodes are defined 

mathematically as follows: 

y = f (Σiwjixi + θi)                                                                          (1)
  

where x and y are the i inputs and outputs respectively of the jth node, wji are the 

weights for each input, θi is the bias and f (x) is referred to as the activation function 

(Xing & Pham, 1995). 

The data in the input layer has been scaled from 0 to 1 by linear mapping techniques 

before using in the ANN. In the hidden layers of ANN, a sigmoid function is shown in 

eq. (2) has been used as an activation function to introduce a non-linearity in the 

estimated output. Sigmoid is one of the most used activation function in ANN 

applications (Jain, Mao and Mohiuddin, 1996; Xing & Pham, 1995). All the results 

from the non-linear sigmoid function were linear. 

f (x) = 1/(1+e-x)                                                                                               (2) 
 

 The Microsoft Excel built-in Solver function has been used to optimize 

and train the ANN. The basic back-propagation method was used for training the 

network and to calculate the weights between the nodes. This method consists of two 

passes, a forward pass, and a backward pass. In the forward pass, inputs are provided 

with fixed weights and an activity pattern is applied to the input nodes of the network 

while providing fixed weights of the networks. The effect of this activity pattern 

generates a set of outputs. The output value is subtracted from the recorded value to 

yield/obtain an error value. This error value is used to adjust the weights, to get almost 

the same output value as the recorded value. The weights are adjusted according to the 

https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Gradient_descent
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generalised delta rule. The number of samples in the input vector was set to 45 samples. 

The initial weights and bias values were initialized 0.01 and 0.02 for weight and bias 

respectively of each node in the hidden layer and 0.04 and 0.03 for weight and bias of 

each node in the output node and later optimize using optimization algorithms. 

II.iii.   Optimization algorithms for ANN architecture design 

The performance; prediction accuracy, of ANNs greatly depends upon selecting the 

right number of nodes and layers for that ANN. In this research, an algorithm was 

written and applied to modify the architecture until the optimal architecture was found. 

The algorithm was designed such that, it will test a pre-defined set of neurons, and 

iterated each neuron ten times with the GRG Nonlinear method for calculating the 

global best performance of every neuron. For each iteration, the weights of every 

neuron were adjusted through the GRG Nonlinear method unless and until the global 

best solution was obtained. 

The GRG Nonlinear optimization algorithm is used for solving nonlinear smooth 

optimization problems (Lasdon et al., 1974). They are chosen for their acceptable 

accuracy, efficiency and fast convergence compared to classical algorithms for solving 

non-linear programs (Lasdon et al., 1974). The nonlinear program to be solved is 

assumed to have the form minimize  

f(x)          (3) 

subject to  

gi(x) = 0,   i=1, …, m                                 (4) 

li < Xi < ui   , i = 1, …, n                                                                          (5) 

Where X is n-vector and ui, li are given lower and upper bounds ui > li. We assume m 

< n since, in most cases, m >/ n implies an infeasible problem or one with a unique 

solution (Lasdon et al., 1974). 

A single sigmoid function was involved. When the population was created and passed 

through the back-propagation, the networks were trained to predict the permeability. In 

a population of 45 from one individual parse of input data, we took a sample of 36 for 

training and the remaining 9 testing the response of ANNs. The testing data is used at 

the end to verify that the training has been successful.  

The Mean Square Error (MSE) was calculated (Eq. (6)), for estimating the 

performance, between the predicted output value and recorded output value.  

MSE (%) = (1/n)(Σn
i=1  (Yi- Y’i)2 

Where Yi is the recorded output value of permeability at the ith sample and Y’
i is the 

predicted output of  N samples, from the trained artificial neural network. 
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III.    Results 

III.i.    ANN prediction model for permeability 

3 input variables were used for the prediction of riverbed permeability using ANN, 

including effective particle size (D50), the coefficient of curvature (Cc) and coefficient 

of uniformity (Cu). The only output was permeability. Among 45 measured data sets, 

36 sets (80 %) have been used for training and the remaining 9 (20%) have been used 

for testing the model. Figure 4 shows an almost perfect prediction of riverbed 

permeability based on the input parameters; however, in the testing cases, the 

predictions exhibit a higher scatter. 
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Fig. 2 : Comparison between the predicted values of riverbed permeability and the 

experimental data 
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Fig. 3: Comparison between the predicted values of riverbed permeability and the 

experimental data (21 samples) 
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Fig. 4: Comparison between the predicted values of riverbed permeability and the 

experimental data (36) 
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III.ii.   Architectures of the ANN models 

The algorithm tested a pre-defined set of neurons/nodes; 2-29 neurons, in the hidden 

layer and iterated each neuron ten times with the GRG Nonlinear method for 

calculating the global best performance of every neuron. In accordance with figures 6,7 

and 8, mostly for every neuron, the optimization algorithm obtained the best possible 

solution after 3rd iteration. The output of the optimization algorithm was composed of 

two nodes and used by the architecture of ANNs to model the riverbed permeability. 

The algorithm was allowed for networks from 2 to 29 neurons. The best architecture 

was composed of 19 (for 36 cases i.e trial 3) (at 10 neurons for trial 2 &at 14 neurons 

for trial 1) neurons as evident from figure 7, figure 8 and figure 9. 
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Figure 5: No. of neuron vs MSE 
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Figure 6: No. of iteration vs MSE (16 samples) 
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Figure 7: No. of iteration vs MSE (21 samples) 



 

 

 

 

 

 

J. Mech. Cont.& Math. Sci., Vol.-15, No.-11, November (2020) pp 57-71 

Mohammad Adil et al  

 

 

67 

 

0 2 4 6 8 10 12

M
S

E

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0 2 4 6 8 10 12

0.000

0.005

0.010

0.015

0.020

0.025

0.030

2 Neurons

3 Neurons

4 Neurons

5 Neurons

6 Neurons

7 Neurons

8 Neurons

9 Neurons

10 Neurons

11 Neurons

12 Neurons

13 Neurons

14 Neurons

15 Neurons

No. of Iteration

0 2 4 6 8 10 12

0.000

0.005

0.010

0.015

0.020

0.025

0.030
23 Neurons

24 Neurons

25 Neurons

26 Neurons

27 Neurons

28 Neurons

29 Neurons

No. of Iteration

0 2 4 6 8 10 12

M
S

E

0.000

0.005

0.010

0.015

0.020

0.025

0.030
16 Neurons

17 Neurons

18 Neurons

19 Neurons

20 Neurons

21 Neurons

22 Neurons

 

Figure 8: No. of iteration vs MSE (36 samples) 

 

 

III.iii.  Validation of the ANNs 

The architecture obtained with the optimization algorithm was trained for the 

prediction of river bed permeability (Fig. 8) using D50, Cc, and Cu as input parameters. 

As is clear from the figure 8, the model was able to effectively predict the riverbed 

permeability. However, the performance of the model varied when it is tested with new 

data (the 1/5 of data not used in the network training). The best architecture has MSE 

of 6.5E-04 and 0.0369 for training and testing respectively, which confirms the model 

efficiency in the prediction of riverbed permeability. 

IV.    Discussions 

It is evident from the results of this research that ANNs can use to predict 

riverbed permeability and can be used to improve understanding of soil processes. 

We have developed an algorithm to automate the ANNs architecture design for 

developing models that simulate engineering problems and predict the response in a 

systematic manner/approach. The developed algorithm optimized the ANN 

architectures to reduce computational time and improve their generalisation abilities. 
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We have shown that PSD can be used to develop models that can predict riverbed 

permeability. This research confirms the suitability of ANNs in modeling the complex 

behaviour of most geotechnical engineering materials. Furthermore, the results suggest 

that ANNs could be used as a mathematical representation of soil response to variation 

in index properties. The performance; predicted permeability, was perfect in the 

training set but showed slight variation when it is tested with new data (the 1/5 of data 

not used in the network training). There are several possible reasons for why the model 

fit is not perfect in the validation and testing sets, which points out to the deficiencies 

in model extrapolation, and uncertainty, improvements in these issues will greatly 

enhance the usefulness of ANNs models. In this research, all these factors were 

captured in the mean square error.  

As is clear from the results, input variables; D50, Cc, and Cu have significant 

influence/impact on the ANN prediction model and can be used to accurately predict 

the riverbed permeability. Furthermore, the individual impact/importance of these 

input variables can be evaluated by performing sensitivity analysis.   

V.    Conclusions 

In this research, we show that ANNs can be used to model the soil responses 

to variation in PSD indices and predict the permeability with great success. We have 

developed an algorithm to automate the ANNs architecture design, which reduces 

computational time and improves their generalisation abilities. Thus, confirming the 

suitability of ANNs in modeling the complex behaviour of most geotechnical 

engineering materials. Furthermore, the ANN model was able to estimate the responses 

validation and testing sets, but predictions tended to be better within the training sets, 

highlighting the deficiencies in model extrapolation, and uncertainty.  
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