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Abstract

Numerical integration is one of the fundamental tools of numerical analysis
to cope with the complex integrals which cannot be evaluated analytically, and for
the cases where the integrand is not mathematically known in closed form. The
guadrature rules are used for approximating single integrals, whereas cubature rules
are used to evaluate integrals in higher dimensions. In this work, we consider the
closed Newton-Cotes cubature schemes for double integrals and discuss consequent
error analysis of these schemes in terms of the degree of precision, local error terms
for the basic form approximations, composite forms and the global error terms.
Besides, the computational cost of the implementation of these schemes is also
presented. The theorems proved in this work area pioneering investigation on error
analysis of such schemes in the literature.

Keywords: Cubature, Double integrals, closed Newton-Cotes, Precision, Order of
accuracy, Local error, Computational cost.

l. Introduction

Mathematical models arise from the translation of the fundamental laws of
science and engineering for various physical systems under consideration [Il1]. Such
models often arrive in complex forms. The mainstream analytical methods are not
always applicable to solve such systems, and in some situations, the functions are not
known in the closed-form [I11], [V1I1]. Iterative and approximation tools of numerical
analysis are used to cope with such problems [XI11], [XVI]. Numerical integration in
the same zeal provides means for the efficient evaluation of complex integrals [I].
The very basic methods of numerical integration are due to Isaac Newton and Roger
Cotes, well-known as Newton-Cotes rules [II1]. The Newton-Cotes rules are quite
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frequently used for the evaluation of single integrals, i.e. integrating a function of one
variable over a subset of reals [I],[I1]. There have also been enormous modifications
of closed and open Newton-Cotes rules for single integrals. The contributions by
[VI], [V] improved the conventional rules with two units of precision. There have
also been derivative-based improvements [I1], [IV], [V], [XVHI], [XVII], [XV]. The
closed Newton-Cotes quadrature rules and the improvements have also been used to
solve integral equations [XIV], carry out numerical simulation of switched reluctance
machines [XII], efficient evaluation of Riemann-Stieltjes integral [X], [XI],
evaluation of numerical cubature with derivative-based schemes [1X], etc. However,
for the integration in higher dimensions the basic closed Newton-Cotes schemes are
although available in the literature [Pal book], but the error analysis is not presented
for the basic schemes.

In this research work, we discuss error analysis of the basic closed Newton-Cotes
cubature schemes for double integrals. Theorems regarding the degree of precision,
order of accuracy and local error terms are proved. The extension of the basic
cubature schemes into composite forms is also carried out and the computational
costs are discussed as a pioneering analysis in this work.

Il. Closed Newton-Cotes Schemes for Single Integral

The first three closed Newton-Cotes quadrature rules in basic form with local
error terms for numerical integration are defined as equations (1)-(3) [l11] :

[ f) de =Z2[f (@) + F(0)] - 2 17(©) 1)

(b a)

f7 reodx =22\ (]f‘()b)* Y (T)] Lo p ) @
@ + 35 (22 .
kros=5E (a+2b)(+f()b) _ 0 ®

where ¢ € (a,b), and are known as trapezoidal, Simpson’s 1/3 and Simpson’s 3/8
rules. The composite forms of these three rules with global error terms can be defined

as (4)-(6) [1]:

[P F00 dx = 2[f(@) + 255 Fo) + FB)] =2 (b — ) (n() (4)
2 i -a
reax=2"@F B | CDpt @ (n(x) (5)
+42i2=1f(x21—1) + f(b)
f(a) + 3Zl¢3kf(x1)

[P feode =2 Z - fP(nw) (6)

223 1f(x3;)+f(b)
where n(x) € (a, b), h=b_Ta, x;=a+tih, andi=0,12,...,n
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I11.  Closed Newton-Cotes Schemes for Double Integral

The general form of the double integrals defined over rectangles in two
dimensions is defined as

e (ff f(x, y)dx) dy @)

Here we consider the evaluation of the double integral over a rectangle x = a,x =
by=cy=d.

Pal M. [XIII] discussed the extension of quadrature schemes (1)-(3) for double
integrals, and the basic forms of closed Newton-Cotes double integral cubature
schemes of Trapezoid, Simpson’s 1/3 and Simpson’s 3/8-type, respectively, CNCT,
CNCS13 and CNCS38, can be described as (8)-(10) [XII]:

217 Fooy) dudy =~ S22 £ (a,0) + f(a,d) + £(b,¢) + (b, d)] ®)
f(a,c) + f(a,d) +f(b ¢) + f(b,d)
f(a,ﬂ) +f c+d
f ff(XY)dxdy—% +4 +f(a+2b ) a+b
| +16f (‘”b % |

S P Feey) dxdy =
Fa,c) + f(a,d) + f(b,c) + f(b,d)

s f( 2c+d)+f( 2c+d) +f( C+2d)+f(b,c+32d)

(b_azid_c) +f (2a+b )+f(2a+b )-l- f(a+2b )+f(a+2b ) (10)
. f(? Zc+d) +f(2a+b %)

a+2b 2c+d a+2b c+2d

+f (557559 )

+f (5

IV. Proposed Error Analysis and Main Results

+

We derive the degree of precision and local error terms of the cubature
schemes (8)-(10), and discuss their extension in composite forms with global error
terms. The degrees of precisions of CNCT, CNCS13 and CNCS38 cubature schemes
for double integrals, i.e. (8)-(10) are discussed and proved in Theorem 1.

Theorem 1. The degree of precision of CNCT, CNCS13 and CNCS38 cubature
schemes for double integrals, as defined in (8)-(10), respectively are one, three and
three.

Proof of Theorem 1.

Following the definition of degree of precision as mentioned in [IX], the exact results
from (7) for f (x, y) = (x y)" withn =0,1,2,3,4 are:

SO 2 x%y dxdy = (b - a)(d — ) (11)
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fcd f:(xy) dx dy = &z @ =c?)

fcd fab(xzyz) dxdy = w
fcd fab(x3y3) dxdy = w
fcd fab(x4y4) dxdy = %

(12)
(13)
(14)
(15)

Approximate results using CNCT scheme from (8) for f (x, y) = (x y)" withn =0,1,2

are:
CNCT(x°y%) = (b —a)(d — ¢)
CNCT (ry) = A=)

_ 20 2\ (_ 2,2
CNCT(nyZ) _ (b—a)(b?+a )4(d c)(d?+c?)

Comparison of (11)-(13) with (16)-(18) gives,
For CNCT scheme, and f(x,y) = (xy)" with n <1,
fcd (f:(xy)”dx) dy — CNCT(xy)" =0
But, for f(x,y) = x%y?, we have
fcd (ffxzyzdx) dy — CNCT (x%y?) #0

(16)

(17)

(18)

(19)

(20)

So, from (19)-(20), it appears that the degree of precision of CNCT double integral

schemes is 1.

Approximate results using CNCS13 scheme from (9) for f (x, y) = (xy)" with
n=0,1,2,3,4 are:

CNCS13(x°y®) = (b —a)(d — ¢)

ENCS13(ey) = o))

3_ 3\(43_ .3
CNCS13(r2y?) = 0 N@e)

4__A\(q4_ 4
CNCS13(xty?) = e @e)

(a—b)(c—d){4(§+§)4+a4+b4}{4(§+§)4+c4+d4}

36

CNCS13(x*y*) =
Comparison of (11)-(15) with (21)-(25) gives,
For CNCS13, and f(x,y) = (xy)™, n <3,

(S eyyrdx) dy — CNCS13(xy)" = 0
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Butif f(x,y) = x*y*, then
(S x*y*dx) dy — CNCS13(x*y*) 0 7)
So, from (26)-(27), the degree of precision of CNCS13 double integral scheme is 3.

Similarly, for CNCS38 cubature scheme (10) for double integrals, we have for
fG,y) = (xy)"and n <3,

[ (S eyyndx) dy — CNCS38(xy)™ = 0 (28)
But, for f(x,y) = x*y*, the approximation using (10) is:

) sa(2e) var )
(a—b)(c—d){{3(c+2d) +3(%+ 2) +C4+d4}}

3 3 3 3
CNCS38(x*y*) = ” (29)
From (15) and (29), we have for n = 4:
[ (S x*y*dx) dy — CNCS38(x*y*) #0 (30)

Therefore, from (28) and (30), the degree of precision of CNCS38 double integral
scheme is 3. O

The local error terms of (8)-(10) are presented with proof in theorems 2-4,
respectively for CNCT, CNCS13 and CNCS38 double integral schemes.

Theorem 2. Let a, b, ¢, d be finite real numbers, and f (x, y) is along with its second-
order partial derivatives exist and are continuous in [a, b]X][c, d], then the CNCT
double integral scheme in basic form with the local error term is defined as:

j j f(x,y) dx dy = CNCT + Reyerlf]

_ -a@-o[fla,c)+f(ad) |_o- a) (d 0)
4 +£(b,c) + f(b,d) fex (&) =
where & € (a,b) and n € (c,d)

Proof of Theorem 2.

(b— a)(d )3

fyy(Em)

The second-order partial derivative term in Taylor’s series of f (x, y) [III,] [XII]
about (xo, Yo) is:

o%f o%f
" (x — x)? ﬁ(xmy'o) +2(x — x0) (Y — ¥o) 9%y (x0,¥0)

2!

(31)
+(r = y0)* 6y2( X0, Yo)

Using (31), the local error term of CNCT double integral scheme (8) can be
represented as:
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d b d b
Rencr U1 =3[0 [ x2dxdy — CNCT()| fex(6m) + [ f7 xydxdy —
d b
CNCT(ey)| fe(Em) + 5|1 [, y2dxdy — ENCT(YD)] £ (&) (32)

Using the exact results, which are:
3_.3 _ 2_ 2 2_.2
fcd fab x2dxdy =—(b @) 2} fcd f; xydxdy = (p2-a¥)(d?~c?) )4(d ¢ ),

(b— a)(d c?)

f I, ®y2dxdy = , and the approximate CNCT results:

(b—a)(d—c)(b +a?
2

(b—a)(d—c)(d?+c?)
2

(v-a?)(@=c)
]

CNCT(x?) = ) CNCT(xy) =

CNCT(y?) =
integral scheme takes the form

Rener f]1 = ——F—fux(&m) —
where ¢ € (a,b) and n € (c,d) O

Theorem 3. Let a, b, ¢, d be finite real numbers, and f (X, y) is along with its fourth-
order partial derivatives exist and are continuous in [a, b]X[c, d], then the CNCS13
double integral scheme in basic form with the local error term is defined as:

SEL ooy dxdy =
f(a,c) + f(a,d) + f(b,c) + £ (b, d)
—a)dc crd crd
) o)
+f( )+f(— d

_ (b-a)’(d-0) (b—a)(d—c)®
e fenxx (671) = e fyyy (6,1

where & € (a,b) and n € (c,d)
Proof of Theorem 3.

in (32), the local error term for CNCT double

_ - a) (d c) (b— a)(d c)®

fyy(Em) (33)

a+b c+d)

) +16f (22,28

The fourth-order partial derivative term in Taylor’s series of f (x, y) [111],[XI11] about
(Xo, Yo) is:

4 0%F 3 *f
(x = x0)* 55 (X0, ¥o) + 4(x —x0)°(y — }’O)W (0, ¥o)
1 a*
¥ +6(x — x0)?(y = ¥0)? ﬁ(mo) (34)
4
+4(x —x0)(y — 3’0)3 axay3 (x0,¥0) + (¥ — 3’0)4 ( 0 Yo)

Using (34), the local error term of CNCS13 double integral scheme (9) can be
represented as:
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Renesislfl = %[fcd f; xtdx dy — CNC513(X4)] fexxx(§1)

+%[de fabx3ydx dy — CNCSl3(x3y)] Fexx (6 ) + i [fcd f: x2y2dx dy —
CNCS13(x2y2)| fyyx (Em) +3 [ [ [ xy3dx dy — CNCS13(xy®) |y (€:1)

+ 5[ 1 yidx dy — ENCS130®)] fryyy () (35)

The exact integrals in (35) are:

(v*-at)(a=c?)
e

fc fa (x*y?)dxdy = w, fc fa (xy®)dxdy = %, and

[ 2 xt dxdy = 20D (4 by aray =

_ 5_,5
fcd f: ytdxdy = %’M . The approximate CNCS13 scheme results for the
integrals in (35) are:
(a—b)(c—-d){24(2+2) +6a*+6b* ) (g2 2
CNCS13(x*) = { (36 ) | , CNCS13(x3y) = %}‘ie)

, and

3_,43 3_~3 2_ .42 4_ 4
CNCS13(x%y?) = W, CNCS13(xy?) = (b?-a )B(d )

4
(a=b)(c=a)24(5+%) +6ct+6dt
CNCS13(y*) = { (326 ) }

Using these exact and approximate evaluations in (35), we finally get: the local error
term of the CNCS13 cubature scheme for the double integrals as:

_ (b-a)’(d-0) (b—a)(d-c)®
Renesis [fl = 2880 < froxxx (&5 7]) ﬁfyyyy(&ﬂ) (36)

where ¢ € (a,b) andn € (¢,d) O

Theorem 4. Let a, b, ¢, d be finite real numbers, and f (X, y) is along with its fourth-
order partial derivatives exist and are continuous in [a, b]X[c, d], then the CNCS38
double integral scheme in basic form with the local error term is defined as:

S P Foey) dxdy =

f(a,c)+ f(a,d)+ f(b,c)+ f(b,d)

o) (.29 + £ (5. 25%) + £ (0, 52%) + £ (5,229
(b—a)(d—c) +f (2a+b )+f(2a3+b,d) + f(a+2b )+f(a+2b )

64

+9 ! (za;fz’:cgd)d ! (2a3+f2':+3252)d
+f a c f a ’C
_(b(a) >(d- 6)3 ) ( ’ (b— fl)(c)i c)®

6480 frxxx (1) — 6480 fyyyy(f n)
where & € (a,b) and n € (¢, d).
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Proof of Theorem 4.

Using (34), the local error term of CNCS38 double integral scheme (10) can be
represented as:

Renessslf] = %[fcd f; xtdx dy — CNC538(X4)] frxxx(§,1)

1 d rb
w5 [ [ rovaxay - enessscen| punten
[ a 1 d b
tal[ [vaay - enesssoe s yetem
Cc a

1 d rb
+€U fxy3dxdy—CNC538(xy3)]fyyyx(f:71)

d b
+ [ 7 yhdx dy — CNCS38(®)] fryyy (€1) (37)
The exact results in (37) are same as those used in (35), whereas the approximate
CNCS38 cubature scheme results for the integrals in (37) are:

(a=b)(c- d){ (a 2) +3(2a E) +a 4+b4}

—a?* 2_
CNCS38(x4) 33 3 '3 CNCS38(x y) = (b*-a )8(d c?)
3_,3)\(g3_c3 oaN(ah 4
CNCS38(x%y?) = w , CNCS38(xy?3) = (b?-a )B(d c ),
CNCS38(y*) = = d){ G+ ?) +3(%+d)’ +C4+d4}

Using these in (37), we have the Iocal error term of the CNCS38 cubature scheme for

double integrals, which is:

5 5
RCNCSSS[f] = _%fxxxx(fv 77) - %fyyyy(f' 77) (38)
where & € (a,b) and n € (c,d). O
For improved approximations, it is imperative to use the CNCT, CNCS13 and
CNCS38 schemes in composite form by sub-dividing the original rectangle into sub-
rectangles of area h? and k? along x and y axes leading to CNCT-Cn, CNCS13-Cn and
CNCS38-Cn composite schemes for n? elements, say.
Let a, b, c, d be finite real numbers, and f (x, y) along with its higher order partial
derivatives (2", 4™ exist and are continuous in [a,b]Xx[c, d]. Let {x; = a + ih i =
0,1,...,n} and {y; = ¢ + jk j=0.,1,...,n} form uniformly spaced partitions of [a, b] and
[c, d] such that b-a = nh and d-c = nk, then the CNCT-Cn, CNCS13-Cn and
CNCS38-Cn composite schemes for n? elements with the global error terms are
defined as in (39)-(41), respectively.

n-1n-1

f f faeyacdy=y > [ [ oy

j=0i=0"Yi Xi
= CNCT-Cn= ¥t S 28 [ (20, vy) + £ (30 Vjan) + F (v ¥)) + £ (Risn Vjan)]

h?(b —a)(d — ¢) k*(b—a)(d —c)
B 12 xx (i ) B 12 Fyy (iﬂ)
where § € (a,b) and ne (c,d) (39)
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CNCSl3-Cn_= )
[f(x0,9;) + F (o yie1) + F(xien¥5) + F(Xirn, Vje1)]
yj+y Yity;
S 1 N S TN S
+f( 2 ’yf) +f( 2 'yf+1)
+16f (xl'+;i+1 , y].+2y]‘+1)

h*(b—a)(d—c) k*(b—a)(d—c) i
T Zss0  Jwo (i’ ﬁ) N Zes0 vy (i’ E) (40)
where § € (a,b) and ne (c,d)

) CNCS38-Cn =
FOeyi) + F(xoyien) + F(xien, ) + F(Xie1 Vie)
+3(f (xi 2}’j+3’j+1) +f(xi+1’23’j+3’j+1) +f( ) yj+2yj+1) +f(xl+1'3’1+23’j+1)

sty [ #F (52 ) + 7 (B ) £ (3552, 3,) + 7 (5582 )y

64
f (2x1+xi+1 Zyj+yj+1) + f (2x1+x1+1 yj+2yj+1)
+9 3’ 3 3’ 3
Xi+2Xi41 2YjtVjn Xi+2Xi41 Vj+t2YVj41
+f ( , +f .

3 3 3 3 E
h*(b—a)(d—c) k*(b-a)(d—c) )
B 6480 Frexx (i’ Q) - 6480 fyyyy (i' E) (41)
where § € (a,b) and n€(cd)

V. Numerical Experiments, Results and Discussion

We apply the CNCT, CNCS13 and CNCS38 composite schemes on two test
double integrals from [XII1] under similar conditions for instant verification of the
error bounds. Figs 1-2 show the decreasing error distributions for Examples 1 and 2,
and the trends show the convergence of the schemes, and the order of accuracy of the
rules are consistent with the derived error terms. The total computational cost to
achieve an absolute percentage error of atmost 1E-08 in case of CNCT and 1E-12 for
others in terms of function evaluations for Examples 1 and 2, respectively, of the
CNCT-Cn scheme is 160801 and 333573696 evaluations, for the CNCS13-Cn is
16641 and 2002225, and for the CNCS38-Cn is 24649 and 3041536. Tables 1 and 2
show the observed computational order of accuracy [XI],[XVIII]. From Tables 1-2,
the theoretical error bounds are verified in terms of observed orders of accuracy.

V1. Conclusion

In this paper, a pioneering investigation of the error terms and computational
performance of the closed Newton-Cotes double integral cubature schemes was
performed theoretically and then verified using numerical experiments. The theorems
concerning the degree of precision and local error terms of three schemes: CNCT,
CNCS13 and CNCS38 were derived in the basic form. The successful extension to
the composite forms was established and the global error terms were reported.
Numerical features, like the computational costs, observed orders of accuracy and
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absolute error drops were also used for the verification of theoretical results proved in
this work.

1.00E+00
1.00E-02
1.00E-04
1.00E-06
1.00E-08
1.00E-10
1.00E-12

Absolute errors

135 7 9111315171921232527293133353739
Number of elements

=@=CNCT ===CNCS13 ==ie=CNCS38

Figure 1: Absolute error distributions versus the number of elements of CNCT,
CNCS13, CNCS38schemes for Example 1

1.00E+00

1.00E-02

1.00E-04

1.00E-06

Absolute errors

1.00E-08
1 35 7 9111315171921232527293133353739

Number of elements

=¢=CNCT =——=CNCS38 =—CNCS13

Figure 2: Absolute error distributions versus the number of elements of CNCT,
CNCS13, CNCS38schemes for Example 2
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Table 1: Observed order of accuracy for Example 1

Table 2: Observed order of accuracy for Example 2

VII. Acknowledgements

Authors are thankful to their institutes for providing facilities for the conduct of this
research.

Conflict of Interest:
There is no conflict of interest regarding this article

References

l. Bailey, D. H., and J. M. Borwein, “High-precision numerical integration:
progress and challenges,” Journal of Symbolic Computation, vol. 46, no.
7, pp. 741-754, 2011.

Kamran Malik et al

105



VI.

VII.

VIII.

XI.

XII.

XII.

XIV.

J. Mech. Cont.& Math. Sci., Vol.-15, No.-11, November (2020) pp 95-107

Bhatti AA, Chandio MS, Memon RA and Shaikh MM, A Modified
Algorithm for Reduction of Error in Combined Numerical Integration,
Sindh University Research Journal-SURJ (Science Series) 51.4, (2019):
745-750.

Burden, R. L. and J. D. Faires, Numerical Analysis,
Brooks/Cole,Boston, Mass, USA, 9th edition, 2011.

Burg, C. O. E. Derivative-based closed Newton-cotes numerical
guadrature, Applied Mathematics and Computations, 218 (2012) 7052-
7065.

Burg, C. O. E., and E. Degny, Derivative-based midpoint quadrature
rule, Applied Mathematics and Computations, 4 (2013) 228-234.

Dehghan, M., M. Masjed-Jamei, and M. R. Eslahchi, “On numerical
improvement of open Newton-Cotes quadrature rules,” Applied
Mathematics and Computation, vol. 175, no. 1, pp.618-627, 2006.

Dehghan, M., M. Masjed-Jamei, and M. R. Eslahchi, “On numerical
improvement of closed Newton-Cotes quadraturerules,” Applied
Mathematics and Computation, vol. 165, no. 2,pp. 251-260, 2005.

Jain, M. K., S.R.K.lyengar and R.K.Jain, Numerical Methods for
Scientific and Computation, New Age International (P) Limited, Fifth
Edition, 2007.

Malik K., Shaikh, M. M., Chandio, M. S. and Shaikh, A. W. Some new
and efficient derivative-based schemes for numerical cubature. Journal
of Mechanics of Continua and Mechanical Sciences, 15 (10): 67-78,
2020.

Memon K, Shaikh MM, Chandio MS and Shaikh AW, A Modified
Derivative-Based Scheme for the Riemann-Stieltjes Integral, Sindh
University Research Journal-SURJ (Science Series) 52.1, (2020): 37-40.

Memon K, Shaikh MM, Chandio MS and Shaikh AW, A new and
efficient Simpson’s 1/3-type quadrature rule for Riemann-Stieltjes
integral, Journal of Mechanics of Continua and Mechanical Sciences, 15
(11):, 2020.

Memon, A. A., Shaikh, M. M., Bukhari, S. S. H., & Ro, J. S. (2020).
Look-up Data Tables-Based Modeling of Switched Reluctance Machine
and Experimental Validation of the Static Torque with Statistical
Analysis. Journal of Magnetics, 25(2), 233-244.

Pal, M., Numerical Analysis for Scientists and Engineers: theory and C
programs, Alpha Science, Oxford, UK, 2007.

Shaikh, M. M. “Analysis of Polynomial Collocation and Uniformly
Spaced Quadrature Methods for Second Kind Linear Fredholm Integral
Equations — A Comparison”, Turkish Journal of Analysis and Number
Theory. 2019, 7(4), 91-97.

Kamran Malik et al

106



J. Mech. Cont.& Math. Sci., Vol.-15, No.-11, November (2020) pp 95-107

XV. Shaikh, M. M., Chandio, M. S., Soomro, A. S. A Modified Four-point
Closed Mid-point Derivative Based Quadrature Rule for Numerical
Integration, Sindh Univ. Res. Jour. (Sci. Ser.) Vol. 48 (2) 389-392 2016.

XVI. Walter Guatschi, Numerical analysis second edition, Springer Science
business, Media LLC 1997, 2012.

XVIl.  Weijing Zhao and Hongxing, “Midpoint Derivative-Based Closed
Newton-Cotes Quadrature”, Abstract and Applied Analysis, vol.2013,
Avrticle ID 492507, 10 pages, 2013.

XVIIIl.  Zafar, F., Saira Saleem and Clarence O.E.Burg, New derivative based
open Newton-Cotes quadrature rules, Abstract and Applied Analysis,
Volume 2014, Article 1D 109138, 16 pages, 2014.

Kamran Malik et al

107



